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Abstract

Spatiotemporal expression of transcription factors is crucial for genomic reprogramming. Pou5f1 (Oct4) is an essential transcription 
factor for reprogramming. A recent study reported that OCT4A, which is crucial for establishment and maintenance of pluripotent 
cells, is expressed in oocytes, but maternal OCT4A is dispensable for totipotency induction. Whereas another study reported that 
OCT4B, which is not related to pluripotency, is predominantly expressed instead of OCT4A during early preimplantation phases in 
mice. To determine the expression states of OCT4 in murine preimplantation embryos, we conducted in-depth expression and 
functional analyses. We found that pluripotency-related OCT4 mainly localizes to the cytoplasm in early preimplantation phases, 
with no major nuclear localization until the 8–16-cell stage despite high expression in both oocytes and early embryos.  
RNA-sequencing analysis using oocytes and early preimplantation embryos could not identify the splice variants creating alternative 
forms of OCT4 protein. Forced expression of OCT4 in zygotes by the injection of polyadenylated mRNA clearly showed nuclear 
localization of OCT4 protein around 3–5-fold greater than physiological levels and impaired developmental competency in a 
dose-dependent manner. Embryos with modest overexpression of OCT4 could develop to the 16-cell stage; however, more than 50% 
of the embryos were arrested at this stage, similar to the results for OCT4 depletion. In contrast, extensive overexpression of OCT4 
resulted in complete arrest at the 2-cell stage accompanied by downregulation of zygotically activated genes and repetitive elements 
related to the totipotent state. These results demonstrated that OCT4 protein localization was spatiotemporally altered during 
preimplantation development, and strict control of Oct4 protein levels was essential for proper totipotential reprogramming.
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Introduction

Cellular reprogramming and differentiation are 
accompanied by dynamic transcriptional changes 
and transcription factors play central roles in both 
processes (Buganim et al. 2013). Dramatic alterations 
of cellular fates occur during preimplantation 
embryo development (Burton & Torres-Padilla 2014). 
In mice, after fertilization, most maternal factors 
are degraded and zygotic gene activation (ZGA) 
occurs by the 2-cell stage (Hamatani et  al. 2004). 
An important transcription factor responsible for 
sustaining pluripotency is the POU5F1 protein (also 
known as OCT4) (Nichols et  al. 1998). In zebrafish, 
Oct4 is crucial for driving ZGA (Lee et  al. 2013, 
Leichsenring et  al. 2013). In mammals, although 
Oct4 expression defines pluripotent stem cell fates 

dose-dependently (Niwa et  al. 2000), maternal Oct4 
was shown to be dispensable for in vivo totipotential 
reprogramming during the preimplantation phase (Wu 
et  al. 2013). However, Marti and coworkers showed 
that Oct4 has two isoforms and Oct4B, which is 
not associated with pluripotency, was found to be 
predominantly expressed, whereas Oct4A was not 
expressed during early preimplantation phases of 
mice (Marti et al. 2013).

The presence of OCT4B transcripts was reported in 
some human cell lines (Atlasi et  al. 2008). In mice, 
Oct4B transcript was found in embryonic stem cells 
(Guo et al. 2012). The differing regions in the two Oct4 
isoforms were the first exon in both mice and humans 
(Atlasi et al. 2008, Guo et al. 2012). However, the Oct4 
variants have not been identified in preimplantation 
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phases in mice. These studies led us to question 
whether pluripotency-related Oct4 is substantially 
expressed in murine early preimplantation embryos. 
In this study, we conducted deep expression analysis 
and dose-dependent functional analyses of Oct4 in the 
preimplantation stages in mice.

Materials and methods

Oocyte collection and embryo manipulation

All mice were maintained and used in accordance with the 
Guidelines for the Care and Use of Laboratory Animals of 
the Japanese Association for Laboratory Animal Science 
and the National Research Institute for Child Health and 
Development of Japan (A2006-009-C09). Adult female 
(8–12 weeks of age) and male (8–16 weeks) B6D2F1 mice 
were purchased from CLEA Japan (Tokyo, Japan), and 
oocytes were collected following standard methods. All 
embryos were cultured in KSOM (Millipore, Billerica, MA, 
USA) medium at 37°C and 5% CO2.

All microinjection experiments were carried out based on 
previous reports (Fukuda et al. 2014). In brief, in vitro fertilized 
embryos at 1–1.5 h after sperm input were washed in M2 
medium and incubated for 1 h. mRNA or siRNA injection was 
conducted using a PiezoDrive (Prime Tech, Ibaraki, Japan) and 
the embryos were cultured in KSOM medium.

In vitro mRNA synthesis and siRNA preparation

The coding regions of Oct4 mRNA in 4-cell embryos were 
amplified by PCR amplification using KOD-Plus-Neo DNA 
polymerase (Toyobo, Osaka, Japan) with T7-containing 
forward and reverse primers with poly T (Supplementary 
Table  1, see section on supplementary data given at the 
end of this article). Using the DNA templates, Oct4 mRNA 
was generated by in vitro transcription using an mMessage 
kit (Life Technologies) following manufacturer’s instructions. 
Oct4 mRNA concentrations were adjusted to 50, 100 and 
200 ng/µL. The same number of mRNA molecules was found 
in 200 ng/µL Oct4 mRNA and 130 ng/µL EGFP mRNA used 
for injection. siRNAs targeting Oct4 (sense: 5ʹ-GUU CGA 
GUA UGG UUC UGU ATT-3ʹ, antisense: 5ʹ-UAC AGA ACC 
AUA CUC GAA CCA-3ʹ) and a negative control (silencer 
select negative control, #4390846; Ambion) were purchased 
from Life Technologies. Each siRNA (25 ng/mL) was injected 
into zygotes.

RT-PCR analysis

Total RNA from 50 GV oocytes, 50 MII oocytes, 50 1-cell, 
100 2-cell, 130 4-cell, 40 morulae and 30 blastocysts was 
extracted using an RNeasy Micro kit (Qiagen). cDNA was 
synthesized using SuperScript III and random hexamers 
(Life Technologies) and used for RT-PCR analysis. PCR was 
conducted using KOD FX neo polymerase (Toyobo) according 
to manufacturer’s instruction. PCR cycle number was 45 with 
a 60°C annealing step.

qPCR analysis of single and pooled embryos

Each single embryo was lysed and reverse transcription was 
conducted using the Single Cell to CT kit (Life Technologies) 
according to manufacturer’s instruction. Total RNA of pooled 
embryos was extracted using an RNeasy Micro kit (Qiagen) 
and cDNA was synthesized using SuperScript III and random 
hexamers (Life Technologies) according to manufacturer’s 
instruction. The synthesized cDNA was used for TaqMan 
gene expression analysis (Life Technologies) in all qPCR 
assays except for major satellite and MERVL quantification, 
which were carried out using a SYBR Green assay (Bio-Rad). 
For MERVL normalization, β-actin was used for the internal 
control. For strand-specific reverse transcription of major 
satellites, 2 μM of each primer (forward transcript detection: 
CAT ATT CCA GGT CCT TCA GTG TGC; reverse transcript 
detection: GAC GAC TTG AAA AAT GAC GAA ATC) was 
used instead of random hexamers. The same number of cells 
was used for the assay to be normalized to cell number. The 
TaqMan probes used in this study are shown in Supplementary 
Table 1. The data of Supplementary Fig. 7 were analyzed using 
the R function ‘hclust’ (https://www.r-project.org/) to produce 
unsupervised clustering.

Immunofluorescence (IF)

Antibodies for Oct4-C10 (1:500; Santa Cruz Biotechnology), 
Oct4-N20 (1:500; Santa Cruz), H3K9me3 (ab8898; Abcam), 
RING1B (1:500; Cell Signaling Technologies), 5-methylcytosine 
(1:500; Eurogentec, Liége, Belgium) and 5-hydroxycytosine 
(1:500; Active Motif, Tokyo, Japan) were used for IF.

To prepare the samples, the zona pellucida was removed 
by acid Tyrode’s solution (Millipore) and washed in PBS 
containing 0.1% polyvinyl alcohol (PBS-PVA) before fixation. 
For Oct4, the embryos were fixed in 2% PFA for 10 min 
followed by permeabilization in 0.25% Triton-X for 10 min 
at room temperature. For H3K9me3 and RING1B, fixation 
and permeabilization were conducted simultaneously 
for 5 min at room temperature. For 5-methylcytosine and 
5-hydroxycytosine staining, the samples were fixed followed 
by permeabilization as described above and were subjected 
to 2.4 N HCl treatment (in PBS-0.5% PVA) for 20 min at room 
temperature and then neutralized in 100 mM Tris–HCl in PBS-
PVA for 15 min.

After fixation and permeabilization, the samples were 
blocked in PBS containing 1% BSA (blocking buffer) 
for 1 h and incubated with antibodies overnight at 4°C. 
Embryos were washed with PBS containing PBS-PVA and 
then incubated for 1 h at room temperature with Alexa 
Flour 546-, 633-conjugated IgG secondary antibodies, 
or 546-conjugated IgG2b (for C-10 antibody) (Life 
Technologies, 1:500). After the embryos were washed with 
PBS-PVA and attached onto cover slides, the nuclei were 
stained with DAPI.

Quantification of nuclear OCT4 protein

To quantify OCT4 nuclear protein levels by IF, the same 
laser intensity was applied to all samples. Three-dimensional 
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images were constructed from Z-sections in the LSM Image 
Browser (Carl Zeiss). The total signal intensities of the 
maximum projection and nuclear area determined by DAPI-
positive regions were calculated using ImageJ software (http://
imagej.nih.gov/ij/). Statistical analysis was performed using 
Student’s t-test.

Western blotting (WB)

Oocytes and embryos were washed in PBS-PVA and lysed 
(in sample buffer containing SDS and 2-Me) and heated for 
5 min at 95°C. The lysates were subjected to SDS-PAGE using 
e-PAGEL (ATTO, Tokyo, Japan). For native-PAGE, the samples 
were lysed in native sample buffer (Bio-Rad) and vortexed. 
The lysates were then subjected to PAGE using e-PAGEL 
(ATTO) on ice. The transferred membranes were washed 
in TBS containing 0.1% Tween 20 (TBS-T) and blocked 
in 5% skim milk (Morinaga, Tokyo, Japan) in TBS-T for 1 h. 
The membranes were incubated with OCT4-C10 antibody 
(1:200, Santa Cruz) overnight at 4°C, washed and incubated 
with a mouse HRP-conjugated secondary antibody (1:2000, 
Sigma-Aldrich) for 1 h. Immunoblots were visualized using 
SuperSignal chemiluminescent substrate (Thermo Scientific) 
and an ImageQuant LAS4000 system (GE Healthcare). After 
image capture, the membranes were washed, blocked and 
incubated with an anti-TUBULIN (1:2000, Sigma-Aldrich), 
GAPDH (1:2000, Wako) or RNAPII (1:2000, Active Motif) 
antibody. The membranes were then washed and visualized 
using the same method.

For the collection of 100 morula cells, the zona pellucida of 
each embryo was removed and the embryos were incubated 
in PBS containing polyvinyl alcohol (0.1%) and cytochalasin 
B (5 µg/mL) at room temperature for 10 min. Morula cells were 
collected using a micromanipulator.

For examination of phosphorylation state, we conducted 
Phos-tag SDS-PAGE. The samples were prepared according 
to the above method. In the PAGE procedures, the gel 
(SuperSep Phos-tag (50 μmol/L), 12.5%) was used according to 
manufacturer’s instruction.

Separation of nuclei and cytoplasm

The embryos at 1- and 2-cell stages were incubated in 
M2 medium containing cytochalasin B (10 μg/mL) and 
nocodazole (1 μg/mL) for 10 min at 37°C. Enucleation was 
performed using a Piezo Micro Manipulation system in the 
above medium. The collected nuclei and cytoplasm were 
subjected to WB analysis.

BrdU incorporation assay

The embryos were incubated with 10 μM BrdU (Sigma) from 
23 to 33 h after insemination. The samples were subjected 
to the same procedure as IF using 5-methylacytosine/
hydroxycytosine antibodies. Anti-BrdU (1:100, Abcam) and 
anti-mouse 546 IgG secondary antibody were used and the 
images were captured by LSM510 laser scanning confocal 
microscopy (Carl Zeiss). The signal intensity was quantified 
using Image J software.

DNA- and RNA-FISH

The zona pellucida was removed and the samples were washed 
in PBS-PVA. The samples were fixed and permeabilized 
simultaneously (in 2% PFA and 0.25% Triton-X in PBS-PVA) 
for 5 min at room temperature and placed on a coverslip. For 
RNA-FISH, hybridization buffer containing a locked nucleic 
acid (LNA) probe (Exiqon, Vedbaek, Denmark) targeting major 
satellites was applied to the slide as reported previously (Probst 
et al. 2010), and incubated overnight at 37°C in a humidified 
atmosphere. After washing twice with 2× SSC containing 50% 
formamide and 2× SSC with 0.05% Tween 20, the embryos 
were stained with DAPI.

For DNA-FISH, the samples after fixation and 
permeabilization were subjected to RNaseA treatment for 1 h 
at 37°C. After washing with PBS, the samples were incubated 
with 0.1 N HCl in 0.1% Triton-X-PBS for 10 min on ice. The 
samples were washed and hybridized with the LNA probe 
at 85°C for 10 min and incubated overnight at 37°C. The 
coverslips were washed twice with 2× SSC containing 50% 
formamide and 2× SSC and stained with DAPI. Fluorescence 
was visualized using the LSM510.

Transcriptome analysis

Total RNA following DNaseI treatment was extracted 
using an RNeasy Micro kit (Qiagen). For construction of 
sequencing libraries, we used an Ovation Single Cell RNA-
Seq System (NuGEN, West Cumbria, UK). Strand-specific, 
paired-end sequencing (length: 100 bp) was performed using 
a HiSeq system (Illumina, Inc; San Diego, CA, USA), with 
six samples per lane. BAM format data yielded by Tophat 
2.0.11 (bowtie2-2.2.1) were subjected to successive analyses 
using Cufflinks-2.2.1. The counts of raw reads allocated for 
each gene/transcript that linked to UCSC transcripts were 
normalized to the fragments per kilobase value per million 
mapped reads (FPKM) value (Cufflinks-2.2.1). Normalized 
values were described as log2 values. The genes with >5 
FPKM in either Oct4-OE or control (Egfp-OE) groups were 
filtered and used for differentially expressed genes screening. 
For Fig.  2C, of 6851 genes showing Oct4 binding (Chen 
et  al. 2008), 2512 were filtered (>5 FPKM in either group) 
and plotted. The raw data were deposited in Gene Expression 
Omnibus (accession I.D. of SRA: SRR3103036, SRR3103038, 
SRR310340 and SRR310341.).

Gene set enrichment analysis

The genes expressed at 1- and 2-cell stages were downloaded 
from http://dbtmee.hgc.jp (Park et  al. 2013). The genes with 
>3-fold upregulation in 2-cell embryos were used as ZGA-
associated genes (2720). The ZGA-related genes were used 
for comparison with the genes filtered in the transcriptome 
analysis using Gene set enrichment analysis (http://www.
broadinstitute.org/gsea/index.jsp).

Variant calling for the Oct4 gene from RNA-seq data

The TopHat2 reads aligned to the mouse reference genome 
were used for variant calling. Genomic regions of the exons 
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of the Oct4 (Pou5f1) gene were downloaded from the 
UCSC table browser (http://genome.ucsc.edu/). Multiple 
identical reads from the exact same fragment on Oct4 were 
marked as duplicates by Picard Tools version 1.119 (http://
picard.sourceforge.net). Variant calling with the Unified 
Genotyper was performed by the Genome Analysis Toolkit 
(GATK) Lite version 2.3-9 from the Broad Institute (https://
www.broadinstitute.org/gatk/). The called variants were not 
subjected to a filtering step to avoid filtering low-quality true-
positive variants. The effects of the variants on Oct4 were 
predicted using SnpEff version 3.6 (Flicek et al. 2014), based 
on the database Ensembl GRCm38.75 (Cingolani et al. 2012).

Differential transcription analysis in  
repetitive sequences

Reads were aligned to the mouse reference genome mm10 
allowing up to 20 multiple mappings in the genome using 
TopHat2. Genomic regions of repeat elements were obtained 
with the RepeatMasker track in the UCSC table browser (http://
genome.ucsc.edu/). Expression values of repeat elements were 
calculated as FPKM using Cuffdiff of the Cufflinks suite.

Results

Oct4 mRNA and protein expression states in 
preimplantation embryos

We first examined whether full-length Oct4A transcripts 
were present from oocyte to preimplantation phases. 
Reverse transcription polymerase chain reaction 
(RT-PCR) analysis demonstrated that the protein-coding 
region (CDS: BC068268.1) was expressed during these 
phases (Fig.  1A). Quantitative PCR (q-PCR) analysis 
using single cells from oocyte to morula stages revealed 
that Oct4 levels were highest in the oocyte and gradually 
decreased after fertilization, reaching minimum levels 
at the 4-cell stage (Fig. 1B and Supplementary Fig. 1). 
Although expression in morula cells was slightly 
upregulated compared with that of 4-cell stage cells, 
it was significantly lower than in oocytes (Fig.  1B 
and Supplementary Fig.  1). Thus, although Oct4 
expression levels differed in each stage, the coding 
region of the mRNA was expressed from oocyte to late 
preimplantation phases.

To generate OCT4 protein profiles from oocyte to 
blastocyst stages, we used immunofluorescence (IF) 
with an OCT4A-specific antibody (referred to as C10) 
that was prevalently used for OCT4 protein detection in 
mice and humans (Wu et al. 2013). We first examined the 
expression patterns. Notably, at oocyte to 4-cell stages, 
the OCT4A staining patterns using the C10 antibody 
(Oct4-C10) did not show the nuclear localization 
typically seen in pluripotent stem cells (Fig. 1C). At the 
8-cell stage, Oct4 nuclear localization became partially 
apparent (88% embryos) and all examined morulae 
and blastocysts showed robust Oct4-C10 expression 
with nuclear localization (Fig.  1C). Next, to quantify 

the nuclear protein levels of OCT4, the same laser 
intensity was applied to each sample (adjusted to the 
morula stage). The signals of oocytes, 1-, 2-, and 4-cell 
embryos decreased (Supplementary Fig.  2), indicating 
that the OCT4 nuclear expression was high at the late 
stage of preimplantation; however, the mRNA levels in 
the morula stage were significantly lower than those of 
early preimplantation cells (Fig. 1B).

We also examined OCT4B expression states using a 
specific antibody (Oct4-N20). In contrast to Oct4-C10 
results, we observed nuclear localized Oct4-N20 
signals in 68% GV oocytes and 70% 1-cell embryos 
(Supplementary Fig.  3). However, we did not observe 
robust nuclear Oct4-N20 staining from 2-cells onward 
in most embryos (Supplementary Fig. 3 and not shown), 
nor was observed with another Oct4-N20 antibody with 
a different lot number (not shown). We sought the splice 
variants of Oct4 using RNA deep sequencing (RNA-
seq) data of germinal vesicle (GV) oocytes (Fukuda 
et  al. 2015). However, we did not identify the clear 
splice variants coding for Oct4B identified in human 
and mouse pluripotent stem cells (Atlasi et  al. 2008) 
(Supplementary Fig. 4). Considering the RNA-seq results, 
Oct4-N20 might therefore identify a nonspecific protein 
in mice. Although these results were inconsistent with a 
previous report (Marti et al. 2013), Marti and coworkers 
did not presented the number of embryos in the analysis 
using Oct4-N20 antibody, and we could not directly 
compare our results with their findings.

To confirm the protein expression states of OCT4 by 
a different approach, we conducted Western blotting 
(WB) analysis using Oct4-C10 (hereafter, we refer to 
OCT4A as OCT4). Notably, OCT4 protein was detected 
in MII oocytes and 2-cell embryos as well as morulae 
(Fig. 1D), rejecting the possibility that Oct4 mRNA was 
not translated until the morula stage. Next, to examine 
absolute expression levels, we prepared 100 cells from 
oocyte to morula stages respectively (i.e., 100 oocytes, 
100 zygotes, 50 2-cell embryos, 25 4-cell embryos 
and 7–10 morulae), and performed SDS-WB analysis. 
This showed that OCT4 protein levels from oocytes to 
4-cells were markedly higher than in morulae (Fig. 1E), 
indicating that the protein level per cell was not 
dramatically increased in morulae exhibiting nuclear 
localization of the protein by IF.

The possibility for the inconsistent results of IF 
and SDS-WB might be different protein localization. 
Generally, Oct4 is localized in the nuclei in pluripotent 
cells (Marti et al. 2013, Wu et al. 2013, Yasuhara et al. 
2013). We examined whether the protein detected by 
SDS-WB analysis in early preimplantation embryos was 
derived from the nucleus or cytoplasm. The nuclei of 
1- and 2-cell embryos were removed to separate the 
nuclei and cytoplasm (Supplementary Fig. 5). SDS-WB 
analysis revealed that the majority of the Oct4 protein 
was localized in the cytoplasm in both stages (Fig. 1F). 
Taken together, we concluded that in oocytes and 
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early preimplantation embryos, OCT4 protein mainly 
localized to the cytoplasm but localized specifically to 
the nucleus at the late preimplantation stage.

Exogenous OCT4 expression in zygotes shows  
nuclear localization

To gain further insight into OCT4 protein expression 
states, we constructed Oct4 overexpressing embryos 
(Oct4-OE) by polyadenylated mRNA injection of various 
concentrations (50, 100 and 200 ng/μL). For an injection 
control, to allow for the toxicity of injected mRNA, 
we prepared 130 ng/μL Egfp mRNA that corresponded 
to 200 ng/μL Oct4 mRNA molecules. Injection was 
performed 1.5–2.5 h after insemination to adjust 
fertilization and injection timing (Fig. 2A).

We first examined whether exogenous OCT4 
protein could localize to nuclei at the zygote stage by 
IF analysis. Zygote nuclei exhibited dose-dependent 
IF signal intensity (Fig.  2B). Interestingly, we did 
not observe marked cytoplasmic expression even 
when high-intensity laser excitation was applied 
to Oct4-OE (Fig.  2B). However, SDS-WB analysis 
using Oct4-OE (100 ng/μL) zygotes revealed high 
expression of exogenous Oct4 protein in both the 
nucleus and cytoplasm (Fig. 2C), indicating that the 
C-10 antibody could not identify cytoplasmic OCT4 
protein in the IF assay.

Next, we quantified the total levels of OCT4 nuclear 
protein. We first applied SDS-WB using the nuclear 
fraction of Oct4-OE at the 2-cell stage and ES cells with 
RNAPII as the nuclear internal control. However, we 
found that RNAPII expression states differed between 
2-cell embryos and ES cells: RNAPII of ES cells was 
robustly detected in both the nuclear and cytoplasmic 

fractions (not shown), consistent with a recent report 
using DT40 cells (Hsin et  al. 2014). Therefore, we 
performed quantitative analysis using IF data with the 
C-10 antibody and compared the observed levels of 
Oc4-OE with those of blastocysts, which are pluripotent 
cells. Comparison with blastocyst nuclei showed that 
the total nuclear levels of OCT4 protein in Oct4-OE 
(50 ng/μL) and (100 ng/μL) were more than 3.5- and 
5.3-fold increased respectively (Fig.  2D). These results 
revealed that the levels of exogenously expressed 
OCT4 nuclear protein were higher than those under 
physiological conditions.

Taken together, these results indicate that OCT4 
protein localization was spatiotemporally altered 
between the early and late preimplantation phases. 
Given that exogenous OCT4 protein could be present 
in the nucleus, the conformation of OCT4 protein under 
physiological conditions at early preimplantation phases 
might differ from that in late preimplantation embryos 
or pluripotent cells.

Exogenous Oct4 expression impairs developmental 
competency in a dose-dependent manner

Because Oct4 regulates cell fates in a dose-dependent 
manner in mammals (Niwa et al. 2000), we wondered 
whether the lack of nuclear OCT4 protein in early 
preimplantation phases had biological meaning during 
reprogramming into totipotency. To gain insight into the 
effect of exogenous expression of Oct4 on development, 
we cultured Oct4-OE. Within 24 h after insemination, 
over 95% Oct4-OE and controls had developed to 
the 2-cell stage (Fig.  3A). The developmental rate to 
the blastocyst stage in the control group was 77% 
(Fig. 3A and B). However, at 48 h, >95% Oct4-OE high 

Egfp (130 ng/µL) n=51

Oct4 (50 ng/µL) n=79

Oct4 (100 ng/µL) n=96

Oct4 (200 ng/µL) n=89

Polyadenylated
mRNA

si-Control n=94

Oct4KD n=114
siRNA

%
 o

f d
ev

el
op

m
en

ta
l r

at
es

0

20

40

60

80

100

1-cell 2-cell 4-cell Morula Blastocyst

A

B

Oct4 (50 ng/µL) Oct4 (100 ng/µL)

Polyadenylated mRNA injection

Egfp (130 ng/µL) si-Control Oct4KD

siRNA injection

Oct4 (200 ng/µL)

Figure 3 Developmental ability of Oct4 overexpressing and depleted embryos. (A and B) Developmental ability of Oct4-OEs and Oct4KD 
embryos (A). Representative images at day 4 after fertilization (B).



424	 A Fukuda, A Mitani and others

Reproduction (2016) 152 417–430� www.reproduction-online.org

concentration groups (100 and 200 ng/μL) were arrested 
at the 2-cell stage (Fig. 3A and B). In addition, although 
over 80% low Oct4-OE group developed to the 4-cell 
stage, only 38% embryos developed to blastocyst 
stages (Fig. 3A and B). In contrast, Oct4 depletion by 
siRNA injection (Oct4KD) also caused developmental 
failure of >60% of embryos after the morula stage, 
consistent with a previous study (Tan et  al. 2013) 
(Fig. 3A, B, and Supplementary Fig. 6). Taken together, 
these results indicated that Oct4 overexpression with 
nuclear localization from the zygote stage negatively 
influenced developmental competency in a dose-
dependent manner.

Effect of transcriptome state on  
Oct4-overexpressing embryos

To determine the cause of developmental failures by 
Oct4-OE (50 ng/μL: low), we conducted gene expression 
analysis. We first examined the gene expression states in 
the morula cells in Oct4-OE (low) and Oct4KD embryos. 
Because most of the transcription factors related with 
pluripotency commence transcription at the morula 
stage (Guo et al. 2010), we carried out qPCR using 21 
pluripotency- and 7 epigenetic modification- related 
genes. Unsupervised clustering analysis showed that the 
Oct4-OE (low) group was categorized with the control 
groups (si-RNA control and Egfp-OE), whereas Oct4KD 
was clearly divided (Supplementary Fig. 7A). The lack of 
total Oct4 mRNA and protein upregulation in Oct4-OE 
(low) suggested that external Oct4 was degraded 
by the morula stage (Supplementary Fig.  7B and C). 
The developmental failure of Oct4-OE (low) was not 
obviously caused by dysregulation of major transcription 
factors associated with pluripotency, whereas Cdx2, 
Tet2 and Uhrf1 were markedly repressed and Eomes 
was upregulated in Oct4KD embryos (Supplementary 
Fig. 7B). Thus, although the transcriptional states differed, 
both treatments led to similar embryo phenotypes (Fig. 3A 
and B), demonstrating that strict expression levels of Oct4  
are required for proper development in vivo.

Our study showed that high levels of exogenous OCT4 
expression caused complete 2-cell arrest, implying 
that ectopic expression of OCT4 might affect ZGA. To 
elucidate the cause of the 2-cell arrest in Oct4-OE, 
we examined transcriptional states at the 2-cell stages 
of Oct4-OE (100 ng/μL: high) and controls using RNA-
seq at 30 h after insemination. In Oct4-OE, 29.4% 
genes with >5 FPKM were differentially expressed over 
two-fold. There were markedly more downregulated 
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than upregulated genes in Oct4-OE (1718 (25.4%) vs 
268 (4.0%) genes respectively; Fig.  4A). Although the 
differentially expressed genes (DEGs) were randomly 
distributed among all chromosomes (Supplementary 
Fig. 8), ribosome-related genes and Zscan4 family genes 
(Zeng & Schultz 2005, Zalzman et  al. 2010), which 
were specifically expressed at the 2-cell stage, were 
downregulated (Fig.  4A and Supplementary Fig.  9). 
Furthermore, gene set enrichment analysis revealed 
that Oct4-OE downregulated genes were significantly 
enriched for ZGA-related genes (Fig. 4B). Thus, ectopic 
expression of Oct4 caused the disruption of a 2-cell-
specific transcriptional program including ZGA.

We then asked whether the DEGs could be 
associated with the OCT4 binding potential. As 
chromatin immunoprecipitation assays for OCT4 using 
preimplantation embryos are technically difficult, 
we used known gene lists for which bindings were 
validated in ES cells (Chen et  al. 2008). Out of 2512 
genes, 4.4 % (111) and 24.7% (620) genes were up- 
and downregulated over two-fold in Oct4-OE (Fig. 4C). 
Notably, Fbx15, whose expression pattern correlates 
to that of Oct4 in ES cells (Tokuzawa et al. 2003), was 
strikingly repressed. Taken together, these results suggest 
that ectopic Oct4 expression induced changes in global 
transcription and arrested development, resulting in the 
downregulation of many genes.

Silencing of totipotency-related repetitive elements by 
exogenous Oct4 expression

Recent studies indicate that totipotency-associated cells 
are rarely found among pluripotent stem cells, which 
exhibit an OCT4 protein negative state and the activation 
of endogenous retrovirus (MERVL) transcription 
(Macfarlan et al. 2012, Ishiuchi et al. 2015). In addition, 
major satellite transcripts have also been found to be 
specifically expressed at the 2-cell stage, and their 
repression led to developmental arrest at the 2-cell stage 
(Probst et al. 2010, Casanova et al. 2013). These studies 
promoted us to investigate the transcription states of 
repeats in Oct4-OE (high).

The qPCR analysis revealed that MERVL expression 
levels in Oct4-OE were significantly reduced to <10% of 
control at 30 h after insemination (Fig. 5A). For the major 
satellite transcripts, repression was greater among forward 
transcripts than reverse (forward: <30% of control vs 
reverse: <68%, Fig. 5B), and we confirmed these results 
using strand-specific RNA-FISH (Supplementary Fig. 10).

Notably, comprehensive analysis of repetitive 
elements by RNA-seq revealed that 50% of repetitive 
sequence types were upregulated >2-fold in Oct4-OE 
(high) (Fig.  5C), whereas major satellites and MERVL 
were downregulated (Fig.  5C). We also found that 
ORR1a retroviral elements, which were upregulated 
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during preimplantation development (Peaston et  al. 
2004), were repressed in Oct4-OE as well (Fig.  5C). 
Taken together, OCT4 overexpression altered not 
only the proper ZGA program but also 2-cell-specific 
transcript expression at repetitive elements.

High levels of exogenous Oct4 expression induce 
aberrant chromatin conformation

As dynamic epigenetic alterations are coupled 
with transcriptional changes, we next examined 
chromatin conformation states. We found that the 
pericentromeric heterochromatin region (PHC), which 
normally showed intense DAPI staining, dramatically 
differed between Oct4-OE (high) and control. At the 
2-cell stage, PHC of normal embryos forms a ring-like 

structure (Puschendorf et al. 2008), exhibited by most 
control embryos in this study by 30 h after insemination 
(Fig.  6A). However, in Oct4-OE, a dot pattern 
(chromocenter-like structure) rather than a ring-like 
formation developed (Fig. 6A). At the 2-cell stage, PHC 
is specified by H3K9me3 and Ring1b (Puschendorf 
et al. 2008); this modification pattern was also observed 
for Oct4-OE (Fig. 6B and C). The major satellite DNA 
was enriched at PHC in both groups (Fig. 6D). We also 
examined DNA methylation/hydroxylation states by IF, 
but observed no differences between Oct4-OE (high) 
and controls (Supplementary Fig.  11), suggesting that 
global DNA methylation might not be affected. Thus, 
high levels of exogenous OCT4 expression induced 
marked alteration of chromatin conformation without 
influencing its major components.
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Exogenous Oct4 expression accelerates cell  
cycle progression

Because RNA-seq analysis also identified cell-cycle-
related genes (Fig.  4A), we analyzed the cell cycle 
states using bromodeoxyuridine (BrdU) incorporation 
followed by IF (Fig. 7A). At 24 h, most control embryos 
showed a weak BrdU signal (Fig.  7B). However, the 
majority of Oct4-OE (high) embryos showed extensive 
incorporation (Fig. 7B). At 30 h, no marked differences 
were found between groups (Fig.  7C). At 33 h, DNA 
synthesis occurred in most control embryos, whereas 
BrdU incorporation was not observed in Oct4-OE 
(high) (Fig. 7D). Given that fertilization timing was the 
same in Oct4-OE and the control group, these results 
indicate that ectopic OCT4 expression accelerated cell 
cycle progression.

To examine whether Oct4-OE (high) enter metaphase, 
we stained the embryos with Hoechst33342 at 48 h 
after insemination. As shown Fig. 7E, nuclear envelop 
breakdown did not occur, and chromatin condensation 
was not observed (Fig. 7E). Since BrdU was incorporated 
in Oct4-OE (Fig.  7B), Oct4-OE (high) were probably 
arrested at the G2 stage. Thus, OCT4 overexpression 
disrupted proper developmental programming.

Discussion

In this study, we revealed that OCT4 protein 
localization was markedly altered during the epigenetic 
reprogramming phases after fertilization. Furthermore, 
exogenous Oct4 expression impeded development in 
a dose-dependent manner. In murine ES cells, Oct4 
defines pluripotency in a dose-dependent manner 
(Niwa et  al. 2000). This study demonstrated that this 
principal is also true for cells in vivo. A high dose of 
Oct4-OE resulted in dysregulation of ZGA-related 
genes and of certain types of repetitive sequences at the 
2-cell stage (Figs 4 and 5), suggesting that these were 
the major causes of developmental arrest, whereas a 
low dose of Oct4-OE and Oct4 KD embryos led to the 
developmental failure at the late preimplantation phase 
(Fig.  3). At the late preimplantation phases, numerous 
pluripotency-, epigenome-, and differentiation-related 
genes are activated (Hamatani et al. 2004). Conversely, 
the dysregulation of DNA methylation-related 
factors and Eomes, associated with trophectoderm 
development (Russ et al. 2000), were observed in Oct4 
KD (Supplementary Fig. 7B). Thus, we believe that these 
integral abnormalities of DNA methylation and proper 
lineage commitment might result in developmental 
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arrest. However, we observed no marked changes in 
the expression of major transcription and epigenomic 
factors in Oct4-OE (low) (Supplementary Fig.  7B), 
suggesting that the reasons underlying developmental 
arrest differ and that the transcriptome analysis might 
help identify dysregulated genes in Oct4-OE (low). 
These results clearly indicated the importance of 
maintaining proper OCT4 expression levels for proper 
embryonic development. Moreover, it has been 
reported that ectopic expression of OCT4 in vivo causes 
dysplasia in epithelial tissues (Hochedlinger et al. 2005). 
Thus, the spatiotemporal regulation and fine-tuning of 
OCT4 protein is essential for cellular reprogramming 
and integrity (Fig. 8). Our findings also suggested that 
the silencing of Oct4 function caused by its absence 
in the nucleus during early preimplantation phases 
might be essential for totipotency acquisition in early 
preimplantation development.

In this study, we found that exogenous expression of 
OCT4 resulted in marked changes in heterochromatin 
conformation (Fig. 6A), indicating that Oct4 potentially 
regulates chromatin states. Consistent with this notion, 
OCT4 has been shown to play an important role in 
chromatin opening at the 8-cell stage (Lu et al. 2016). 
Whether OCT4 directly mediated chromatin alteration 
remains unknown. However, recently, Nanog was 
shown to regulate heterochromatin organization by 
directly binding to pericentromeric regions in ES cells 
(Novo et al. 2016). Thus, OCT4 might control chromatin 
states via direct binding at many promoter regions. 
Consistent with this notion, we observed changes in the 
expression of many OCT4-binding genes (Fig. 4C).

We also found that the dynamic alteration of 
chromatin configuration in Oct4-OE (high) at the 
2-cell stage was accompanied by the loss of the ring-
like structure and resulted in a dot-like structure at 
pericentromeric regions (Fig. 6A). The dot-like structure 
at constitutive heterochromatin is a feature of embryos 
at the 4-cell stage onward (Puschendorf et  al. 2008). 

Moreover, given that the S phase of the cell cycle in 
Oct4-OE proceeded faster than that in the control at 
30 h after insemination (Fig.  7B–D), at which point 
a clear dot-like structure in Oct4-OE was observed 
(Fig.  6A), cell cycle acceleration by Oct4-OE (high) 
would result in chromatin alteration.

One of the remaining questions is what mechanisms 
are involved in OCT4 protein localization? The 
Oct4-C10 antibody was frequently reported (Wu 
et  al. 2013, Bedzhov & Zernicka-Goetz 2014, Chen 
et  al. 2015), and we also confirmed the specificity 
by SDS-WB using Oct4-KD and Oct4-OE embryos 
(Supplementary Fig. 12). In oocytes, the splice variants 
were not identified by RNA-seq analysis (Supplementary 
Fig.  4). Using RNA-seq data in 2-cell embryos, we 
confirmed no splice variants created alternative form 
of OCT4 protein in the 2-cell embryos (Supplementary 
Fig.  13). Therefore, the possibility that OCT4B was 
predominantly expressed in early preimplantation 
phases like humans was denied.

Another possibility is that OCT4 conformation might 
differ between early and late preimplantation phases. 
To test this, we conducted native-PAGE followed by 
WB analysis using embryos showing OCT4 negative 
staining by IF. However, OCT4 protein was detected in 
oocytes and 2-cell embryos (Supplementary Fig. 14A), 
suggesting that there are other causes for its differential 
localization, e.g. differences in post-translational 
modification such as phosphorylation of OCT4, which 
was shown to affect protein localization (Lin et al. 2012). 
Recently, the phosphorylation of nuclear localization 
signal has been important for shuttling between the 
nucleus and cytoplasm in RNF12/RLIM, essential 
for X chromosome inactivation (Jiao et  al. 2013). To 
test the possibility, we conducted Phos-tag SDS-WB 
analysis using preimplantation embryos and the nuclei 
and cytoplasm of Oct4-OE. The results showed no 
clear difference in the band shift pattern among the 
preimplantation embryos (Supplementary  Fig.  14B). 

Totipotent cell

Cytoplasm Nuclei

1-cell 2-cell 4-cell 8-cell 16-cell

Arrest ~60%

Arrest ~100%
-Disruption of  ring-like PHC conformation
-Failure of ZGA
-Repression of repetitive elements related with totipotency

(Oct4)

Misregulation 
of transcription

Loss of Oct4

Normal

Nuclear 
existence 
(around 3-fold up)

Nuclear 
existence 
(around 5-fold up)

Figure 8 Model for the establishment of 
totipotency by OCT4 expression states. 
The nuclear presence of OCT4 and its level 
govern developmental competency.
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Thus, other post-translational modifications or nuclear-
cytoplasmic shuttling proteins might regulate Oct4 
protein localization in preimplantation embryos.

The time at which OCT4 cytoplasmic localization 
begins also remains unknown. In this study, we 
demonstrated that OCT4 nuclear localization caused 
a dynamic change in chromatin conformation. 
Interestingly, this dynamic chromatin remodeling was 
observed in germ line reprogramming phases (Saitou 
et  al. 2012), and Oct4 has been used as a marker for 
primordial germ cells (Sugimoto & Abe 2007, Kobayashi 
et al. 2013). However, these studies were based on Oct4 
transgenic mice, which have exogenous Oct4 promoter 
sequences with a GFP marker (Yoshimizu et al. 1999). 
Therefore, whether internal OCT4 protein localizes to the 
nucleus in primordial germ cells is unknown. A previous 
study using mice with Oct4 knockout in primordial 
germ cells found that OCT4 deletion around embryonic 
day (E) 10.5 caused germ cell loss (Kehler et al. 2004), 
suggesting that OCT4 localizes to the nucleus until 
E10.5. Another IF-based study showed that OCT4 
protein expression localized to the nucleus of germ cells 
at E12.5, although the antibody used in the study was not 
Oct4-C10. Nevertheless, considering that the antibody 
identified the nuclear OCT4 protein (Ma et  al. 2014), 
it can be concluded that OCT4 protein localizes to the 
nucleus of germ cells until E12.5. Therefore, scrutinizing 
the expression states by IF during germ cell development 
will be informative and will provide new aspects of 
Oct4-mediated reprogramming machinery.

Supplementary data

This is linked to the online version of the paper at http://dx.doi.
org/10.1530/REP-16-0277.
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