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Abstract

Background: Both cardiac and respiratory motions bias the kinetic parameters
measured by dynamic PET. The aim of this study was to perform a realistic positron
emission tomography-magnetic resonance (PET-MR) simulation study using 4D XCAT
to evaluate the impact of MR-based motion correction on the estimation of PET
myocardial kinetic parameters using PET-MR. Dynamic activity distributions were
obtained based on a one-tissue compartment model with realistic kinetic parameters
and an arterial input function. Realistic proton density/T1/T2 values were also defined
for the MRI simulation. Two types of motion patterns, cardiac motion only (CM) and
both cardiac and respiratory motions (CRM), were generated. PET sinograms were
obtained by the projection of the activity distributions. PET image for each time
frame was obtained using static (ST), gated (GA), non-motion-corrected (NMC), and
motion-corrected (MC) methods. Voxel-wise unweighted least squares fitting of the
dynamic PET data was then performed to obtain K1 values for each study. For each
study, the mean and standard deviation of K1 values were computed for four regions
of interest in the myocardium across 25 noise realizations.

Results: Both cardiac and respiratory motions introduce blurring in the PET
parametric images if the motion is not corrected. Conventional cardiac gating is
limited by high noise level on parametric images. Dual cardiac and respiratory gating
further increases the noise level. In contrast to GA, the MR-based MC method
reduces motion blurring in parametric images without increasing noise level. It also
improves the myocardial defect delineation as compared to NMC method. Finally,
the MR-based MC method yields lower bias and variance in K1 values than NMC and
GA, respectively. The reductions of K1 bias by MR-based MC are 7.7, 5.1, 15.7, and 29.
9% in four selected 0.18-mL myocardial regions of interest, respectively, as compared
to NMC for CRM. MR-based MC yields 85.9, 75.3, 71.8, and 95.2% less K1 standard
deviation in the four regions, respectively, as compared to GA for CRM.

Conclusions: This simulation study suggests that the MR-based motion-correction
method using PET-MR greatly reduces motion blurring on parametric images and
yields less K1 bias without increasing noise level.

Keywords: MR-based PET motion correction, Cardiac PET parametric imaging,
PET-MR, Myocardial perfusion

Background
Dynamic PET imaging is a powerful technique allowing to obtain physiological

information using kinetic modeling. Cardiac PET perfusion tracers, including
13N-ammonia, 15O-water, 82Rb, and 18F-flurpiridaz, can be used to measure
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myocardial blood flow (MBF) in order to evaluate the presence and severity of is-

chemia [1–6]. However, heart motion caused by the pumping action of heart

chambers (cardiac motion) and breathing (respiratory motion) can severely blur

the PET emission data and generate image artifacts if no motion correction is

applied. This can in turn lead to significant bias on the estimation of MBF.

There have been many attempts to develop practical and effective methodology to re-

move the effects of heart motion [7–11]. Cardiac and/or respiratory gating strategies

that “freeze” motion is popular in static PET but have not been effective or successful

in dynamic PET because of the substantial noise associated with rejecting a large num-

ber of detected PET events in short time frames. Therefore, how to estimate and cor-

rect for both cardiac and respiration motions remains an important research topic for

cardiac PET imaging. In the past, a number of cardiac/respiratory motion correction

methods have been developed for PET. Qiao et al. [12] developed a 4D model that in-

corporates motion information to produce a motion-free image with all acquired data

and evaluated their approach using simulation and phantom studies. Gigengack et al.

[13] developed a motion correction method based on dual gating and mass-preserving

hyper-elastic imaging registration and evaluated their method on 21 subjects. Lamare

et al. [14] evaluated different schemes of combining gated data to obtain motion-free

cardiac PET images using dual gated acquisitions; Feng et al. [15] developed dual re-

spiratory and cardiac motion correction methods after, during, and before image recon-

struction and evaluated their performance using the Monte Carlo simulation. The

emergence of positron emission tomography-magnetic resonance (PET-MR) scanners

offers an elegant solution to PET motion correction. A number of MR-based cardiac/

respiratory motion correction methods have been developed for cardiac PET. Wang et

al. [16] proposed a dual respiratory and cardiac motion correction scheme for myocar-

dial perfusion PET and studied its effectiveness on myocardial perfusion defect detec-

tion. Küstner et al. [17] performed respiratory and cardiac PET motion correction with

a motion model derived from a simultaneously acquired MR data on 36 subjects.

Kolbitsch et al. [18] performed MR-based respiratory and cardiac PET motion correc-

tion in simultaneous 18F-FDG PET-MR scans of a canine model of myocardial infarct

and one human subject. However, none of these studies has evaluated the impact of

MR-based cardiac/respiratory motion correction on PET parametric imaging. In this

work, the performance of MR-based motion correction was evaluated on parametric

myocardial perfusion PET imaging. Realistic PET and MR simulations, in which the

true kinetic parameters were known, were performed for such purpose.

Methods
Figure 1 shows the flowchart depicting the main steps in our study, which include both

PET and MR simulations, motion estimation, PET reconstruction, motion correction,

and estimation of parametric images.

PET simulation

PET simulation was performed using the anthropomorphic 4D XCAT phantom [19],

which mainly includes heart, lung, liver, and soft-tissue compartments. A non-

transmural defect (~ 4 mm across the thickness of the myocardium and ~ 1.2 cm along
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the myocardial wall) was added to the mid-anterolateral myocardium of the phantom.

The simulations were performed to mimic a patient scan on a whole-body Siemens

Biograph mMR PET-MR scanner. The PET system has 8 rings of 56 blocks of 8 × 8

lutetium oxyorthosilicate crystals of size 4 × 4 × 20 mm3. The PET field of view (FOV)

is 59.4 and 25.8 cm in transaxial and axial directions, respectively. The MR system con-

sists of a whole-body superconductive 3-T magnet, an actively shielded whole-body

gradient system, and a RF body coil.

For the PET simulation, realistic K1, k2, and attenuation coefficient values were first

assigned for each organ or tissue type. Based on a previously reported 13N-ammonia

cardiac study [20], we assigned K1 = 0.80 mL min−1 mL−1, k2 = 0.17 min−1 to the healthy

myocardium and K1 = 0.36 mL min−1 mL−1, k2 = 0.21 min−1 to the non-transmural de-

fect. Likewise, an arterial input function (see the true input function in Fig. 2), Cp(t),

was defined based on a previous human 13N-ammonia perfusion study [21]. Second, a

one-tissue compartment model was used to generate a time-activity curve (TAC) of

tissue for each voxel (see Fig. 2 for the TACs of the healthy myocardium and the

myocardial defect), Ci
t tð Þ, using Ci

t tð Þ ¼ Ki
1Cp tð Þ⨂e−k

i
2t , where i is the voxel index. The

dynamic (i.e., time-dependent) PET activity distributions were grouped into a series of

8× 5-s, 4 × 10-s, 2 × 20-s, 1 × 40-s, 1 × 2-min, and 1 × 4-min time frames. Third, the

motion produced by the XCAT phantom was introduced to generate dynamic PET

Fig. 1 Flowchart of PET-MR data simulation and processing

Fig. 2 The input function and TACs for the healthy myocardium and defect. The true function is compared
with the image-derived input functions using GA, NMC, and MC methods
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activity distributions with motion. There are two types of breathing patterns, belly and

rib-cage breathing. The former has little impact on the heart motion. Therefore, two

different motion studies were performed, one with cardiac motion only (CM) and the

other with both cardiac and respiratory motions (CRM). Cardiac motion cycle was

evenly divided into ten and five motion phases for CM and CRM, respectively. Respira-

tory motion cycles were evenly divided into five motion phases. As a result, a total of

ten and 25 motion phases were defined, for CM and CRM, respectively. Additionally, a

static (ST) study without motion was performed to serve as the reference. Fourth, at

each motion phase, a PET forward model, which incorporates gamma ray attenuation

and point spread function (PSF) modeling, was used to generate noise-free dynamic

sinograms by forward-projection of the dynamic PET activity distributions using:

y ¼ AGPx

where x = [x1, x2,⋯, xI]
T contains the activity concentration in all I voxels;

y ¼ y1; y2;⋯; yJ
� �T

contains the estimated true counts in all J sinogram bins; matrix

P of size I × I models PSF blurring effects in the image space [full width at half

maximum (FWHM) of 4.5 mm was used]; matrix G of size J × I models the geometric

forward-projection, which was implemented using Siddon’s ray-tracing method [22];

and diagonal matrix A of size J × J provides the attenuation factor for each sinogram bin.

Both scatter and random events were not accounted for in the PET simulation. The

sinogram data were scaled so that the total number of true counts in the 4-min time

frame, which is the last time frame, is 50,000 for a 3-mm slice. This corresponds to a

PET study performed on an adult with an injection dose of about 370–555 MBq. Poisson

noise was then added to each sinogram bin based on the mean counts in the bin to

generate 25 different noise realizations of sinograms.

MR simulation

Similar to the PET simulation, realistic proton density (PD) and T1 and T2 parameters

(3 T) were assigned to each organ or tissue type for the MRI simulation. The PD

(percentage relative to water) and T1 and T2 values are 67% and 830 and 62 ms,

respectively, for the healthy myocardium and 77% and 1080 and 82 ms, respectively,

for the myocardial defect [23]. Motion from the XCAT phantom was introduced to

generate motion-dependent PD/T1/T2 distributions. The MRI simulation in each mo-

tion phase was performed using MRiLab [24], an open-source software based on

MATLAB. MRI noise, which is due to the signal variations in the receiver chain caused

by thermal noise and eddy currents in the imaging object, was not modeled in this

study. The standard gradient echo (GRE) sequence was used (TR = 9.56 ms, TE =

2.4 ms, FA = 46°). The simulated MR k-space data were then reconstructed to obtain

the MR image for each motion phase.

Motion correction

A reference motion phase was selected for each type of motion, i.e., CM or CRM (end-

diastole for CM; end-diastole/end-exhalation for CRM). The motion fields transforming

the MR image volume from a given motion phase to the reference motion phase were

obtained by applying a non-rigid image registration technique, which is based on the

Demons algorithm [25–27].
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Four different studies using static (ST), gated (GA), non-motion-corrected (NMC),

and motion-corrected (MC) data were performed. For the ST study, the PET data, in

which neither motion nor noise was introduced, were reconstructed using filtered

back-projection (FBP) for each time frame. For the GA study, only the data correspond-

ing to the reference motion phase were reconstructed using FBP. For the NMC study,

the PET data generated in each motion phase were first reconstructed using FBP in

each time frame. The resulting PET images across all the motion phases were then

summed for the time frame. For the ST, GA, and NMC studies, the attenuation map in

the reference motion phase was used during the PET reconstruction. For the MC study,

the attenuation map for a given motion phase was obtained by transforming the

reference attenuation map to the motion phase using the corresponding motion fields

measured by MRI. The reconstructed PET image by FBP for each motion phase was

transformed to the reference motion phase using the motion fields measured by MRI

in each time frame. The final motion-corrected PET image in the time frame was then

obtained by summing up all the transformed PET images (including the one in the

reference motion phase). Because the goal of our study is to assess only the impact of

motion correction (including correction on both the emission data and attenuation

map) on dynamic PET, we used the same attenuation map, which was generated by the

XCAT phantom, for both the simulations and reconstructions.

Estimation of kinetic parameters

For each study, a myocardium mask was created by applying a threshold to the static PET

image reconstructed from the 4-min time frame (the last time frame). To account for the

spillover effects from both the left ventricle (LV) and right ventricle (RV) blood pools, the

measured myocardial activity concentration in time frame tm can be modeled as:

Ci
PET tmð Þ ¼ f iLV:CLV tmð Þ þ f iRV:CRV tmð Þ þ 1−f iLV−f

i
RV

� � 1
Δtm

Z
Δtm

Ci
t τð Þdτ

where CLV(tm) (CRV(tm)) is the LV (RV) TAC, f iLV (f iRV) is the fractional spillover from

LV (RV) in voxel i that accounts for the contamination of myocardial TACs by activity

from the ventricle blood polls due to the limited PET spatial resolution, and Δtm is the

duration of the time frame. Afterwards, voxel-wise K1 values were estimated within the

myocardium mask by unweighted least squares curve-fitting of the reconstructed myo-

cardial PET TACs [i.e., Ci
PET tmð Þ] using MATLAB CFTOOL. We defined four 0.18-mL

regions of interest (ROIs) at different locations in the myocardium. Each ROI was care-

fully chosen to be away from the edges of the true myocardium. For each ROI and each

method (i.e., ST, GA, NMC, and MC), the average K1 value was first computed for each

noise realization. The mean (K 1 ) and standard deviation (σK1 ) of K1 values were then

computed across all the noise realizations using:

K 1 ¼ 1
N

X
n

Kn
1; σK1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1

X
n

Kn
1−K 1

� �2s
;

where Kn
1 is the average K1 value within the ROI for noise realization n and N is the

total number of noise realizations. The performance of MR-based PET motion correc-

tion for parametric myocardial perfusion PET imaging was evaluated using the ST
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results as the gold standard for each ROI. For method M (i.e., GA, NMC, or MC), the

bias (bMK1
Þ was computed using:

bMK1
¼ 1

K1
ST K

M
1 −K

ST
1

� �
;

where K
ST
1 and K

M
1 are the mean K1 values for ST and method M, respectively. The

standard deviation reduction of MC relative to GA was computed using:

δMC
K1

¼ σMC
K1

−σGA
K1

		 		=σGA
K1

;

where σMC
K1

and σGAK1
are the standard deviation of K1 values for MC and GA,

respectively.

Motion estimation based on a human study

In order to demonstrate the feasibility of using MRI to estimate both the cardiac and re-

spiratory motion fields of the heart, a subject was scanned on a Siemens 3-T system using

a fast low angle shot (FLASH) MRI sequence with golden-angle based radial sampling of

the k-space (denoted hereinafter as Rad-FLASH) [28]. The sequence also acquired a fast

slice-projection navigator (NAV) echo every TR to track the diaphragm position. The sub-

ject was instructed to breath freely during the scan. The total imaging time was about

5 min. Twenty coronal Rad-FLASH slices were acquired to cover the whole thorax. The

acquisition parameters were slice thickness = 8 mm, TE = 1.5 ms, TR = 70 ms, FA = 30°,

FOV = 320 × 320 mm2, and the total number of radial k-lines acquired per slice = 5120.

Moreover, an electrocardiogram (ECG) was used to monitor the cardiac cycle. For the

processing of Rad-FLASH data, we first extracted the subject’s diaphragm position using

the NAV signal. We then assigned a respiratory phase (out of total of five phases) and a

cardiac phase (out of total of six phases) to each acquired radial k-line (spoke) based on

amplitude bins defined within the moving range of the diaphragm and on the time delay

relative to the R-wave from the ECG, respectively. The spokes in all the motion phases

were reconstructed simultaneously using kt-FOCUSS [29], which is a compressed sensing

technique. This procedure allowed obtaining one MR image volume for each one of the

30 motion phases. Non-rigid registration of the MR volumes was then used to estimate

the motion fields between each motion phase and the reference one, which was chosen to

be the end-exhalation/end-diastolic phase. For CM, only the motion phases at the end of

exhalation were used.

Results
For both CM and CRM, Fig. 3 a shows the same PET slice through the myocardial de-

fect using the data generated from 6 to 10 min after the tracer injection for one noise

realization (The ST image was obtained using the noise-free data). The noise levels are

high in the GA images because only 10 and 4% of all the detected counts were used in

PET reconstruction for CM and CRM, respectively. The NMC images have less noise

but are blurred by motion. As compared to the ST image, the blurring effect results in

a thicker myocardium wall in the NMC images. CRM causes more motion blurring

than CM. The MC images have greatly reduced motion artifact and similar noise level

as compared to the NMC images.
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Figure 3b shows the activity concentration profiles along a line connecting anteroba-

sal and apical regions through the center of the defect for CRM. GA and MC have

similar profiles to ST except that the GA profile has more fluctuations due to high

noise level in the GA image. For NMC, the contrast between the defect and the healthy

myocardium is much lower as compared to ST, GA, and MC.

Figure 4 shows the coronal MR images in two different motion phases together with

the motion fields estimated between the two motion phases for both CM and CRM. Most

motion can be seen in the heart region and entire torso for CM and CRM, respectively.

Similar motion fields can be found for both the simulation and the human study.

Figure 5 shows the coronal attenuation map in the reference motion phase (end-dia-

stole/end-exhalation) (Fig. 5a); the attenuation map transformed from the reference

phase to the phase of end-inspiration/end-systole using the motion fields measured by

MRI (Fig. 5b) and the true attenuation map generated by the XCAT phantom in the

phase of end-inspiration/end-systole (Fig. 5c). For the phase of end-inspiration/end-sys

tole, the transformed attenuation map (Fig. 5b), which was obtained using the motion

fields measured by MRI, matches well with the true attenuation map (Fig. 5c).

For one of the noise realizations, Fig. 6a shows the same K1 slice through the myo-

cardial defect for both CM and CRM. Similar to Fig. 3a, the noise level is high for

GA. The NMC K1 maps have less noise but depict high motion blurring. The MC K1

Fig. 3 Reconstructed PET images and line profiles. a Reconstructed GA, NMC, and MC PET images for CM
and CRM as well as reconstructed ST PET image. All the images were obtained using the data acquired
from four to ten minutes after the injection. The GA, NMC, and MC images are for one noise realization.
The arrow on the ST image points to the defect. b GA, NMC, MC line profiles (for CRM) as well as ST line
profile. The profiles were drawn along a line (shown on the image at the top-right corner) connecting the
anterobasal and apical regions and going through the center of the defect
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maps have greatly reduced motion artifacts and a noise level similar to that of the

NMC maps.

Figure 6b shows the K1 profiles along a line connecting anterobasal and apical

regions through the center of the defect for CRM. The GA and ST profiles match well

even though the GA profile has more fluctuation. The MC profile matches well with

the ones for ST and GA but with much lower fluctuations. However, the NMC profile

substantially deviates from the ST profile.

Finally, Figs. 7 and 8 show the mean and standard deviation of K1 values for the four

selected ROIs computed from the 25 noise realizations for CRM. For all the four ROIs,

the MC bias is less than that for NMC using ST as the gold standard. MC yields an ab-

solute reduction of K1bias, which was computed as the percentage of average K1using

ST, by 7.7, 5.1, 15.7, and 29.9% in ROIs 1, 2, 3, and 4, respectively, as compared to

Fig. 4 Coronal MR images for two different motion phases along with the estimated motion fields
between the two motion phases

Fig. 5 Motion phase-dependent PET attenuation maps. The attenuation map in the reference motion phase
was transformed to end-inspiration/end-systole using the estimated motion fields. The resulting attenuation
map is similar to the true attenuation map for end-inspiration/end-systole obtained directly from XCAT.
a Reference motion phase (end-diastole/end-exhalation) b Transformed from the reference phase to
end-inspiration/end-systole c End-inspiration/end-systole (directlyu form XCAT)
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Fig. 6 Estimated K1 maps and line profiles. a GA, NMC, and MC K1 maps for CM and CRM as well as ST K1
map. The GA, NMC, and MC K1 maps are for one noise realization. The arrow on the ST map points to the
defect. b GA, NMC, MC line profiles (for CRM) as well as ST line profile. The profiles were drawn along a line
(shown on the map at the top-right corner) connecting the anterobasal and apical regions and going
through the center of the defect

Fig. 7 Mean K1values estimated from 25 noise realizations. Each white arrow and a small circle were only
used to indicate the approximate location of the ROI. Please see the text in the “Methods” section for the
details on how the ROIs were defined
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NMC. As compared to the ground truth K1 values used for simulating the PET dy-

namic data, ST, GA, NMC, and MC yielded “true bias” (i.e., percentage relative to the

ground truth) of − 5.4, − 6.9, − 21.6, and −14.3%, respectively, for ROI1; − 5.8, − 5.8, −
16.8, and − 12.0%, respectively, for ROI2; 30.6, 32.4, 47.6, and 27.0%, respectively, for

ROI3; and − 0.9, − 0.7, − 36.6, and − 7.0%, respectively, for ROI4. The true bias values

are particularly high for ROI3, which is the defect region, because of activity spillover

due to PET partial volume effect. The greatest improvement in PET quantitation by

MC as compared to NMC was seen in ROI4 where the motion was the biggest. As

expected, GA yields much higher variance than both NMC and MC because MC uses

all the PET counts in the PET reconstruction, while GA uses only a fraction of the PET

counts. The K1 standard deviation reductions by MC relative to GA are 85.9, 75.3, 71.8,

and 95.2% in the four ROIs, respectively, for CRM.

Discussion
Comparing NMC to MC, we expect MC to have less bias than NMC. Furthermore,

because the number of coincidence events used in NMC and MC was the same, we

expect MC and NMC to yield similar variance. These expectations are consistent with

the results obtained in this study. For both static and parametric images/profiles as

shown in Figs. 3 and 6, respectively, we found that MC has less bias than NMC using

ST as the reference while the noise levels for NMC and MC are similar. Similar results

were also found in the ROI studies as shown in Figs. 7 and 8.

Comparing GA to MC, we expect MC to have higher bias than GA because MR-

based motion correction will not be perfect. Also, we expect NMC to have much lower

variance than GA because MC uses all the coincidence events, while GA uses only a

fraction of the coincidence events. These expectations are again consistent with our

results. As shown in Figs. 3, 6, 7, and 8, MC has much lower noise level than GA. If we

use ST as the reference, MC has higher bias than GA.

Fig. 8 Standard deviation of K1 values estimated from 25 noise realizations. Each white arrow together with
a small circle were only used to indicate the approximate location of the ROI. Please see the text in the
“Methods” section for the details on how the ROIs were defined

Guo et al. EJNMMI Physics  (2018) 5:3 Page 10 of 14



We have also noticed that due to lower amplitude of the motion, cardiac motion

yields less blurring than respiratory motion. However, motion correction for cardiac

motion still plays a role. As shown in Figs. 3a and 6a, the myocardium wall becomes

noticeably thinner if motion correction is applied.

In this study, the motion fields used for PET motion correction were derived

from simulated MR data. However, it is always questionable whether accurate mo-

tion fields can be estimated using real data. In Fig. 4, we show in a human MR

study that a 5-min golden-angle radial MR acquisition used along with compressed

sensing image reconstruction (kt-FOCUSS [29]) can generate 4D MR images with

good quality enabling estimation of both cardiac and respiratory motion fields. We

found both the simulation and the human study produced similar motion fields. Of

course, it is highly desirable to keep the MR acquisition for motion measurement

as short as possible so that more imaging time can be dedicated to clinical MR se-

quences. This can be achieved using low-rank reconstruction technique [30], which

takes advantage of the spatiotemporal correlation among the motion phases using

compressed sensing [29, 31]. The imaging time can be further reduced using paral-

lel imaging techniques [28, 32].

This study is mainly dedicated to the evaluation of MR-based motion correction

on parametric PET imaging. Accurate estimation of kinetic parameters, such as

MBF, is challenging because of the high noise levels present in short dynamic

frames. This problem becomes more severe if cardiac or dual cardiac/respiratory

gating is used because a large portion of data is discarded during reconstruction.

This study shows that we are capable of making high quality parametric PET

images using MR-based motion correction.

In this study, we used FBP along with post-reconstruction motion correction rather

than iterative reconstruction algorithms to obtain dynamic images because it is well

known that iterative reconstruction algorithms, such as OSEM, lead to spatially variant

spatial resolution and noise characteristics. For dynamic PET, spatially variant spatial reso-

lution across different time frames can lead to errors on the estimated kinetic parameters.

In this study, the input function was assumed to be obtained by an arterial blood

sampling, which is challenging in practice. Image-derived input function is an elegant

and attractive noninvasive alternative to blood sampling [33, 34]. For cardiac perfusion

PET, the image-derived input function can be obtained by computing activity concen-

tration within an ROI within the blood pool of the left ventricle. Such method is prac-

tical for cardiac PET because the heart is within the FOV. However, if NMC PET

images are used for such purpose, errors may be introduced into the input function

due to motion. We defined an ROI of ~ 4 pixels in the blood pool (the ROI was kept

away from the myocardium to avoid the spillover effect) and obtained image-derived

input functions using GA, NMC, and MC methods. Figure 2 shows that the image-

derived input functions using GA and MC agree well with the true input function,

while NMC yields large errors. Therefore, image-derived input functions should be ob-

tained using GA or MC methods.

In this study, an assumption that each PET event can be correctly assigned to a mo-

tion phase was made. In a real PET-MR scan, motion phase must be tracked whenever

PET data are acquired in order to perform MR-based PET motion correction. Cardiac

motion phases can be tracked by the relative delay to R wave using ECG [35] or PET
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list-mode data. Respiratory motion phases can be tracked by either bellows, a pencil-

beam MR navigator through diaphragm [35], or PET list-mode data. [36] Although

simultaneous PET-MR is ideal for MR-based PET motion correction, it is still feasible

to use sequential PET-MR for the purpose if no body motion occurs between the PET

and MRI scans. However, for sequential PET-MR, external motion-phase-tracking

devices, such as ECG and bellows rather than MR-based motion-phase-tracking

methods must be used. Even for simultaneous PET-MR, if body motion occurs during

the scan, motion fields must be either re-measured or corrected.

In this study, cardiac and respiratory cycles were binned into multiple motion phases.

In a real human scan, MR k-space data used for motion estimation for a given motion

phase are acquired only when the motion phase is reached. Many cardiac and/or re-

spiratory cycles are needed to collect enough k-space data so that MR images with good

image quality can be reconstructed. This implies that long MR imaging time is required

for the motion measurement. Moreover, the internal motion of the myocardium may

not be measured correctly if its MR signals appear uniform using a standard GRE

sequence. Applying tagging in three different directions is a solution to such problem

but requires much more imaging time [37, 38].

The XCAT phantom can be used to generate a true attenuation map for each motion

phase. However, in order to mimic a real PET-MR scan, the attenuation map used in

the PET reconstruction in a given motion phase other than the reference phase was

not generated by the XCAT phantom for the MC study. Instead, the reference attenu-

ation map was transformed using the motion fields measured by MRI to obtain the

motion phase-dependent attenuation maps. Because the purpose of this study is to

assess the performance of MR-based motion correction on PET parametric imaging,

the attenuation map in the reference motion phase was directly derived from the XCAT

phantom. In a real PET-MR study, however, the currently implemented method for

PET attenuation correction is to segment tissues into a few different types based on

MR images using Dixon sequence and then assign a single attenuation coefficient to

each tissue type [39].

In the future, in vivo animal and human PET-MR studies will be performed to further

assess the performance of MR-based motion correction for PET parametric imaging.

Because the true kinetic parameters are unknown for in vivo studies, gated results with

high statistics can be used as the silver standard for the assessment.

Conclusions
In this paper, a simulation study was performed to evaluate the performance of

MR-based motion correction on parametric myocardial perfusion PET imaging using

PET-MR. The heart motion on PET images was corrected using motion fields extracted

from MRI images. Such correction was then evaluated on the estimation of K1 values.

Our results show that the MR-based motion correction method removes motion

blurring and results in less bias on estimated K1 values than the non-motion correction

method. As compared to the conventional gating method, the MR-based motion

correction method results in slightly higher or similar bias but much lower variance on

the estimated K1 values. We have also demonstrated from a human MR study that both

cardiac and respiratory motion fields can be estimated using a single MR sequence that

incorporates both cardiac and respiratory motion tracking.
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