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ARTICLE INFO ABSTRACT
Keywords: Background: Clusterin (CLU; also known as apolipoprotein J) is an ATP-independent holdase chaperone that
Osteoarthritis (OA) prevents proteotoxicity as a consequence of protein aggregation. It is a ~60 kDa disulfide-linked heterodimeric

Rheumatoid arthritis (RA)
Translational biomarker
Clusterin (CLU)
Inflammation

Apoptosis

protein involved in the clearance of cellular debris and the regulation of apoptosis. CLU has been proposed to
protect cells from cytolysis by complement components and has been implicated in Alzheimer’s disease due to its
ability to bind amyloid-p peptides and prevent aggregate formation in the brain. Recent studies suggest that CLU
performs moonlighting functions. CLU exists in two major forms: an intracellular form and a secreted extracellular
form. The intracellular form of CLU may suppress stress-induced apoptosis by forming complexes with misfolded
proteins and facilitates their degradation. The secreted form of CLU functions as an extracellular chaperone that
prevents protein aggregation.

Methods: In this review, we discuss the published literature on the biology of CLU in cartilage, chondrocytes, and
other synovial joint tissues. We also review clinical studies that have examined the potential for using this protein
as a biomarker in synovial and systemic fluids of patients with rheumatoid arthritis (RA) or osteoarthritis (OA).
Results: Since CLU functions as an extracellular chaperone, we propose that it may be involved in cytoprotective
functions in osteoarticular tissues. The secreted form of CLU can be measured in synovial and systemic fluids and
may have translational potential as a biomarker of early repair responses in OA.

Conclusion: There is significant potential for investigating synovial and systemic CLU as biomarkers of OA. Future
translational and clinical orthopaedic studies should carefully consider the diverse roles of this protein and its
involvement in other comorbidities. Therefore, future biomarker studies should not correlate circulating CLU
levels exclusively to the process of OA pathogenesis and progression. Special attention should be paid to CLU
levels in synovial fluid.

The Translational potential of this article: There is significant potential for investigating synovial and systemic CLU
as a predictive biomarker of osteoarthritis (OA) progression and response to novel treatments and interventions.
Given that CLU plays diverse roles in other comorbidities such as rheumatoid arthritis (RA) and obesity, future

Abbreviations: ACL, anterior cruciate ligament; ACR, American College of Rheumatology; ApoJ, apolipoprotein J; CLU, clusterin; CMC-I, carpometacarpal joint;
COMP, cartilage oligomeric matrix protein; ECM, extracellular matrix; ELISA, enzyme-linked immunosorbent assay; ESCEO, The European Society for Clinical and
Economic Aspects of Osteoporosis: Osteoarthritis and Musculoskeletal Diseases; hsCRP, high sensitivity C-reactive protein; OA, osteoarthritis; OARSI, Osteoarthritis
Research Society International; PsA, psoriatic arthritis; gqRT-PCR, quantitative reverse transcription polymerase chain reaction; RA, rheumatoid arthritis; sCLU,
secreted clusterin; SF, synovial fluid; TNF-a, tumor necrosis factor-a.
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translational and clinical orthopaedic biomarker studies should not directly correlate circulating CLU levels to the
process of OA pathogenesis and progression. However, special attention should be paid to CLU levels in synovial
fluid. The cytoprotective properties of CLU may support the implementation of regenerative strategies and new
approaches for developing targeted therapeutics for OA.

1. Introduction

Osteoarthritis (OA) is the most common form of arthritis globally and
a major cause of pain and disability in older adults [1,2]. It is a multi-
factorial, degenerative, and inflammatory disease of the whole joint, with
a rising global burden for health and social care systems across the world
[3,4]. The prevalence of OA is highest among the middle-aged and
elderly population, particularly in the leading economies of the world [5,
6]. OA is characterized by the gradual loss of articular cartilage, synovial
inflammation, and structural changes in subchondral bone [7,8].
Inflammation in OA is different from rheumatoid arthritis (RA), psoriatic
arthritis (PsA), and other autoimmune joint diseases — it is defined as
low-grade inflammation but chronic and persistent [9,10]. All of these
changes occurring over time lead to joint destruction, pain, and func-
tional disability [11,12]. The mechanisms and pathways involved in the
pathogenesis and progression of OA are not fully understood but senes-
cence [13], abnormal mechanical load [14], metabolic dysfunction [15,
16], and low-grade inflammation [10,17] are all thought to be important
contributing factors.

Currently, there are no approved disease-modifying treatments that
can stop or slow down OA progression [18]. In terms of OA management,
the major OA treatment guidelines published recently by OARSI [19,20],
ACR [21], and ESCEO [20,22] recommend education, exercise, and
weight management for everyone, a limited number of medications,
including anti-inflammatory and analgesic drugs for some OA patients,
and joint replacement surgery for a much smaller subset of patients.
Pharmacological intervention for OA is largely restricted to symptom
management with a limited range of anti-inflammatory and analgesic
drugs [23,24], many of which have adverse side effects [25].

OA is a chronic but slowly progressing disease with a prolonged
asymptomatic molecular phase. It is usually diagnosed clinically and
confirmed using X-ray radiography, which can reveal only structural
changes in the late stages of the disease after significant extracellular
matrix (ECM) degradation and tissue destruction has already occurred.
The clinical symptoms may appear only after extensive damage to joint
tissues [9,26,27]. For all these reasons, novel approaches are needed for
the prevention and early-stage diagnosis of the disease to prevent OA and
delay the need for joint replacement surgery.

The identification and analysis of novel biomarkers may provide
crucial early information about structural changes in the joint, including
the appearance of ECM degradation and remodeling markers in articular
cartilage, as well as synovial inflammation, subchondral changes and
processes related to OA [22,28,29]. Our research has focused on using
omics approaches to identify novel biomarkers of OA in order to accel-
erate the pace of therapeutic development for this difficult-to-treat dis-
ease [30-34]. In this review article, we briefly introduce the biology of
clusterin (CLU), a molecular holdase chaperone with multiple cellular
protective roles, which also performs moonlighting functions. We review
the published literature on CLU in articular cartilage, chondrocytes, and
other synovial joint tissues and describe the current state of knowledge
related to CLU in the context of joint tissues. We also review recently
published translational and clinical studies that have examined the po-
tential for using this protein as a biomarker in synovial and systemic
fluids of patients with RA and OA. Since the secreted form of CLU
functions as an extracellular chaperone, we propose that it may be
involved in chondroprotection of articular cartilage and cytoprotection
in other osteoarticular tissues. The ability to quantify CLU in synovial and
systemic fluids highlights its potential as a translational biomarker of
early repair responses in OA.
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2. Clusterin (CLU) - expression and tissue distribution

CLU is a secreted glycoprotein, first discovered in 1983, as an abun-
dant heat-stable, trypsin-sensitive protein in ram rete testis fluid that
aggregates cells, and elicits cellular “clustering”, hence it was given the
name “clusterin” [35,36]. Based on a wide range of anatomical locations
from which it was originally cloned and identified, CLU has many
alternative names. It is also known as apolipoprotein J (ApoJ), cytolysis
inhibitor (CLI), SP-40, gp80, NA1, NA2, SGP-2, testosterone repressed
prostate message 2 (TRPM-2) among many other alternative names [37].
CLU is expressed in a variety of organs and tissues including the ovary,
liver, heart, brain, and adrenal gland [37-43]. Although CLU performs
homeostatic and physiological functions, it is also involved in patho-
physiological processes and is induced by disease and injury [44]. CLU is
one of the chaperone-like [45] central stress response proteins [46] that
are highly upregulated in inflammation and apoptosis [47]. CLU is
thought to be involved in the stimulation of cytokine expression [48],
enhancement of lipid metabolism, cell differentiation [49], and tissue
remodeling [50].

CLU expression can be triggered as a response to different stimuli,
including pro-inflammatory cytokines, hypoxia, stress-inducing, or
apoptosis-inducing agents [51,52]. These stimuli induce transcriptional
changes in CLU gene expression and lead to elevated levels of CLU mRNA
and increased production of CLU protein [53]. After translation, glyco-
sylation, and further processing, mature CLU is secreted [54]. The
biogenesis of secreted CLU (sCLU) begins as a pre-proprotein. In human
CLU, the first 22 amino acid residues constitute a signal peptide sequence
required for its co-translational translocation to the lumen of the endo-
plasmic reticulum (ER). After the removal of the signal sequence, intra-
molecular disulfide bonds help fold the ~60 kDa CLU protein into its
native form. Following N-glycosylation, CLU translocates to the Golgi
apparatus for further glycosylation, followed by enzymatic cleavage
resulting in an N-terminal a-chain and a C-terminal p-chain which are
interlinked by disulfide bonds. The resulting heterodimeric glycoprotein
with a molecular weight of ~80 kDa is then secreted from the cell [44,
55]. Due to its extensive glycosylation, the 3D structure of sCLU remains
to be determined. Extracellular CLU binds to misfolded protein aggre-
gates and directs them to cell surface receptors which enable internali-
zation. The CLU/misfolded protein complexes are finally degraded by
autophagosomes [55].

During cellular stress, an intracellular form of CLU can also be
detected, probably as a result of release from the ER/Golgi secretory
system to the cytosol [56] (Fig. 1). Intracellular CLU may play an
important role in proteostasis as it probably forms complexes with mis-
folded intracellular proteins and by doing so it helps in their elimination
via the proteasome or autophagy. Since CLU released from different
stations of the secretory system may not have fully undergone complete
glycosylation, it appears in conventional SDS-PAGE analysis to have
variable molecular masses [55]. This may have fueled previous proposals
of organelle-specific intracellular CLU isoforms such as nuclear CLU
(nCLU) [57] or mitochondria-associated CLU [58]. However, the exis-
tence of these hypothetical CLU isoforms has not been experimentally
confirmed and is now therefore considered outdated. Based on currently
available data, CLU in various cellular locations has likely been released
from the ER/Golgi apparatus and therefore lacks organelle-specific
functions [44,55] (Fig. 1).
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3. CLU as a translational biomarker of OA

Recent studies suggest that CLU has the potential to be a clinically
important biochemical marker associated with carcinogenesis and
neoplasia [59], neurodegeneration [60], obesity, and inflammation [61].
CLU is also gaining more attention in the context of OA development and
progression. Publications on this topic so far have proposed a role for CLU
in OA development, cartilage metabolism, inflammation, and oxidative
stress [29,62]. Being a regulatory molecule involved in inflammation,
redox environment, and energy homeostasis, CLU may be a potential
marker to investigate in the context of OA development and responses to
experimental interventions [62].

An increasing number of studies are reporting altered levels of CLU
expression in OA, either focusing on joint tissues or systemic fluids
(Table 1). For this narrative review, the publications have been selected
from PubMed, based on the search results using keywords “clusterin”,
“osteoarthritis” and “cartilage”.

3.1. CLU mRNA expression in healthy and OA cartilage and synovial
tissues

The firstly published article in this context showed a similarly high
CLU transcript abundance in normal vs. OA cartilage, with an elevated
CLU gene expression in early OA and reduced in advanced OA, compared
to the normal cartilage samples [63]. CLU was found to be expressed by
the cells located at fluid-tissue interfaces of articular tissues, suggesting
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that CLU potentially protects the cells exposed to tissue damaging factors
in the extracellular environment [64]. There was a moderate (1.2-fold)
up-regulation of CLU mRNA in chondrocytes of early stage OA compared
to normal cartilage. Using in situ hybridization, normal adult articular
cartilage expressed low-to-moderate levels of CLU mRNA in the super-
ficial zone chondrocytes, while in early OA cartilage, high levels of CLU
mRNA were detected in the upper mid-zone chondrocytes. Advanced OA
cartilage demonstrated low CLU expression in the upper mid-zone and
insignificant in the lower mid-zone and deep zones. In advanced OA
cartilage with deep fissuring and proteoglycan loss, CLU mRNA was
reduced in all chondrocytes compared to early OA, but it was still
detectable. This could be explained by two mechanisms, either by cor-
relation of CLU expression with the altered levels of shear stress in OA
cartilage, or by an attempt of chondrocytes to minimize the damage
caused by oxidative stress, resulting in up-regulation of CLU expression in
early OA [64]. Both proposed mechanisms suggested that the chon-
drocytes in early OA may be able to enter a protective phase to slow the
loss of articular cartilage, and CLU may play an important role during this
process. However, the study included a relatively low number of samples
which could indicate that the results may not be directly applicable to all
stages of OA development and in all patients [64].

Another study determined the expression of CLU in ex vivo synovial
tissues of RA, OA, and healthy patients [48]. The study included both
full-length and spliced isoforms of CLU mRNA. While there was no dif-
ference in CLU protein levels between RA and OA in synovial fluid (SF)
samples, there was a significant decrease of both forms of CLU in RA,

c [jA A---a
CLU mRNA
R a\d

ER Stress

Figure 1. Schematic illustration of clusterin synthesis and processing within the chondrocyte. Clusterin is coded by its gene on chromosome 8. A precursor consisting
of 449 amino acids (AA) is synthesized. The first 22 AAs code a signal peptide, which helps its translocation to the endoplasmic reticulum (ER) for post-translational
modification. Following disulfide bond formation in the ER, CLU precursor translocates to the Golgi apparatus, where it is further glycosylated and then processed into
alpha and beta subunits, bonded by disulfide bonds, resulting in the mature, secreted sCLU. As a result of ER stressors, CLU is probably released from the ER/Golgi
complex into the cytosol, where it may form complexes with misfolded proteins. These complexes may then be targeted to the proteasome/autophagosome for

degradation. Adapted from Refs. [55,81] and created with Biorender.com.
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Summary of the experimental models, methodology, the CLU form(s) analysed and the main findings of primary research papers focused on the analysis of CLU in the

context of osteoarthritis which are included and discussed in this review article.

# Experimental model Method CLU form analysed ~ Outcome Reference
1 cDNA libraries from normal vs. OA adult ~5000 ESTs sequenced from cDNA CLU mRNA similar CLU transcript abundance in ~ Kumar et al., 2001
human articular cartilage libraries and analysed using normal and OA cartilage; CLU gene [63]
bioinformatic tools, northern blot and in expression 1 in early OA and | in
situ hybridisation advanced OA vs. normal cartilage
2 Normal vs. OA adult human articular qRT-PCR, cDNA microarrays, in situ CLU mRNA CLU expression 1 in early OA vs. Connor et al., 2001
cartilage hybridisation normal [64]
3 Blood plasma and SF levels of CLU in knee ~ Sandwich ELISA, gqRT-PCR sCLU; CLU mRNA CLU expression | in advanced OAvs.  Ungsudechachai

OA patients; CLU mRNA expression in knee

OA FLSs

4 Plasma and serum samples, and knee N-glycoproteomic 2D-LC-MALDI
radiographs from subjects with primary analysis, western blot, ELISA, in situ
knee OA (progressors and non-progressors)  hybridisation

5 Serum concentrations of CLU in patients ELISA

with hand OA (erosive vs. non-erosive) vs.
healthy controls

6 CLU expression in synovial tissue from
patients with RA or OA vs. healthy controls  situ hybridization and

immunohistochemistry

7 Post-traumatic porcine OA model (surgical ~ LC MS/MS-based proteomics to
ACLT) determine protein profile of SF samples
8 Immunolocalization of clusterin in repair Immunostaining of biopsy samples

cartilage of patients with ACI

9 Human SF samples obtained from CMC-I
OA and knee joint of OA patients

10  Secretome of equine cartilage explants,
osteochondral biopsies, and isolated
unpassaged chondrocytes, following
treatment with IL-1p and TNF-a

qRT-PCR, western blot

qRT-PCR, western blot, northern blot, in

Label-free quantitative LC-MS/MS, ELISA

CLU glycosylation

sCLU

full length and
spliced isoforms of
CLU mRNA

sCLU

CLU

sCLU

sCLU and total CLU

early OA

Plasma CLU levels 1 in OA vs. paired
SF samples

Positive association of plasma and SF
CLU levels with radiographic
severity of OA (joint space
narrowing)

Direct correlation between plasma
CLU and hs-CRP

CLU mRNA expression 1 in OA FLSs
vs. no synovitis samples

CLU is a potentially relevant
biomarker; level of glycosylation
may increase during disease
progression

Serum CLU levels | in OA vs. healthy
subjects

Serum CLU levels | in erosive hand
OA vs. non-erosive hand OA patients

et al., 2020 [62]

Fukuda et al., 2012
[66]

Kropackovi et al.,
2018 [69]

Devauchelle et al.,
2006 [48]

Kiapour et al., 2019
[70]

McCarthy et al.,
2013 [71]

Barreto et al., 2018
[72]

Matta et al., 2021
[73]

Abbreviations: 2D-LC-MALDI, 2-dimensional liquid chromatography matrix-assisted laser desorption/ionization; ACI, autologous chondrocyte implantation; ACLT,
anterior cruciate ligament transection; cDNA, complementary DNA; CLU, clusterin; CMC-I, carpometacarpal joint; ELISA, enzyme-linked immunosorbent assay; ESTs,
expressed sequenced tags; hs-CRP, high-sensitivity C-reactive protein; IL-1f, interleukin-1f; FLSs fibroblast-like synoviocytes; mRNA, messenger RNA; OA, osteoar-
thritis; QRT-PCR, quantitative reverse transcription PCR; RA, rheumatoid arthritis; sCLU, secreted clusterin; SF, synovial fluid; TNF-a, tumour necrosis factor o

compared to OA samples. It was concluded that CLU mRNA was
under-expressed in RA, and over-expressed in knee OA as compared to
synovium of patients with traumatic ligament lesions, and could be a
marker for differentiating between RA and OA [48].

3.2. Correlation of CLU levels in plasma and SF samples to OA severity

Body fluids including blood, plasma, serum, urine and SF contain
soluble factors, many of which may be potential biomarkers of chronic
diseases such as OA. Biomarkers provide useful diagnostic information
by detecting cartilage degradation in OA, reflecting disease-relevant
biological activity, and predicting the course of disease progression
[65]. Putative biomarkers of joint tissue turnover (i.e. ECM fragments),
cytokines and chemokines, and other molecules have been studied in the
context of OA in different cohort studies. CLU has been identified as a
secreted factor with altered levels in healthy vs. inflammatory samples,
but its role as a potential biomarker is yet to be established.

When plasma and SF CLU levels were quantified using ELISA in OA
patients, plasma CLU levels were significantly higher compared to the
corresponding SF samples [62]. Also, a correlation between systemic
inflammation measured by high sensitivity C-reactive protein (hsCRP)
levels and plasma CLU levels was observed, as well as significant asso-
ciations between plasma and SF CLU levels with radiographic severity of
OA. In patients with advanced-stage OA, both plasma and SF CLU levels
were higher compared to early-stage OA patients [62]. This was in
contrast to the concept proposed in earlier studies where CLU mRNA
levels were found to be lower in advanced-stage OA [64]. The authors
hypothesized that during the early stages of OA, up-regulation of CLU
expression indicates a protective mechanism of the chondrocytes [64].
Given the correlation between CLU levels in patient plasma samples and
systemic inflammation, the fact that CLU mRNA was up-regulated in the
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knee OA-derived fibroblast-like synoviocytes (FLS) stimulated with
TNF-o suggested that CLU may be a relevant marker of synovial
inflammation. As OA development and symptoms associated with it
progress, synovial inflammation also increases and some patients with
obesity and metabolic disease develop systemic inflammation. The au-
thors of the study proposed that increased CLU levels possibly constitute
a part of a defensive mechanism to maintain structural integrity of the
ECM to manage the imbalance between anabolic and catabolic processes
[62].

An N-glycoproteomic analysis was employed to determine potential
plasma biomarkers for knee OA in patients diagnosed with primary OA
[66]. The patients were split into two groups — progressors (subjects
undergoing disease progression) and non-progressors (subjects in a stable
condition). Among over 6800 biomarkers identified in the glyco-
proteomic analysis, only four were selected to have the potential of being
a relevant biomarker for evaluating the progression of knee OA. These
four markers included CLU, hemopexin, macrophage stimulating protein
(MSP), and a-1 acid glycoprotein-2 (AGP-2). Even though ELISA analysis
results did not show a significant difference of CLU and hemopexin in the
serum samples between the progressors compared to non-progressors,
western blotting analysis showed the presence of both biomarkers at
substantial levels in synovial tissues. As the chosen N-glycoproteomic
analysis measures not only the amount of protein itself but also the level
of protein glycosylation, the authors hypothesized that the level of
glycosylation of CLU and hemopexin probably increases with the pro-
gression of the disease [66].

Proteomic analysis of SF has shown that CLU is produced by both
healthy chondrocytes as well as chondrocytes isolated from OA cartilage.
Using mass spectrometry-based selected reaction monitoring (SRM)
analysis, CLU and lubricin were detected in both SF and serum of samples
of patients with late knee OA, suggesting that their levels in plasma are as
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predictive of OA progression as age [67]. In a peptidomic study of
endogenous peptides released from articular cartilage, three neopeptides
belonging to CLU and one from cartilage oligomeric matrix protein
(COMP) showed a disease-dependent decrease specifically in hip OA
[68].

A study was performed to analyze serum CLU concentrations in pa-
tients with hand OA using ELISA [69]. This study also included a com-
parison of CLU levels in different forms of hand OA (erosive and
non-erosive) and examined associations with clinical and laboratory
parameters. Interestingly, the serum concentrations of CLU were signif-
icantly lower in hand OA patient samples compared to healthy subjects.
Significantly lower levels of CLU were observed in the erosive hand OA
compared to non-erosive hand OA patients, and these results were not
affected by the concurrent presence of knee or hip OA. This study also
indicated a negative correlation between pain and CLU levels in erosive
hand OA patients. This contradicts the results of the previously discussed
reports [62,64], which linked rising CLU levels with inflammatory pro-
cesses, because erosive hand OA is associated with a higher degree of
inflammation. However, the authors proposed to link their findings to a
potentially protective role of CLU against bone erosions, which are also
present in RA.

Translational study conducted in a validated Yucatan minipig model
of anterior cruciate ligament (ACL) injury and post-traumatic knee OA
used proteomics analysis of knee SF in pigs undergoing untreated ACL
transection and augmented ACL repair versus the controls [70]. CLU was
among the top 20 most abundant proteins at 6 months (in both ACL
transection and repair groups) and at 12 months (only in the repair
group). They also reported moderate (1.4-1.7-fold) increases in CLU
levels in ACL transection and repaired knees compared to controls at all
time points. There was a significant negative correlation between CLU
levels and macroscopic cartilage damage as measured by total tibiofe-
moral cartilage lesion area. These observations are complementary to the
abovementioned studies and reinforce the protective role of CLU,
particularly in early stages of injury and OA, revealing how reduced
levels of CLU may contribute to the disease progression. The results of
another study, characterizing the localization of CLU in the repaired
cartilage after autologous chondrocyte implantation also support the
protective role of CLU [71], based on differences in distribution of CLU
between healthy and repaired cartilage.

SF samples of non-erosive OA from the carpometacarpal joints (CMC-
D) and of primary idiopathic knee OA patients were investigated by
quantitative liquid chromatography mass spectrometry (LC-MS), and
revealed multiple peptide differences, including CLU, paraoxonase/ary-
lesterase 1 (PON1) and transthyretin [72]. In the knee OA group, 28
proteins were up-regulated and 12 down-regulated, as compared to
CMC-I group, while 16 of those up-regulated and 3 of down-regulated
proteins were linked to inflammatory processes in the joint and lipid
transport. Higher CLU concentrations (~1.7-fold increase) were detected
in SFs from knee OA patients than in ones from CMC-I OA. These dif-
ferences in CLU levels might have occurred because the weight-bearing
(knee OA) and non-weight bearing (CMC-I) joints were analysed and
compared [72]. Changes in CLU levels in healthy vs. inflammatory SF or
serum samples are summarized in Table 1.

3.3. Roles of CLU in models of inflammatory joint diseases in vitro

A recent in vitro study published by our group was the first to spe-
cifically demonstrate the secreted form of CLU and focus on sCLU iden-
tification in three different in vitro models to investigate its role in
cytokine-stimulated cartilage degradation [73]. The in vitro systems
used in that study represent the low-grade inflammatory microenviron-
ment in early OA. We determined sCLU secretion with or without the
pro-inflammatory cytokines interleukin-1f (IL-1p) and TNF-a in the
secretome of equine cartilage explants, osteochondral biopsies, and pri-
mary isolated (unpassaged) chondrocytes. In addition to sCLU, we also
measured the release of sulfated glycosaminoglycans, COMP, and the
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catabolic matrix metalloproteinases (MMP) 3 and 13 in the secretomes of
these in vitro models by western blotting. To address the complication of
pre-existing sCLU in the cartilage matrix, the primary chondrocyte
secretome was analysed. An important aspect that differentiates this
study from previous publications is that numerous control steps were
included to ensure the culture models are reflective of the processes that
occur during the early stages of OA; even the chosen pro-inflammatory
cytokine concentration was pathophysiologically relevant to OA, which
ensures the reliability and applicability of the findings for further studies.
The results of this study indicated a significant reduction of sCLU in three
in vitro models of OA, as compared to the healthy tissues. The levels of
COMP, a cartilage degradation marker, in the explant secretome were
increased two-fold under IL-1p and TNF-o stimulation versus the control.
In contrast to the above results, human OA articular chondrocytes
cultured in vitro were reported to express higher CLU mRNA and protein
levels (detected in total cell lysates) compared to untreated controls [12]
We propose that lower sCLU secretion by OA cartilage could be caused by
an interruption at the transcriptional level, or by CLU being retained
intracellularly during stress, rather than by degradation of extracellular
sCLU.

4. Conclusions and future directions

CLU is emerging as a unique molecular chaperone performing critical
and synergic roles in both intracellular and extracellular proteostasis
[55], with involvement in multiple pathologies. The consensus emerging
from the literature is that clusterin CLU is a moonlighting protein with
many functions. The protein plays a key role in neurodegeneration and
Alzheimer's disease by protecting neurons against intracellular proteo-
toxicity [74,75]. There is also substantial published literature on CLU in
cancer and inflammation [44]. In contrast, however, there has been less
research on CLU in arthritic and rheumatic diseases with a special focus
on cartilage, chondrocytes, and other synovial joint tissues and cells.
There are only two published studies that have examined the potential
for CLU as a biomarker of cartilage lesions [48,70]. The published
research suggests that in patients with erosive hand OA, lower serum CLU
levels are associated with more pain [69]. Proteomic studies of SF from a
minipig model of ACL surgery have shown increased levels of CLU after
ACL injury and in early OA stages, and negative associations between
CLU levels and cartilage lesion area [70]. However, the number of patient
biospecimens included in data analyses in clinical studies is sometimes
low. Furthermore, studies do not always stratify patients or specify the
grade of OA and therefore the results do not reflect a broader biological
understanding of the role of CLU in the pathogenesis of OA. In the ma-
jority of OA biomarker studies the focus is on catabolic aspects with less
attention paid to anabolic and repair processes. More basic, translational
and clinical research is needed in this area, particularly focusing on the
role of CLU as a cytoprotective protein and extracellular chaperone. More
studies are needed to investigate the roles of the secreted and intracel-
lular forms of the protein in osteoarticular tissues. It is clear that CLU is
secreted by articular cartilage [76] and chondrocytes [77], and is a
robust marker of synovial inflammation (Fig. 2) [78]. CLU mRNA is
increased in joint tissues from primary knee and hip OA samples, which
has led researchers to suggest that the protein is involved in disease
progression [79]. However, CLU may have cytoprotective effects that
have not been studied in the context of OA and therefore this should be
the focus of future studies. From a clinical perspective, several proteomic
studies have shown that CLU is one of several promising glycoprotein
biomarkers of OA [66]. Furthermore, sCLU may play a key role as an
molecular chaperone in the ECM of articular cartilage protecting against
proteotoxicity as it does in neurodegenerative diseases [80].

In conclusion, due to the paucity of predictive biochemical markers in
the OA biomarker toolbox, there is significant potential for investigating
synovial and systemic CLU as biomarkers of OA. Future translational and
clinical orthopaedic studies should carefully consider the diverse roles of
this protein and its involvement in other comorbidities. Therefore, future
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Osteoarthritis (0A)
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Figure 2. Clusterin expression in healthy joints, osteoarthritis (OA), and rheumatoid arthritis (RA). Figure created with Biorender.com using images from SMART

Servier Medical Art.

biomarker studies should not correlate circulating CLU levels exclusively
to the process of OA pathogenesis and progression. Special attention
should be paid to CLU levels in SF.
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