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ABSTRACT: We present an extension of the coarse-grained MARTINI model for proteins and apply this extension to amyloid-
and elastin-like peptides. Atomistic simulations of tetrapeptides, octapeptides, and longer peptides in solution are used as a
reference to parametrize a set of pseudodihedral potentials that describe the internal flexibility of MARTINI peptides. We assess
the performance of the resulting model in reproducing various structural properties computed from atomistic trajectories of
peptides in water. The addition of new dihedral angle potentials improves agreement with the contact maps computed from
atomistic simulations significantly. We also address the question of which parameters derived from atomistic trajectories are
transferable between different lengths of peptides. The modified coarse-grained model shows reasonable transferability of
parameters for the amyloid- and elastin-like peptides. In addition, the improved coarse-grained model is also applied to
investigate the self-assembly of β-sheet forming peptides on the microsecond time scale. The octapeptides SNNFGAIL and
(GV)4 are used to examine peptide aggregation in different environments, in water, and at the water−octane interface. At the
interface, peptide adsorption occurs rapidly, and peptides spontaneously aggregate in favor of stretched conformers resembling β-
strands.

1. INTRODUCTION
Atomistic molecular dynamics (MD) simulations are useful
computational methods in the study of biological systems.
However, many phenomena, such as vesicle fusion, protein
folding, and peptide aggregation occur at time scales much
longer than those currently accessible using atomistic
simulation and in some cases do not critically depend on an
accurate atomistic representation.1 In such cases, coarse-grained
(CG) models present an attractive alternative to atomistic
simulations since they offer the possibility of investigating
complex biological processes over relatively long periods of
time and length scales at a reduced level of detail.
In CG models, groups of atoms are typically represented as

one interaction site, which significantly decreases the total
number of particles in the system. The reduced number of
degrees of freedom and the use of smoother interaction
potentials allow for longer time steps, which results in a
significant increase in speed. A number of CG models are
available for a variety of biomolecules, including lipids,2−4

proteins,5−8 DNA,9,10 and polymers.11,12 With reference to
proteins, CG models have been developed at various levels of
resolution differing in the number of degrees of freedom used
to represent the protein backbone and side chains as well as the
choice of potential energy functions that describe interactions
in the system.13

Marrink and co-workers developed one CG model, coined
the MARTINI force field,4,14 for the simulation of lipids and
surfactants using a thermodynamics-based approach, i.e., its
parameters were determined by reproducing free energies of

partitioning between oil and aqueous phases. The MARTINI
CG force field was later extended to proteins,7 fullerenes,15 and
carbohydrates.16 The MARTINI model for peptides and
proteins,7 in particular, was designed to provide a general
model that is applicable to any class of protein and allows for
discrimination between all amino acids through the use of more
types of interaction sites than most other CG models. All
amino acids in the MARTINI protein model are represented by
at least one bead: The backbone of each amino acid residue is
collectively described by one bead, and the side chains are
represented by a variable number of beads depending on the
dimensions of the side chain of each amino acid. Consistent
with the philosophy of the original MARTINI force field, the
MARTINI model for proteins was developed using the
partitioning free energies of amino side chains between oil
and aqueous phases to determine the appropriate nonbonded
interaction parameters. The bonded parameters were derived
systematically based on the distribution of bond lengths, angles,
and dihedral angles calculated from the Protein Data Bank.
Since the MARTINI force field was developed by calibrating a
large number of chemical building blocks against thermody-
namic data, it is applicable to a wide range of chemical systems
without requiring further reparametrization. For specific
applications, bonded parameters can be easily improved as
required by targeting experimental data or atomistic models. In
general, the parametrization of new chemical building blocks
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can be achieved relatively easily compared to other CG
approaches because of its simple potential energy functions.
Hence, the model can be extended in a straightforward manner
to construct new molecular species while retaining its internal
consistency and compatibility. In the past few years, the
MARTINI force field has been successfully applied in
numerous studies of peptide and peptide−lipid interac-
tions,17,18 the assembly of micelles and bilayers around
membrane proteins,19,20 and lipid phase separation.21

However, because little structural data were used during
parametrization and the potential form is relatively simple, the
current standard version of the MARTINI force field is limited
in its ability to reproduce structural details of complex
biomolecules and polymers.7,14 One approach to overcome
this limitation is to use elastic network models on top of the
CG parametrization in order to mimic structural and dynamical
properties of a particular native or non-native structure. Periole
and co-workers have introduced a modified MARTINI CG
model, denoted as ELNEDIN,22 by mixing an elastic network
model with the MARTINI force field. In this model, an elastic
network was used to maintain the structure of a protein, and
the MARTINI CG model was used to describe interactions in
the system. The ELNEDIN protein model was found to be able
to reproduce quantitatively both the structural and the
dynamical properties of the proteins predicted by atomistic
simulations. Recently, Singh and Tieleman have proposed an
approach to optimizing parts of the MARTINI model, based on
the partitioning free energies of amino acid side chains at the
lipid−water interface for the Wimley−White hydrophobicity
scale peptides.23 The authors established a well-defined
experimental test system and simulation protocol for guiding
future improvements of the MARTINI model.23 Side chain
parameters have also been improved using potentials of mean
force between two side chains in solution.24

Other approaches are being developed to further enhance the
accuracy and applicability of CG models. Hybrid simula-
tions25−27 in which CG and atomistic models are combined
have been applied to study peptide−membrane interactions28

and proteins.29 In this approach, essential parts of molecular
systems are represented at a detailed atomistic resolution, while
the remaining parts are modeled at a reduced CG level.
Another important limitation in the current implementation

of the MARTINI force field7 is that secondary structure
transformations are not modeled. Changes in protein secondary
structure cannot be modeled with the current MARTINI force
field because backbone bonded parameters are dependent on
predefined secondary structures. Secondary structure elements
of protein are fixed at strand, helix, or coil structures
throughout simulations through the use of angle and dihedral
potential energy functions. However, to accurately describe
numerous biological phenomena which involve the folding and
unfolding of secondary structures, a representative sampling of
the different secondary structure elements must be achieved
during the dynamics. Currently, such processes lie outside the
applicability of MARTINI forcefield. Our work is a first step
toward overcoming this limitation by introducing internal
flexibility on the peptide backbone during CG simulations.
In the present work, we test whether incorporating potentials

of mean force derived from atomistic simulations in the
backbone of a set of CG peptides improves the conformations
generated by the CG simulations. We then use these potentials
to simulate the dynamics of aggregation of amyloid- and elastin-
like peptides over long time scales and investigate the

transferability of the backbone potentials to longer peptides
and peptides in different environments at a water−hydrophobic
interface and as part of aggregates. Our test systems are
peptides that have elastin- or amyloid-like properties.
Elastin is a polymeric structural protein that provides

extensibility and elastic recoil to tissues, such as lungs, large
arteries, and skin.30,31 Tropoelastin, the monomeric form of
elastin, is composed of hydrophobic and cross-linking domains,
which alternate along the sequence of the protein. Hydro-
phobic domains are rich in nonpolar amino acids, such as
glycine, proline, and valine; they are thought to be responsible
for elastin’s temperature-induced self-aggregation and elastic-
ity.32,33 The sequences used in this paper are modeled after
those of the hydrophobic domains of elastin.34 In contrast,
amyloid fibrils represent a pathogenic form of the assembly of
soluble proteins associated with tissue-degenerative diseases,
such as Alzheimer’s, Parkinson’s, and the prion diseases.35,36 All
these proteins differ in amino acid sequences and adopt
different structures in their monomeric forms.37−40 Despite the
dissimilarity of their monomeric precursors, amyloid fibrils have
been observed to share a common insoluble cross-β-sheet
structure with the β-strands perpendicular to the fiber axis
based on data from X-ray scattering and solid-state NMR
experiments.41,42

We have previously studied the physical properties of
elastomeric and amyloid fibrils by atomistic molecular
simulations of monomeric and aggregated states of peptides.34

An extensive set of such simulations34,43 is used to parametrize
a backbone potential for the MARTINI model for elastin- and
amyloid-like peptides in the present work. We then use these
parameters to simulate additional peptides and peptides in
different environments and compare the results to atomistic
simulations.
In the following sections, we describe the model systems and

the potential energy functions in the MARTINI force field,
followed by the force field parametrization procedure for new
dihedral angle potentials. We also describe the simulation
conditions for the CG and atomistic simulations. Next, the
performance of the model is assessed in terms of its ability to
reproduce structural properties. We present results for a range
of test cases of amyloid- and elastin-like peptides. Then, we
discuss the performance of the model in terms of the
transferability of parameters between different lengths of
peptides. Subsequently, we present amyloid peptide aggrega-
tion at the water−octane interface to validate the extension of
the CG MARTINI model and investigate the transferability of
the newly derived parameters in different environments.

2. COMPUTATIONAL METHODS
2.1. The Systems. We used a set of octapeptides consisting

of amyloid- and elastin-like sequences: SNNFGAIL,44,45 (GA)4,
(GV)4, GVGVAGVG, GVGVGGVG, GVGVAGGV,
GVGGVGGV (amyloid), GVGVPGVG, GVPGVPGV,
GVAPGVGV, and GVGGVPGV (elastin).34 Our study on
the elastin-like octapeptides was motivated by the investigations
of Rousseau et al.46 on neutral peptides. In particular, the
behavior of the peptide fragments, representing part of
hydrophobic domains, is of interest in this work. For
consistency, all of the octapeptides investigated in this paper
were capped with an acetyl group at the N-terminus and an
amide group at the C-terminus, and they are neutral. The
sequences of the elastin-like peptides are formed by the
pairwise combination of four fragments: PGV, GGV, GV, and
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GVA.34 In addition, tetrapeptide fragments of the octapeptides
listed above as well as longer peptides ((GV)18, (PGV)12) are
used to test the performance of our model in terms of accuracy
and parameter transferability. The sequences of all model
peptides are shown in Table 1.

2.2. The Model. 2.2.1. Interaction Sites. The basic
parameters for the CG peptide model are taken from the
MARTINI protein force field.7 In the MARTINI model, a
single interaction site generally represents a group of four heavy
atoms, with an exception for ring-like molecules. There are four
main types of interaction sites in the model: polar (P),
nonpolar (N), apolar (C), and charged (Q). Each type has a
number of subtypes, which describe more accurately the
chemical nature of the underlying atomic structure. The
mapping of all protein amino acids is available in the original
MARTINI protein force field paper.7 As an illustration, the
mapping of SNNFGAIL is shown in Figure 1.
2.2.2. Bonded Interactions. Bonded interactions in the

original MARTINI peptide force field7 are described by a set of
potential energy functions: the bond potential Vb, the angle
potential Va, and dihedral angle potential Vd. The bond
stretching between two bonded sites i and j is represented by a
harmonic potential Vb

= −V K r r
1
2

( )ijb b b
2

(1)

with a force constant Kb about an equilibrium distance rb. A
cosine-based angle potential Va is used to represent bond angle
bending between bonded sites i, j, and k:

= θ − θV K
1
2

[cos( ) cos( )]ijka a a
2

(2)

where Ka and θa are the harmonic force constant for bond angle
bending and equilibrium angle, respectively. For dihedrals, the
proper dihedral angle potential acting between bonded sites i, j,
k, and l is given by

= + ϕ − ϕV K n[1 cos( )]ijkld d d (3)

where Kd and ϕd are the torsional rotation force constant and
the phase angle, respectively. The parameter n controls the
periodicity. The procedure of force field parametrization for
dihedral angle potentials is described in Section 2.2.3.
2.2.3. Parametrization of the Dihedral Angle Potential. To

develop the dihedral angle potential of peptides in CG

representation, extensive conformational sampling was per-
formed by atomistic simulations,34,43 and various structural
properties calculated from these atomistic trajectories were
used as reference for our CG simulations. The CG simulations
of amyloid- and elastin-like peptides were performed in
aqueous solution using the original MARTINI model. The
main goal of the reparametrization of the CG dihedral angle
potential is to reproduce the conformational ensemble of the
atomistic system. The dihedral angle was defined by four
consecutive backbone beads (BB), and the dihedral angle
distributions were calculated for every quartet of residues
possible for each peptide. Using the center of mass of the group
of atoms corresponding to CG beads, the distributions of the
dihedral angles were calculated for every peptide from atomistic
trajectories. Then, the corresponding potentials of each
dihedral angle were extracted from the probability distributions
by using the Boltzmann inversion method,47 i.e,

Table 1. Sequence of Model Peptides

peptides tetrapeptides

(GA)4 GAGA, AGAG
(GV)4 GVGV, VGVG
SNNFGAIL SNNF, NNFG, NFGA, FGAI, GAIL
GVGVAGVG GVGV, VGVA, GVAG, VAGV, AGVG
GVGVGGVG GVGV, VGVG, GVGG, VGGV, GGVG
GVAGVAGV GVAG, VAGV, AGVA
GVGVAGGV GVGV, VGVA, GVAG, VAGG, AGGV
GVGGVGGV GVGG, VGGV, GGVG
GVGVPGVG GVGV, VGVP, GVPG, VPGV, PGVG
GVPGVPGV GVPG, VPGV, PGVP
GVAPGVGV GVAP, VAPG, APGV, PGVG, GVGV
GVGGVPGV GVGG, VGGV, GGVP, GVPG, VPGV
(GV)18 GVGV, VGVG
(PGV)12 PGVP, GVPG, VPGV

Figure 1. Mapping between the atomistic structure and the CG model
for SNNFGAIL. Backbone beads are indicated by “BB” and side chain
beads by “SC”. All pictures presented in this paper were generated
with VMD.66
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= −U k T Pln( )i iB (4)

where kB is Boltzmann’s constant, T is the temperature, and Pi
is the normalized probability distribution of the ith dihedral
angle. In the next step, potential energies Ui were fitted to a
sum of cosine and sine terms given by the following function:

∑′ = ϕ + ϕ
=

V C i S i[ cos( ) sin( )]d
i

i i
1

4

(5)

where ϕ is the dihedral angle, and Ci and Si values are the force
constants. Figure 2 shows the probability distributions for all

possible backbone dihedral angles of SNNFGAIL obtained
from atomistic simulations (Figure 2A), and the corresponding
potentials and fitting energy functions (Figure 2B). The
corresponding potentials and fitting energy functions for all
other octapeptides are in Figure SI3, Supporting Information.
For convenience, this functional form was converted into the
periodic dihedral potential function in eq 6 already
implemented in the GROMACS molecular simulation pack-
age.48

∑′ = + ϕ − ϕ
=

V K n[1 cos( )]d
i

i i i
0

8

(6)

where Ki is the force constant, ϕi is the phase angle, and the
parameter ni controls the periodicity.
CG simulations of amyloid- and elastin-like peptides were

reperformed in solution using the modified model. Parameters
for bond stretching and bending potentials were taken from the
original MARTINI force field.7 The distributions of dihedral
angles were computed from CG simulations using the original
MARTINI and the modified force fields and compared to those
extracted from atomistic simulations. The result is shown in
Figure 3 for the peptide SNNFGAIL. The distributions
obtained from the original MARTINI model are significantly
different from the results of atomistic simulations, but the fitted
potential accurately reproduces the distributions of dihedral
angles from atomistic simulations.
2.3. Simulation Details. 2.3.1. Atomistic Simulations.

All atomistic simulations except those of GVGVPGVG, (GA)4,
and (GV)4 have not been published previously. The atomistic
simulations of all octapeptides were carried out using simulated

tempering distributed replica sampling (STDR).43,49 For each
octapeptide, the simulation system consisted of the octapeptide
in a 3 × 3 × 3 nm cubic box with explicit water molecules. The
octapeptides were capped with an acetyl group at the N-
terminus and an NH2 group at the C-terminus. The
temperatures were spaced exponentially between 280 and 694
K, resulting in an acceptance ratio of approximately 35%. The
same fully extended starting structure was used for all
temperatures. Simulations were performed using the GRO-
MACS MD simulation package, version 3.3.148,50 with the
OPLS-AA/L force field51,52 for the solute and the TIP3P model
for water.53 Periodic boundary conditions were applied. The
switch function of GROMACS was used for Lennard-Jones
interactions, which corresponds to the usual Lennard-Jones
function until 1.3 nm, after which it is switched to reach zero at
1.4 nm. No scaling factors were used for nonbonded
interactions. An initial energy minimization was performed in
GROMACS using the steepest descent method. Covalent
bonds involving hydrogen atoms were constrained with the
SHAKE algorithm.54 Calculations of electrostatic forces utilized
the particle mesh Ewald (PME) summation method55,56 with a
Fourier spacing of 0.15 nm and a fourth-order interpolation.
The real-space Coulombic cutoff was 1.49 nm. All MD
simulations were performed in the canonical ensemble. Peptide
and solvent were coupled to the same reference temperature
bath with a time constant of 2 ps using the Nose−́Hoover
method.57,58 An integration step size of 2 fs was used, and
coordinates were stored every 1 ps. For the tetrapeptides,
simulation conditions were identical to the octapeptides

Figure 2. (A) Probability distributions for all possible BB−BB−BB−
BB dihedral angles of SNNFGAIL obtained from atomistic simulations
at 305 K. (B) The corresponding potentials of mean force (solid lines)
and fitting energy functions (dotted lines). Figure 3. Probability distributions for backbone dihedral angles of

SNNFGAIL obtained from atomistic (AT) and CG simulations at 305
K.
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simulations. The only difference is that simulations of all
tetrapeptides were performed in the canonical ensemble at a
single temperature (305 K).
The atomistic simulations of the longer peptides, (GV)18 and

(PGV)12, were also performed using the STDR algorithm. The
details of these simulations are the same as our previously
published work.59 In particular, an exponentially spaced list of
105 temperatures between 266 and 749 K was used. All
simulations of the octapeptides involved between 120 and 170
ns of sampling at each temperature. The simulations of the two
longer peptides had an average of 800 ns per temperature, for a
total simulation time of 84 μs per peptide. Coordinates were
saved every 1 ps for the octapeptide simulations and every 10
ps for the tetrapeptide simulations.
2.3.2. CG Simulations. All CG simulations described in this

paper were performed using the GROMACS MD package,
version 4.0.4.48 All conformations at 305 K from each replica in
atomistic simulations were used for CG parametrization. The
CG simulations of monomeric amyloid- and elastin-like
peptides (tetrapeptides, octapeptides, and longer peptides)
were performed in solution using the original MARTINI
model7 as well as using the MARTINI model with the newly
derived dihedral potentials (eq 6). The CG water model
provided by the MARTINI force field was used.14 In this
model, one bead represents four water molecules. The CG
topologies for peptides were generated from the atomistic
structures. The acetyl group at the N-terminus and an NH2
group at the C-terminus were not present in the CG
simulations. No secondary structure was imposed on the
peptides. Backbone bonded parameters are consistent with
random coil, and the particle type P5 was used for the
backbone in all peptides. The CG simulations were run for 1.5
μs. The simulations using the original MARTINI model were
run with an integration time step of 20 fs. An integration time
step of 7 fs was used for stability in simulations employing the
modified MARTINI model. This relatively small time step
compared to a more typical MARTINI time step of 20 fs is a
limitation of the implementation of a standard dihedral
potential over four BB, which, unlike normal atomistic force
fields, have a significant probability of having three beads
colinear, i.e., when three beads are colinear, any dihedral angle
including these three beads is undefined. When the beads
approach colinearity, small displacements lead to large changes

in the dihedral term, which forces a smaller time step to be
used. An alternative implementation that prevents this artifact is
under development.
In the CG simulations, a cutoff of 1.2 nm (rcut) was used in

the calculation of nonbonded interactions with a shifted
function. The Lennard-Jones potential is shifted from 0.9 to
1.2 nm. The electrostatic potential is shifted from 0.0 to 1.2 nm.
Both the energy and the force vanish at the cutoff distance. The
temperature is kept constant using the Berendsen temperature
coupling algorithm60 with a coupling time constant of 1 ps.
Isotropic pressure coupling was applied using the Berendsen
algorithm60 with a reference pressure of 1 bar. A coupling
constant of 5.0 ps and a compressibility of 4.5 × 10−5 bar−1

were used. Bond lengths in aromatic amino acid side chains and
the backbone side chain bonds for Val were constrained using
the LINCS algorithm.48 All simulations were run at T = 305 K.
The improved model was applied to the self-assembly of
amyloid-like peptides as a simple model system for aggregation.
The CG simulations of peptides SNNFGAIL and (GV)4 were
performed at 305 K both in water and at the water−octane
interface with a different number of peptides: 1, 8, and 64. The
topology and parameters for water and octane are taken from
the MARTINI force field data set.14 Each simulation was
carried out for 1 μs.

3. RESULTS AND DISCUSSION
CG simulations were performed using both the original
MARTINI model and the model with the addition of new
dihedral potentials. To validate our model, we compared the
CG results with the results obtained from atomistic
simulations.33,43 The backbone dihedral angle probability
distributions were used to assess statistical convergence of
atomistic and CG simulations (Figures SI1 and SI2, Supporting
Information).

3.1. Structural Properties. The performance of our model
was assessed by comparing the distributions of various
structural properties with their counterparts from atomistic
simulations. We calculated the size-dependent behavior of the
models on two global structural properties of the peptides: the
radius of gyration Rg and the end-to-end distance dee. Results
are shown in Table 2. In general, values of Rg and dee computed
with the new model show a good agreement with the atomistic
results. The performance is also comparable to that of the

Table 2. Radius of Gyration Rg and the End-to-End Distance dee for Various Peptides
a

Rg (nm) dee (nm)

peptide original CG new CG AT original CG new CG AT

(GA)4 0.48 ± 0.08 0.47 ± 0.07 0.52 ± 0.09 1.16 ± 0.40 1.07 ± 0.39 0.90 ± 0.36
(GV)4 0.58 ± 0.07 0.58 ± 0.07 0.55 ± 0.08 1.17 ± 0.38 1.15 ± 0.45 1.11 ± 0.40
SNNFGAIL 0.61 ± 0.05 0.60 ± 0.06 0.58 ± 0.07 1.29 ± 0.39 1.12 ± 0.36 1.03 ± 0.37
GVGVAGVG 0.56 ± 0.06 0.55 ± 0.06 0.56 ± 0.09 1.30 ± 0.37 1.23 ± 0.36 1.03 ± 0.41
GVGVGGVG 0.56 ± 0.06 0.54 ± 0.07 0.55 ± 0.09 1.33 ± 0.37 1.16 ± 0.37 0.97 ± 0.40
GVGVAGGV 0.58 ± 0.07 0.57 ± 0.07 0.57 ± 0.10 1.29 ± 0.38 1.24 ± 0.37 1.06 ± 0.41
GVGGVGGV 0.58 ± 0.07 0.55 ± 0.07 0.57 ± 0.10 1.38 ± 0.38 1.14 ± 0.38 1.04 ± 0.40
GVGVPGVG 0.55 ± 0.06 0.49 ± 0.05 0.59 ± 0.09 1.28 ± 0.39 1.34 ± 0.37 1.13 ± 0.42
GVPGVPGV 0.56 ± 0.07 0.56 ± 0.07 0.61 ± 0.09 1.21 ± 0.39 1.19 ± 0.38 1.17 ± 0.43
GVAPGVGV 0.57 ± 0.07 0.54 ± 0.07 0.57 ± 0.10 1.26 ± 0.39 1.08 ± 0.38 1.09 ± 0.40
GVGGVPGV 0.57 ± 0.07 0.56 ± 0.06 0.60 ± 0.10 1.25 ± 0.39 1.12 ± 0.36 1.13 ± 0.41
(GV)18 1.18 ± 0.24 1.18 ± 0.23 0.82 ± 0.04 1.50 ± 0.52 1.46 ± 0.48 1.33 ± 0.47
(PGV)12 0.87 ± 0.07 0.87 ± 0.07 0.88 ± 0.05 1.63 ± 0.63 1.52 ± 0.49 1.31 ± 0.56

aThe results obtained from atomistic (AT) and CG trajectories using the original and the new CG models are shown. Error bars represent standard
deviations associated with average properties computed over all trajectories, for both AT and CG simulations.
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original model. For longer peptides, we observed that (GV)18 is
on average more expanded than (PGV)12, while in the atomistic
simulations they have approximately the same average Rg. We
have not found the exact reason for this discrepancy between
atomistic and CG results, but it is not affected by the addition
of the new dihedral parameters. Therefore, the addition of new
dihedral potentials to the model does not significantly change
either Rg or dee of the peptides, suggesting that the global
structural properties are primarily determined by the non-
bonded parameters in the force field.
In Figure 4, we show the contact maps of BB of four selected

peptides, GVAPGVGV, GVPGVPGV, (GV)4, and SNNFGAIL
obtained from CG and atomistic simulations. The contact maps
display the probability of two residues forming a contact as a
function of their residue numbers. Distance cutoffs of 0.6 and

0.65 nm for atomistic and CG trajectories, respectively, were
employed to generate the contact maps based on probability
distributions representing averages over all possible BB−BB
distances for each sequence. These distances are the first
minimum in radial distribution functions. BB distances were
calculated from the center of mass of the appropriate group of
atoms for the atomistic data. The contact maps show the
fraction of total simulation time a contact is present. The color
scheme for the contact maps and representative structures with
contacts from the trajectory of GVAPGVGV is shown in Figure
4E. For all cases, the new model reproduced the most
populated contact of atomistic results: the A3−V6 contact in
peptide GVAPGVGV, the V2−V5 contact in peptide
GVPGVPGV, the G3−V6 contact in peptide (GV)4, and the
N3−A6 contact in peptide SNNFGAIL. Several other contacts

Figure 4. Backbone beads contact maps at 305 K. Each square in the matrix (i,j) corresponds to a contact between the BB of residues i and j: (A)
GVAPGVGV, (B) GVPGVPGV, (C) (GV)4, and (D) SNNFGAIL. (E) Representative snapshots of GVAPGVGV showing the presence of
significantly populated contacts. In the color scheme, each color represents a range of probabilities of contact formation. On each map, the atomistic
map lies above the diagonal, and the corresponding CG map, obtained from the simulations using either original MARTINI model (a) or the new
model with the addition of dihedral potentials (b), lies below the diagonal.
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with lower populations were also reproduced with the new
model. Although the original CG model is able to identify the
majority of contacts observed in atomistic simulations for all
cases, its performance is inferior to the new model at
reproducing the atomistic probabilities of contact formation
on a quantitative level. Our results indicate that the accuracy of
the model was significantly improved with the addition of new
dihedral potentials. It also suggests that the addition of dihedral
angle potentials on peptide backbones mainly affects the local
structural properties of peptides.
3.2. Transferability of Parameters. It is important to test

the transferability of the results obtained from short peptides to
longer ones since it is significantly more challenging to obtain
complete conformational sampling for longer peptides
compared to shorter peptides with atomistic models.43 We
carried out the conformational analysis of two elastin-like
peptides GVGVPGVG and (GVPGV)7, using atomistic
simulations, and computed the probability distributions of the
distance between Cα(i) and Cα(i + 3) of the five distinct four-
residue fragments from the two peptides (Figure 5).
Comparison of the distributions showed that they were all
similar, suggesting that the properties of disordered peptides

can be deduced from those of short fragments. Accordingly, the
parametrization of the MARTINI force field may rely on the
transferability of fragment properties obtained for short
peptides.
We constructed several peptides of different lengths ((GV)4,

GVPGVPGV, (GV)18, (PGV)12). Tetrapeptide fragments, i.e.,
each quartet of amino acids residues of the amyloid- and
elastin-like octapeptides listed were prepared. Subsequently, we
extended the periodic sequence to generate longer peptides
((GV)18, (PGV)12), which were used to test the transferability
of parameters derived from simulations of short peptides to
simulations of longer peptides.
Atomistic simulations were carried out for all tetrapeptides in

solution, and the resulting trajectories were used to derive
parameters of backbone dihedral angle potentials for the CG
model (see Computational Methods Section). The dihedral
angle potentials were then employed in CG simulations of
octapeptides and longer peptides to model their torsions. The
distributions of dihedral angles of possible quartets were
calculated from atomistic and CG trajectories. Figures 6 and 8
show the average dihedral angle distributions of four-residue
fragments of amyloid-like (GVGV and VGVG) and elastin-like

Figure 5. Conformational analysis of two elastin-like peptides GVGVPGVG and (GVPGV)7 from atomistic simulations in water at 296 K. (A)
Probability distributions of the distance (r) between Cα(i) and Cα(i + 3) of the four-residue fragments from the two peptides. (B) Representative
conformations of GVGVPGVG: (a) VPGV turn, (b) GVGV turn, (c) both VPGV and GVGV turns (“s” shape), and (d) neither turn (extended
state).

Figure 6. Average dihedral distributions of fragments GVGV (A) and VGVG (B) in peptides (GV)4 and (GV)18. Atomistic distributions obtained
from tetrapeptides GVGV and VGVG are also shown. Error bars on distributions represent standard deviations in the distributions of all possible
GVGV (A) and VGVG (B) fragments in (GV)4 and (GV)18.
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(GVPG, VPGV, and PGVP) peptides, respectively. For
example, the distributions of dihedral angles for the GVGV
fragments of (GV)4, shown in Figure 6 (A), were computed by
averaging the distributions for the three GVGV fragments
present in the octapeptide.
The CG distribution of dihedral angles for the GVGV

fragments of (GV)4, shown in Figure 6(A), is similar to that of
(GV)18, both featuring a broad peak at 30°. The corresponding
atomistic distributions, on the other hand, are characterized by
two prominent peaks at −60°and 25°. Comparison of the
atomistic and CG distributions of dihedral angles for the
tetrapeptide shows that the maximum at −60° is also absent
from the CG distribution, although it is visible in the atomistic
distribution. It is likely that the difference between the atomistic
and CG results for (GV)4 and (GV)18 is the result of a
limitation of the CG parameters in modeling torsional changes
about −60° during the simulations. For the VGVG fragment
(Figure 6B), the distribution of dihedral angles for the
tetrapeptide computed from atomistic trajectories displays a
sharp peak at 70° in addition to a shoulder around 0° and a
minimum around −90°. All features are well reproduced by the
corresponding CG distribution, although slight differences are
visible in the relative probabilities of the dihedral angles around
the shoulder and the maximum. The overall shape and features
of the distributions are retained by the longer peptides, both for
atomistic and CG trajectories. The CG distributions of the
VGVG fragment for (GV)4 and (GV)18 are strikingly similar, as
previously noticed for the GVGV fragment in Figure 6A. The
excellent agreement between the atomistic and CG distribu-
tions for (GV)4 and (GV)18 indicates that the CG parameters
are highly transferable for the VGVG fragment. The perform-
ance is in contrast with results obtained for the GVGV
fragment. To better understand this difference, we examined
the quality of the fits described by eq 5 generated during the
parametrization procedure of the tetrapeptides in Figure 7. It
can be observed that the description of torsional motion
afforded by the fitting function is more accurate for VGVG than
for GVGV. The dihedral potential of the GVGV tetrapeptide is
characterized by numerous low-lying barriers which require
functions more complex than eq 5 or the use of numerical
tables instead of fitting functions to accurately model torsional

motions. Dihedral potential energies of the GVGV tetrapeptide
computed from numerical tables, shown in eq 5, confirm the
superior quality of such fits. These would result in better
transferability of parameters for amyloid-like peptides. Taken
together, our observations suggest that it is possible to derive
CG parameters for longer peptides based on short amyloid-like
peptides.
For the three elastin-like peptide fragments, all atomistic

distributions of tetrapeptides, octapeptide GVPGVPGV and
(PGV)12 peak at the same values of dihedral angles with similar
probabilities, namely at −110° for the GVPG fragment (Figure
8A), at −140°, −50°, and 30° for the VPGV fragment (Figure
8B), and at −170°, 70°, and 150° (Figure 8C) for the PGVP
fragment. The appearance of a small additional peak around
60° in the atomistic distribution of dihedral angles of the
GVPG fragment for (PGV)12 can be attributed to isomerization
to cis-proline at high temperatures. Atomistic simulations of
(PGV)12 were allowed to reach higher temperatures than
simulations of the tetrapeptides and octapeptides. The highest
temperature possible in the random walk was 749 K for the
(PGV)12 simulation. In general, CG simulations reproduce all
features of atomistic distributions for all the fragments in
elastin-like peptides, showing that the effect of different lengths
is comparable on atomistic and CG distributions. Therefore,
our results show that the new CG model is reasonably
transferable for elastin-like peptides from short to longer
peptides.

3.3. Amyloid Peptide Aggregation. The study of protein
aggregation is a biologically important and complex problem.
Atomistic simulations of protein aggregation are currently
limited to simulations of a small number of peptides on the
nanosecond to microsecond time scale. Thus, simulations of
the self-assembly and structural properties of large-scale peptide
aggregates would benefit significantly from using CG
parameters.61,62

Recently, Pomes̀ and co-workers reported atomistic simu-
lations of the self-aggregation of simple β-sheet forming
peptides at a water−hydrophobic interface mimicking the
core of lipid membranes.63 They investigated the influence of
the water−hydrophobic interface on the aggregation of
peptides (GV)4 and (GA)4 and observed an enhancing effect
of the water−nonpolar interface on β-sheet formation
compared to purely aqueous environments, in accordance
with experimental evidence. They also proposed a general
mechanism for β-sheet formation by hydrophobic interfaces
during protein folding and amyloid self-organization based on
their analysis of the physical and molecular aspects of the
catalysis of amyloid formation. In this generic mechanism, the
primary effect of the interface is to displace the conformational
equilibrium of the peptides toward extended, β-strand-prone
conformations.
To validate the extension of the CG MARTINI model and

test the transferability of the parameters, we attempt to
reproduce the extended structure of aggregated peptides at the
water−hydrophobic interface using parameters derived in the
aqueous phase. In particular, we examine whether our new
model adequately reproduces the displacement in the
conformational equilibrium of peptides during aggregation at
the interface without additional adjustment of parameters in
comparison with atomistic results. In addition, the compatibility
of our model to reproduce the peptide conformational
equilibrium is investigated in different environments, i.e., in
water and at the water−octane interface.

Figure 7. The potentials of mean force (black solid lines) and the
fitting energy functions (blue dotted lines) of the GVGV and VGVG
tetrapeptides. The fits with the use of numerical tables are also shown
(red dotted lines). The potentials of mean force were extracted from
the probability distributions of the dihedral angles calculated from
atomistic trajectories.
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CG models require certain elements to represent the
secondary peptide structure in peptide aggregation. For
instance, without elements such as backbone hydrogen bonding
and chirality, the assembly of peptides cannot be modeled into
a sheet.61 In order to describe chiral fibrillar peptide
aggregation, the peptide model developed by Shea and co-
workers retains most of the backbone degrees of freedom and
introduces molecular chirality as an additional dihedral degree
of freedom.61,64 Another CG model which has been successfully
employed in the study of peptide aggregation is the optimal
potential for efficient peptide-structure prediction force field.65

This model uses a single bead representation of side chains
while keeping a detailed representation of all backbone atoms
(N, H, Cα, C, and O) with potential energy functions, taking
into account nonbonded interactions and hydrogen bonding
interactions.62 In its current form, MARTINI does not have
specific interactions that promote β-sheet or other secondary
structure elements beyond the standard nonbonded and
bonded interactions. Our modified backbone dihedral potential
is one step toward including such interactions, but by itself
likely remains insufficient to accurately simulate the formation
of fibrils and other structures from individual peptides.
CG simulations of single and multiple peptides (8 and 64) of

SNNFGAIL and (GV)4 were performed both in water and in
the presence of a hydrophobic octane phase. Peptides were
initially placed in water and peptide adsorption to the interface
occurred rapidly. At the interface, the peptides aggregated into
large clusters within tens of nanoseconds. Figure 9 shows the

evolution of the size of the largest peptide cluster with respect
to time for 64 SNNFGAIL. A peptide was defined as belonging
to a cluster if the distance between the center of mass of two
peptides is less than 1.2 nm. At initial time (t = 0), the system
consists of 64 SNNFGAIL monomers. The peptides diffuse
rapidly and aggregate into small clusters between 10 and 100
ns. Bigger clusters were formed after 100 ns, although their
sizes were not consistent throughout the simulations. It has
been reported that peptide monomers in water and at the
interface adopted many different conformations, and they
interconverted over the course of the simulations.63 To analyze
the conformation of the peptides within the aggregates, we
calculated the distribution of end-to-end distances, dee, for
aqueous and adsorbed peptide monomers. Figure 10A presents
the results obtained from simulations of 64 SNNFGAIL and
(GV)4 monomers using both the original MARTINI model and
the new model. Three conformation types63 were defined based
on dee: short (S) for dee < 0.65 nm, intermediate (I) for 0.65 <
dee > 1.2 nm, and extended (E) for dee > 1.2 nm. Representative
snapshots of the peptide SNNFGAIL monomers are shown in
Figure 10A. Comparison of the distributions of dee obtained
from the original MARTINI model and the new model reveals
that both CG models favor extended structures. With the new
model, however, the distribution of peptides is skewed even
further toward extended conformations resembling β-hairpins
and β-strands at the water−octane interface during peptide

Figure 8. Average dihedral distributions of fragments GVPG (A),
VPGV (B), and PGVP (C) in peptides GVPGVPGV and (PGV)12.
Atomistic distributions obtained from tetrapeptides GVPG, VPGV,
and PGVP are also shown. Error bars represent standard deviations
computed from distributions of all possible fragments in GVPGVPGV
and (PGV)12 for GVPG (A), VPGV (B), and PGVP (C).

Figure 9. Plot of the size of the largest cluster and the total number of
clusters as function of time for 64 SNNFGAIL.
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aggregation (Figure 10A). We also show the distributions of dee
for aqueous and adsorbed peptide monomers at different
peptide concentrations with the newly developed CG model in
Figure 10B. The plot shows that extended conformations are
more populated at the interface than in water. The Pomes̀
group reported a similar observation in the end-to-end
distributions of amyloidogenic peptides, (GV)4 and (GA)4,
calculated from atomistic trajectories.63 In particular, peptides
at the interface displayed a preference for extended
conformations compared to aqueous peptides, which indicates
a shift in the conformational equilibrium of interfacial peptides
toward stretched conformers upon adsorption. In addition, the
population of peptides with short and intermediate end-to-end
distances decreases as the concentration and time spent at the
interface increase. The concurrent growth in the population of
extended conformations suggests that short and intermediate
conformations are gradually replaced by extended ones. Based
on these observations and similar reports from the analysis of
atomistic trajectories of the amyloidogenic (GV)4 and (GA)4
peptides, we conclude that the inclusion of torsional backbone
flexibility in the new model provides an improved description
of peptide conformational preferences during aggregation at the
interface. Reproduction of the peptide conformational prefer-

ences at the interface with no parameter modification suggests
that the backbone potentials to peptides in different environ-
ments are transferable.

4. CONCLUSIONS
CG models enable the study of phenomena at longer time and
length scales than more detailed atomistic models and their
application to peptide aggregation allows for a direct
examination of the process in silico. In the present work, we
extended the CG MARTINI model to describe the backbone
flexibility of proteins by introducing in the energy function a
term that accounts for the dihedral angle potentials on the
peptide backbone. Backbone flexibility is often required during
simulations since biological processes, such as protein folding
and aggregation, typically involve significant transitions
between different types of secondary structure. The new
model was applied to amyloid- and elastin-like peptides, and its
performance was assessed based on its ability to reproduce
various structural properties calculated from atomistic trajecto-
ries of peptides in water. Although little effect was observed on
global structural properties, such as Rg and dee, when the new
and original forms of the model were compared, peptide
contact maps showed a significant improvement when torsional
flexibility was allowed in the new model.
The transferability of the dihedral parameters was tested by

employing the parameters derived from the atomistic
trajectories of shorter fragments in simulations of longer
peptides. Such a feature is highly desirable, since it offers the
possibility of modeling longer flexible peptides with the new
CG MARTINI model. Simulations of such systems using
atomistic methods tend to be generally inefficient because they
require extensive conformational sampling. Average distribu-
tions of dihedral angles were computed and compared for
peptides of different lengths. Our results showed that the
parametrization of longer elastin-like peptide sequences is
feasible from shorter segments. For amyloid-like peptides, the
transferability was observed to be very sensitive to the quality of
the parameters. Overall, transferable parameters can be derived
to model long peptides with the new CG MARTINI model. In
particular, the approach used and presented in the present work
can be directly applied to probe events which necessitate a
flexible description of proteins over long time scales.
Finally, the improved model was subsequently employed to

characterize the self-aggregation properties of peptides in water
and at the water−octane interface. We investigated whether the
simulations using the new model were able to reproduce the
behavior observed in atomistic simulations. The new CG model
was observed to successfully reproduce the shift in conforma-
tional equilibrium toward extended structures during aggrega-
tion at the interface without further parameter adjustment.
Angle and dihedral potential energy functions are used to

introduce flexibility into the dynamics of peptide secondary
structures in the current version of MARTINI model. It is
noted that our work is a first step to describe more accurately
the backbone flexibility of peptides. Further improvements in
MARTINI are still needed to adequately incorporate changes in
the secondary structure of proteins.
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Figure 10. Distribution of end-to-end distance of SNNFGAIL and
(GV)4 peptides. (A) Distribution of dee of 64 SNNFGAIL and (GV)4
at water−octance interface using the original and new CG models.
Representative snapshots of SNNFGAIL in short and extended
conformations are shown. Vertical lines at dee = 0.66 and 1.2 nm
highlight the boundaries separating short, intermediate, and extended
conformations. (B) Distribution of dee of SNNFGAIL at different
concentration in water and at water−octane interface computed with
the new model. Distribution of dee of 64 (GV)4 is also shown in water
and at water−octane interface computed with the new model.
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of dihedral parameters. This material is available free of charge
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