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Prostate cancer (PCa) is one of the most frequently
diagnosed malignancies in men. Androgen-deprivation
therapy (ADT) is the first-line treatment and fundamen-
tal management for men with advanced PCa to sup-
press functions of androgen/androgen receptor (AR)
signaling. ADT is effective at improving cancer symp-
toms and prolonging survival. However, epidemiologi-
cal and clinical studies support the notion that
testosterone deficiency in men leads to the develop-
ment of metabolic syndrome that increases cardiovas-
cular disease risk. The underlying mechanisms by
which androgen/AR signaling regulates metabolic ho-
meostasis in men are complex, and in this review, we
discuss molecular mechanisms mediated by AR sig-
naling that link ADT to metabolic syndrome. Results
derived from various AR knockout mouse models
reveal tissue-specific AR signaling that is involved in
regulation of metabolism. These data suggest that
steps be taken early to manage metabolic complica-
tions associated with PCa patients receiving ADT,
which could be accomplished using tissue-selective
modulation of AR signaling and by treatment with
insulin-sensitizing agents.

Prostate cancer (PCa) is the second leading cause of
cancer-related mortality and the most common malig-
nancy in men in the U.S. (1). Androgen-deprivation ther-
apy (ADT) to suppress PCa was initially demonstrated by

Huggins and Hodges in 1941 (2) and remains as the
standard treatment for PCa (3). ADT is accomplished
with surgical castration (bilateral orchiectomy) or chem-
ical castration with gonadotropin-releasing hormone
(GnRH) agonists to suppress binding of androgen to
the androgen receptor (AR). Although ADT improves
survival at all stages of PCa, it leads to severe hypogo-
nadism with different adverse effects, including unfavor-
able metabolic alterations. Treatment of the metabolic
complications of ADT has been considered and has be-
come increasingly important (4). Metabolic syndrome is
a complex disorder consisting of abdominal obesity, dys-
lipidemia, insulin resistance, and hypertension. Obese
individuals are more prone to develop insulin resistance
compared with nonobese individuals. Insulin resistance
promotes metabolic complications including elevated
circulating triglycerides, reduced HDL, elevated fasting
blood glucose levels, and high blood pressure. These
metabolic abnormalities, in conjunction with abdominal
obesity, represent the classical features of metabolic
syndrome (5). Metabolic syndrome is an important
risk factor for cardiovascular disease and associated
morbidity and mortality in individuals with or without
diabetes.

In this article, we will discuss the molecular aspects of
mechanisms linking ADT to metabolic syndrome by
focusing on evidence derived from AR-knockout (ARKO)
mouse models.
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RELATIONSHIP BETWEEN ANDROGEN
DEFICIENCY AND METABOLIC SYNDROME:
EVIDENCE FROM EPIDEMIOLOGICAL AND
CLINICAL STUDIES

Androgen is a male sex steroid hormone that exerts
important physiological functions leading to masculine
characteristics, maturation of reproductive systems, and
bone metabolism. The major circulating androgen, tes-
tosterone, is synthesized in testicular Leydig cells and
released into blood, where it binds to steroid hormone-
binding globulin (SHBG) to facilitate the transport. Within
target cells, testosterone is converted to 5a-dihydrotestos-
terone (DHT), a more potent androgen, by 5a-reductase.
Both testosterone and DHT bind to the AR to exert their
physiological functions (6). Androgen-activated AR regu-
lates the transcription of a variety of target genes through
the interaction with different coregulators. Androgen/AR
and their coregulators form a complex signaling network.

Androgen is an important determinant of body compo-
sition in men promoting growth of lean mass and sup-
pressing deposition of fat (7). Epidemiological studies have
observed a bidirectional relationship between low testos-
terone levels and obesity in men (8). Obesity is the single
most powerful predictor of low testosterone levels in men,
and one of the hallmarks of obesity in men is reduced
testosterone levels. Conversely, low levels of testosterone
and SHBG can predict accumulation of intra-abdominal
fat, development of central obesity, and increased risk of
metabolic syndrome in men (8,9).

There is growing evidence supporting a beneficial effect
of testosterone therapy on body composition to reduce
visceral obesity and the elements of metabolic syndrome
(10,11). Results from clinical studies show that testoster-
one can promote insulin sensitivity in hypogonadal men
with and without diabetes (12). Testosterone replacement
in men with metabolic syndrome reduces body weight,
waist circumference, and visceral fat mass. Plasma levels
of insulin and leptin as well as some markers of inflam-
mation were also reduced (13). Testosterone replacement
therapy may also have the potential to decrease risk fac-
tors of cardiovascular diseases associated with metabolic
syndrome in hypogonadal men (14).

High body-fat mass and central obesity are associated
with low serum testosterone and SHBG levels (15). Reduc-
tion of testosterone levels in men with BMI $30 kg/m2

was demonstrated in the European Male Aging study,
suggesting that obesity can lead to decreased testosterone
levels (16). This is further supported by studies showing
that weight management by diet or surgery can increase
testosterone levels proportional to the amount of weight
lost (17,18). In contrast, abnormalities in the hypothal-
amo-pituitary-testicular axis or experimental induction of
hypogonadism in healthy young men can increase fat
mass rapidly (8,19).

Low testosterone and SHBG are also associated with
the development of insulin resistance and metabolic
syndrome in men. Cross-sectional studies have shown

an inverse relationship between testosterone levels and
insulin resistance in healthy men (20). In aging men, a
25% decrease of serum testosterone leads to a twofold
increase of insulin resistance (21). Acute androgen depri-
vation can reduce insulin sensitivity in healthy young men
(22). Moreover, reduction in the total and free serum
testosterone is prevalent in men with type 2 diabetes
(23). These results support the notion that male hypogonad-
ism is an independent risk factor for metabolic syndrome,
and low testosterone levels can be added to the criteria for
the diagnosis of metabolic syndrome in men (24).

Taken together, results derived from epidemiological
and clinical studies reveal a close association between
testosterone deficiency and metabolic syndrome. Given
that ADT induces severe testosterone deficiency with
a temporally defined onset, PCa patients receiving ADT
may have even higher risks for development of metabolic
syndrome as well as detrimental changes in body compo-
sition associated with the ADT treatment, for example, an
increase in fat mass and a decrease in lean mass (25–27).
Three months of ADT treatment significantly increases
fat mass and circulating insulin levels (27). The accumu-
lation of visceral adiposity during short-term ADT is
highly correlated with increasing circulating insulin levels.
Interestingly, changes in measures of insulin resistance
are noted as early as 3 months after starting ADT even
before the development of central obesity (28). Men un-
dergoing long-term ADT treatment show significant in-
sulin resistance and hyperglycemia compared with the
non-ADT and control groups (29,30). Importantly, 44%
of patients receiving ADT have a fasting glucose level
.126 mg/dL, a criterion for the diagnosis of diabetes
mellitus, indicating that ADT of long duration can lead
to development of diabetes (31).

In addition to the linkage of low testosterone levels
with metabolic disturbances, the CAG repeat polymor-
phism within the AR gene also can play a role in
development of metabolic syndrome. There is an inverse
relationship between the length of the AR CAG repeat and
its transcriptional activity on testosterone target genes
(32). Some studies even suggest that serum levels of tes-
tosterone can be correlated with the CAG repeat of AR,
indicating the negative-feedback loop mediated by AR to
regulate testosterone levels (33). The polymorphism of AR
CAG repeats is reported to influence insulin sensitivity
and components of metabolic syndrome in men (34,35).
These findings provide additional support for the critical
role of AR in androgen/AR signaling in the regulation of
metabolism.

LESSONS FROM GLOBAL ARKO MOUSE MODEL

Although human studies have linked testosterone de-
ficiency to the metabolic complications that occur in men
receiving ADT, studying the underlying mechanisms
responsible in vivo is complex. The mechanisms by which
testosterone influences insulin sensitivity and obesity are
multifactorial and are likely due to a combination of
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testosterone’s action on liver, muscle, and adipose tissues.
The molecular basis of functional deficiency in androgen/
AR signaling and the pathophysiology of developing obe-
sity and insulin resistance remain unclear. Using the
Cre-loxP–mediated recombination approach, a conditional
ARKO mouse model was established to investigate roles
of AR in the development of metabolic syndrome in
males (36).

Global deletion of AR (GARKO) in male mice results in
the characteristics of central obesity, abdominal accumu-
lation of fat by middle age, but without change in lean
mass (37). The development of late-onset visceral obesity
is also observed in several parallel studies using mouse
models with genetic AR deletion (38–40). Obesity in
male GARKO mice was associated with elevations of cir-
culating lipids, altered lipid metabolism in white adipose
tissue, and excessive deposition of lipids in nonadipose
tissues, including liver and muscle. Glucose homeostasis
was affected in male GARKO mice that demonstrate fast-
ing hyperglycemia, glucose intolerance, and insulin resis-
tance. The ability of insulin to stimulate activation of
downstream phosphatidylinositide-3 kinase was reduced
by 60–63% in skeletal muscle and liver derived from male
GARKO mice, supporting the development of insulin re-
sistance and impaired insulin signaling. Leptin resistance
in these obese male GARKO mice was also demonstrated
by the reduced response of mice to exogenous leptin in
regulation of food intake and body weight (37).

Circulating testosterone levels were remarkably low
in GARKO male mice due to atrophic testes, suggesting
the possibility that the insulin resistance and observed
metabolic abnormalities simply reflected low levels of
serum testosterone. Interestingly, serum androstenedione
and estradiol were not altered in male ARKO mice and
their wild-type littermates. When the nonaromatizable
androgen DHT was given to male GARKO mice, DHT was

not able to reverse the metabolic abnormalities and insulin
resistance (37). These findings indicate that nongenomic
actions of androgen cannot directly account for the devel-
opment of obesity and insulin resistance (41) and that AR
is critical in mediating effects of androgens to regulate
glucose and lipid metabolism.

Although compensatory mechanisms caused by con-
genital ablation of AR could occur and influence metab-
olism in the adult, the metabolic abnormalities developed
in male GARKO mice in fact recapitulated the meta-
bolic complications observed in men with testosterone
deficiency and in patients with PCa receiving ADT.
The ARKO mouse model therefore may serve as an
in vivo system to investigate molecular mechanisms
by which androgen/AR signaling regulate glucose and
lipid homeostasis.

CELL TYPE–SPECIFIC ARKO MOUSE MODELS

The development of insulin resistance is a complicated
process involving the impaired action of insulin in various
target tissues. Although underlying mechanisms of im-
paired insulin signaling may differ among tissues and
under various circumstances, it is established that there
are complex interorgan communication among various in-
sulin target tissues (42,43). Examination of tissue-specific
insulin signaling and selective insulin resistance in various
tissues have advanced our understanding of the complex
pathophysiology of insulin action (44).

By using transgenic mice expressing Cre recombinase
in specific cell types, tissue-specific ARKO mouse models
have been generated (37,45–47). Deletion of AR in this
manner does not alter the serum testosterone levels in
male mice (Table 1). These various ARKO mice serve as
valuable animal models to dissect the pathophysiological
roles of tissue-specific AR signaling involved in the devel-
opment of metabolic syndrome.

Table 1—Summary of metabolic phenotypes in male conditional ARKO mice

Conditional ARKO mice GARKO (AR2/y ) LARKO (L-AR2/y ) AARKO (A-AR2/y ) NARKO (N-AR2/y )

Cell specificity General Hepatocytes Adipocytes Neurons

Cre promoter b-actin Albumin FABP4 Synapsin I

Insulin sensitivity ↓ ↓ ↔ ↓

Serum insulin ↑ ↑ ↔ ↑

Blood glucose ↑ ↑ ↔ ↑

Glucose tolerance ↓ ↓ ND ↓

Leptin sensitivity ↓ ND ↑ ND

Serum leptin ↑ ↑ ↑ ↑

Hepatic lipids ↑ ↑ ↓ ↑

Serum triglycerides ↑ ↑ ↓ ↑

Free fatty acids ↑ ↔ ↔ ↑

Visceral fat accumulation ↑ ↑ ↔ ↑

Serum testosterone level ↓ ↔ ↔ ↔

NARKO, neuronal-specific ARKO; ND, not determined.
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Liver-Specific ARKO Mouse Model
The liver functions as a major metabolic tissue to control
glucose and lipid homeostasis. Oxidation of fatty acids by
the hepatocytes supplies the substrate for glucose pro-
duction. Dysregulated fatty acid oxidation and synthesis
can lead to the accumulation of fat or hepatic steatosis.

Using albumin-Cre–transgenic mice, Lin et al. (45) di-
rectly addressed the role of AR in the liver by specifically
deleting AR in hepatocytes (LARKO). After 8 weeks of
high-fat diet (HFD) feeding, male LARKO mice developed
obesity and significant hepatic steatosis (45). Hepatic
steatosis is known to negatively impact insulin sensitivity
and lead to insulin resistance, which is manifested by the
reduced ability of insulin to suppress hepatic glucose pro-
duction (48,49). HFD-fed male LARKO mice exhibited
fasting hyperglycemia and insulin resistance, indicating
impairments in the regulation of glucose homeostasis
and insulin sensitivity. At a molecular level, decreased
activation of phosphatidylinositide-3 kinase in response
to insulin and increased expression of PEPCK in male
LARKO liver and isolated hepatocytes were consistent
with increased hepatic glucose production and develop-
ment of insulin resistance.

Mechanistic studies in male LARKO mice showed that
activation and upregulation of SREBP1c and acetyl CoA
carboxylase produced more malonyl CoA, the substrate
for de novo fatty acid synthesis. The transport of free
fatty acids from the cytosol to mitochondria is required
for their b-oxidation and is mediated by carnitine pal-
mitoyltransferase I, located at the outer membrane of
mitochondria. Malonyl CoA is an inhibitor of carnitine
palmitoyltransferase I, and increased levels of malonyl CoA
reduces transport of fatty acids into mitochondria, result-
ing in the reduction of fatty-acid oxidation. In a parallel
cascade, reduction of peroxisome proliferator–activated
receptor-a and malonyl CoA decarboxylase in livers de-
rived from male LARKO mice further increased the pro-
duction of malonyl CoA. In corresponding hepatocytes,
expression of peroxisome proliferator–activated receptor-a
was shown to be mediated by DHT-dependent activation
of AR (45). These findings suggest that impeding the
entry of free fatty acids into mitochondria, impairing
b-oxidation of fatty acids, and promotion of de novo fatty
acid synthesis could account for the development of
hepatic steatosis in male LARKO mice.

These mechanistic studies of HFD-fed male LARKO
mice demonstrate a pivotal role of hepatic AR in regula-
ting insulin sensitivity and lipid homeostasis. Hepatic
insulin resistance is shown to be sufficient to produce
dyslipidemia and increase the susceptibility to athero-
sclerosis in mice (50,51). In human clinical studies,
GnRH agonists to suppress androgen/AR signaling cause
increases in total cholesterol and triglycerides (52,53). It
is therefore likely that functional deficiency of AR in the
liver caused by GnRH agonists leads to these lipid altera-
tions. As large cohort studies demonstrate strong correla-
tions between blood cholesterol levels and cardiovascular

mortality independent of other coronary risk factors (54),
awareness of altered hepatic AR signaling and lipid metab-
olism during ADT should prompt the appropriate manage-
ment of cardiovascular complications.

Neuronal-Specific ARKO Mouse Model
Compelling data derived from animal studies are mount-
ing that brain insulin resistance may be a critical element
in the pathophysiology of obesity, type 2 diabetes, and
related metabolic disorders (55–57). Defective hypotha-
lamic insulin signaling is able to promote hepatic insulin
resistance as demonstrated by the brain-specific insulin
receptor knockout mouse model (55). Partial restoration
of liver insulin signaling in the insulin receptor knockout
mice fails to normalize insulin action on hepatic glucose
production, supporting the importance of hypothalamic
insulin signaling in glucose homeostasis (58).

Male neuronal-specific ARKO mice, generated by
selectively targeting AR in neurons, displayed increased
body weight and visceral adiposity, as well as increased
levels of fasting blood glucose and insulin. Neuronal AR
deficiency led to impaired insulin signaling in the
hypothalamus, which in turn resulted in reduced sup-
pression of hepatic gluconeogenic genes (46).

Hypothalamic insulin resistance is reported to act as
an early event in the development of systemic insulin
resistance due to prolonged exposure to excessive nutri-
tion (59). Activation of hypothalamic nuclear factor-kB
(NF-kB) signaling is critical to induction of insulin resis-
tance following chronic overnutrition (60,61) At the
neuronal level, loss of suppression by AR resulted in
increased activation of hypothalamic NF-kB signaling
within a short-term HFD-feeding period (46). Hence,
functional deficiency of AR in neurons directly inter-
feres with insulin signaling and leads to hypothalamic
insulin resistance.

These findings uncover a new mechanism of insulin
resistance caused by testosterone deficiency through
decreased function of AR in the brain. Suppression of
the hypothalamic NF-kB by AR provides a potential way
to manage the metabolic complications that develop in
patients with PCa undergoing ADT by targeting neuronal
AR.

Adipose-Specific ARKO Mouse Model
The adipose tissue is a key target of insulin action, im-
portant for glucose uptake, and a potential site for tes-
tosterone’s action in regulating body mass composition.

Selectively targeting AR in adipocytes was used to
generate the adipose-specific ARKO (AARKO) mouse
model to study the role of AR in fat tissue. In male
AARKO mice, body weight and fat pad mass were
indistinguishable from that of wild-type littermates. De-
spite identical levels of adiposity, male AARKO mice
exhibited elevated levels of serum leptin, suggesting that
loss of the AR affects leptin secretion by adipose tissue.
Interestingly, enhanced leptin production in AR-deficient
adipose tissue did not result in leptin resistance, as male
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AARKO mice showed increased sensitivity in response to
exogenous leptin challenge (47). Increased estradiol levels
were observed in epididymal adipose tissue, suggesting
enhanced estrogen receptor (ER) transactivation contrib-
uted to upregulation of leptin gene transcription.

Adipose tissue expressed several steroidogenic enzymes
that control tissue steroid concentrations and ligand
bioavailability for intracellular receptors (62). It is possi-
ble that altered activities of steroid-converting enzymes
due to loss of AR resulted in a larger steroid reservoir in AR-
deficient adipocytes. Increased steroid precursors may have
provided increased available substrate for aromatases in
the adipose tissue, resulting in enhanced estradiol pro-
duction. In male GARKO mice, the elevation of leptin
occurred prior to the onset of obesity, suggesting
a similar mechanism of increased intracellular estra-
diol conversion may have contributed to enhanced lep-
tin production (37).

Sex steroid hormones are important regulators of
metabolism, accumulation of fat, and distribution of
adipose tissue. In humans, fat distribution is different
between males and females. Sex steroid hormones
predispose males to a more central accumulation of fat,
whereas in females, a more subcutaneous accumulation of
fat is observed (63). This difference has important meta-
bolic consequences, as visceral obesity is considered a risk
factor for cardiovascular diseases, and men have a higher
incidence of cardiovascular diseases than women. Meno-
pause in women increases central distribution of fat and
incidence of cardiovascular diseases (64). The mechanism
by which sex steroid hormones control the amount and
distribution of fat is not clear. One mechanism may be
through the transcriptional regulation of key proteins in
adipose tissue (63). Future studies on the local synthesis
of sex steroid hormones and the regulation of AR and ER
signaling in different types of adipose tissue may increase
our understanding of steroid action in the adipocyte.

Muscle-Specific ARKO Mouse Model
A critical feature of skeletal muscle in glucose homeostasis
is insulin-stimulated glucose uptake and use. Testosterone
is an important regulator of lean mass, and anabolic
effects of testosterone on skeletal muscles are thought to
be mediated predominantly through AR. AR is expressed
in various cell types of skeletal muscle in humans and
rodents including myocytes, satellite cells, fibroblasts, and
mesenchymal stem cells (65–67), and all are potential
targets of testosterone’s action.

One muscle-specific ARKO (MARKO) mouse model,
generated by myocyte-specific AR deletion, demonstrates
altered fiber composition. Myocyte-specific deletion of AR
resulted in an increase of slow-twitch fibers without
affecting muscle strength. Unexpectedly, MARKO mice
showed a reduction in intra-abdominal fat mass (68). In
another MARKO mouse model, AR ablation in myocytes
affected intrinsic contractile functions in fast- and inter-
mediary-twitch muscles. Androgens induced hypertrophy

of muscle fibers through AR-dependent pathways in per-
ineal muscles and AR-independent pathways in limb
muscles (69). Discrepancies between the two MARKO
mouse models may be related to differences in genetic
backgrounds of the mouse lines, Cre recombinase trans-
genic mouse lines (MCK-Cre vs. HSA-Cre), and experi-
mental protocols used. Whether insulin sensitivity or
glucose homeostasis is influenced by myocyte-specific
AR ablation is unclear and awaits further investigation.

Insights into AR signaling in muscle and the role of AR
in regulating metabolic homeostasis may be facilitated by
using transgenic animal models in which AR is selectively
overexpressed in various cell types. Overexpression of AR
in myoctes increased lean mass and reduced fat mass in
transgenic rats. AR signaling in myocytes was sufficient to
promote systemic oxidative metabolism through increasing
activity of mitochondrial enzymes and oxygen consump-
tion in skeletal muscle (70). Targeted AR overexpression in
mesenchymal stem cells reduced fat mass and reciprocally
increased lean mass in male mice. Transgenic AR mice
showed improved glucose use in response to exogenous
glucose challenge (71). These studies suggest AR signaling
in muscle is involved in mitochondrial respiration and glu-
cose disposal.

ROLES OF ANDROGEN AND AR IN METABOLIC
SYNDROME–ASSOCIATED CARDIOVASCULAR
DISEASE

Metabolic syndrome is a critical risk factor for cardiovas-
cular disease. The metabolic complications associated with
ADT suggest a significantly greater risk of cardiovascular
disease events in patients with PCa, although the role of
androgen in cardiovascular disease is controversial. Epi-
demiologic studies indicate that men are at a significantly
higher risk of cardiovascular disease and suffer from
mortality more frequently compared with women (72,73).
Exogenous testosterone administration in men increases
the rate of adverse cardiovascular events, including the
coronary syndrome and myocardial infarction (74). The
risk of developing deep venous thrombosis or pulmonary
embolism in men receiving testosterone-replacement
therapy has also been suggested in a recent study (75).
In contrast, other clinical studies suggest a beneficial action
of testosterone on vascular health and low levels of testos-
terone are associated with risk of cardiovascular disease
(76,77). Low testosterone levels are associated with carotid
and aortic atherosclerosis in men (78,79) and are a predic-
tor of cardiovascular events in middle-aged men after ad-
justment for coronary risk factors (80). In men with
coronary artery disease, low levels of testosterone are as-
sociated with severity of the coronary artery atherosclerosis
(81). Thus, there is evidence that high levels of testosterone
as well as low levels of testosterone are associated with
increased cardiovascular disease risk.

Controversies are also observed in cell culture and
animal studies designed to uncover actions of testoster-
one on the cardiovascular system. Deleterious effects of
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testosterone on vasoconstriction and inflammation were
shown to contribute to the progression of atherosclerosis
and rupture of the myocardium following acute myocar-
dial infarction (82–87). In contrast, much of the literature
shows that testosterone can attenuate atherosclerosis, re-
duce the size of the myocardial infarction, and enhance
vasodilation, suggesting a beneficial role of testosterone
(88–93). This paradox suggests that testosterone may ex-
ecute multiple roles on the cardiovascular system simul-
taneously in addition to its effects on risk factors, such as
insulin sensitivity, dyslipidemia, obesity, and diabetes.

Although some effects of testosterone on the cardio-
vascular system are thought to be mediated by the ER, AR
is present in all types of cells within the cardiovascular
system (94). AR is expressed in endothelial cells, smooth
muscle cells, macrophages, platelets, and cardiomyocytes
(95,96). Testosterone itself results in a 50% increase of
AR expression in the aortic arterial segment of rabbits.
The vascular AR is suggested to be involved in the process
of testosterone’s action on the arterial vascular system
(97). Osterlund et al. (98) has demonstrated AR-mediated
inflammatory responses in isolated coronary artery
smooth muscle cells. Furthermore, AR was shown to reg-
ulate cell proliferation in cardiomyocytes and mediate
protective effects of testosterone in response to ischemic
insults in rats (91,99). These studies suggest direct AR-
mediated action of androgen in the cardiovascular system.
It is therefore likely that AR acts in either a beneficial or
harmful manner for vascular health in different cell types
within the microenvironment.

Although controversial roles of androgen/AR signaling
exist in the cardiovascular system, several clinical studies
have reported adverse cardiovascular consequences of
ADT in patients with PCa. Men who receive a GnRH
agonist had a higher incidence of coronary heart disease,
myocardial infarction, and sudden cardiac death (31). The
use of ADT was associated with shorter time to death
from cardiovascular causes and to fatal myocardial infarc-
tion after controlling for age and risk factors (100,101). In
a retrospective observational study, the overall survival at
10 years was worse in men receiving ADT treatment, and
cardiovascular disease was the most common cause of
death in these cases (102).

The underlying mechanisms through which severe
deficiency of androgen/AR signaling in ADT results in
rapid development of cardiovascular disease complica-
tions remain largely unknown. Besides enhancing the
development of components of metabolic syndrome, such
as insulin resistance, dyslipidemia, and visceral obesity,
deficiency of androgen/AR signaling may also directly
impact health of the cardiovascular system. We suggest
that specifically targeting AR in various cell types in the
cardiovascular system may help to reveal the complex
relationship between androgen and cardiovascular disease.
These future investigations will shed light on better
management of long-term cardiovascular health for pa-
tients with PCa receiving ADT.

SUMMARY

A growing body of evidence in human studies demon-
strates a close relationship between testosterone de-
ficiency and the development of metabolic syndrome in
men. In this review, we discussed several molecular
mechanisms mediated by AR signaling that can lead to
the development of metabolic syndrome. In patients with
PCa receiving ADT, severe testosterone deficiency results
in obesity, insulin resistance, altered lipid profiles, de-
velopment of diabetes, and cardiovascular complications.
However, the molecular mechanisms by which androgen/
AR signaling regulates metabolic homeostasis in men are
likely to involve multiple factors and cross-talk among
insulin target tissues. By cell type–specific AR targeting in
mice, the critical role of AR in androgen/AR signaling can
be studied without alterations of testosterone levels in
male mice. Results derived from various cell type–specific
ARKO mouse models for the tissue-specific AR signaling
are summarized in Table 1. Hepatic AR and neuronal AR
signaling directly participate in cellular insulin signaling
regulating systemic insulin sensitivity as well as glucose
and lipid homeostasis. Awareness of altered hepatic AR
signaling and lipid metabolism may prompt appropriate
management of cardiovascular complications during ADT.
AR signaling in the myocytes beneficially increases systemic
oxidative metabolism by changing muscle fiber composi-
tions in skeletal muscle. These findings suggest promising
targets for tissue-selective treatments to manage metabolic
complications found in patients with PCa during ADT.

FUTURE PROSPECTS

In the future, rather than waiting for the diagnosis of
insulin resistance and metabolic syndrome, available data
suggest that patients with PCa receiving ADT should be
given advice on lifestyle modification and possible early
treatment for ensuing lipid disorders leading to metabolic
syndrome.

The selective AR modulators (SARMs), a class of
ligands that bind to the AR and display a tissue-selective
activation of AR signaling, may provide a treatment
choice (103). In preclinical studies, a SARM was shown
to execute tissue-selective anabolic actions by restoring
muscle strength and reducing body fat in ovariectomized
male rats (104,105). In phase I clinical studies, first-
generation SARMs induced modest gain of lean body
mass in healthy volunteers (106). With improving tech-
niques, the new generation of SARM molecules will have
greater potency and better selectivity. One new SARM
molecule has shown to improve lean body mass and
physical function in healthy elderly men in a phase II
trial study (107). The use of nonsteroidal SARMs may
avoid differential activation of intracellular signaling cas-
cades by the nongenomic action of DHT that can lead to
unexpected cellular processes (106,108).

Obesity and diabetes are being recognized as risk
factors for the development of cancers and prediction of
aggressive cancer metastasis, including PCa. A pilot study
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has shown a strong trend between metabolic syndrome
and earlier development of castration-resistant PCa in
patients receiving ADT (109). These findings suggest that
there may be a unique therapeutic window for combining
insulin-sensitizing medication with antiandrogen agents
for treatment of patients with PCa affected by metabolic
syndrome and advanced PCa (110,111).

It is anticipated that patients with PCa will live longer
with next-generation therapies targeting androgen syn-
thesis or directly targeting AR in combination with ADT
and with better management of metabolic and cardiovas-
cular risk factors and complications. The development of
cell type–specific AR targeting or functional AR restora-
tion is clearly warranted in the future.
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