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Abstract: The adverse developmental effects of exposure to Cigarette Smoke (CS) during pregnancy 

are documented in this paper. These include low birth weight, congenital anomalies, preterm birth, 

fetal mortality and morbidity. The current biological thought now recognizes that epigenetics repre-

sents a fundamental contributing process in embryogenesis, and that the environment can have a pro-

found effect on shaping the epigenome. It has become increasingly recognized that genes encoding 

microRNAs (miRNAs) might be potential loci for congenital disabilities. One means by which CS 

can cause developmental anomalies may be through epigenetic mechanisms involving altered miR-

NA expression. While several studies have focused on genes affected by CS during embryonic/ fetal 

development, there is a paucity of knowledge on the involvement of miRNAs in this process. This 

brief review summarizes the current state of knowledge in this area. 
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1. INTRODUCTION 

Cigarette Smoke (CS) is an environmental toxicant and a 

major risk factor for several types of cancers [1], pulmonary 

and cardiovascular diseases [2-4], periodontitis [5], athero-

sclerosis [6], and tuberculosis [7]. CS also affects embryonic 

and fetal development, increasing the risk for low birth 

weight, underdeveloped organs, congenital anomalies,  

preterm birth, fetal mortality and morbidity [8-10]. It has 

been reported that ~10-14 percent of pregnant women in the 

U.S. smoke cigarettes, thereby, exposing their embryos and 

fetuses to nicotine and other toxicants present in CS [10, 11]. 

There is emerging evidence to indicate that pregnant women 

who smoke are also at increased risk of giving birth to chil-

dren with an orofacial cleft [1, 12, 13], an association that 

has been supported by studies utilizing animal models [14]. 

These observations have led to an increased awareness of the 

need to understand mechanisms underlying the effects of 

maternal cigarette smoking on embryonic gene regulation 

and development. Among epigenetic factors that mediate 

gene-environment crosstalk are microRNAs (miRNAs) 

whose dysregulation has been linked to pathogenicity and 

craniofacial defects [15-18]. This review focuses on the  

current state of knowledge regarding the role CS-affected 

miRNAs may play in embryonic development. 
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1.1. Cigarette Smoke  

CS consists of mainstream smoke (smoke that is inhaled 

and exhaled by a smoker when puffing on a cigarette) and 

sidestream smoke (or secondhand smoke which emanates 

from the burning end of a cigarette). CS contains ~ 7000 

chemicals, including nicotine, benzo(a)pyrene (BaP),  

formaldehyde, carbon monoxide and a number of known 

carcinogens [19]. Many of these chemicals contain highly 

oxidative radicals and redox active compounds that react 

with DNA [20] to create bulky adducts that can cause DNA 
damage [21, 22].  

More recently, electronic cigarettes (e-cigs) (also called 

Electronic Nicotine Delivery Systems - ENDS) have been 

touted as a “safer alternative” to conventional tobacco smok-

ing [23, 24], including their use during pregnancy [25-27]. 

This notion is based on the assumption that e-cigs produce 

aerosols that are devoid of many of the chemicals present in 

CS. Nevertheless, there is no conclusive evidence to suggest 

that maternal e-cig use does not affect normal embryonic and 

fetal development [28]. These aerosols contain chemicals, 

such as formaldehyde and acrolein, which can cause DNA 

damage and mutagenesis. Indeed, recent evidence indicates 

that exposure to these aerosols results in increased oxidative 

stress in laboratory animals and humans, cardiac defects in 

zebrafish larvae and craniofacial defects in frog embryos [28, 

29]. Several e-cig products have also been found to be con-

taminated with microbial toxins [30]. Certain e-cigs have 

been shown to exhibit cytotoxicity attributed to the high con-

centrations of both nicotine and ethyl maltol, a flavor con-
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tributing chemical [31]. Prevailing evidence, thus, suggests 

that further studies are warranted to address the effects of e-

cig exposure during pregnancy on developmental outcomes. 

1.2. miRNAs  

miRNAs are short ~22-nt long non-coding RNA mole-

cules that bind to the 3’ UTRs of mRNAs. They regulate a 

variety of biological and developmental processes, such as 

cell differentiation, proliferation, apoptosis, cellular respons-

es to stress and immunity, and metabolism [32-38]. miRNAs 

interact with mRNAs through their short seed sequences, 

resulting in either mRNA degradation or suppression of tran-

scription, the precise mechanism dependent, respectively, on 

whether the seed sequence matches the target sequence per-

fectly, or partially [39]. miRNAs are also known to function 

by directly activating transcription, upregulating protein ex-

pression, and targeting mitochondrial transcripts [40]. This 

flexibility in miRNA-mRNA interaction allows miRNAs to 

regulate the expression of a wide variety of target genes. A 

corollary to this observation is that a single mRNA can also 

be regulated by several miRNAs. 

2. MIRNAs AND CIGARETTE SMOKE (CS) 

2.1. CS and Regulation of miRNA Expression 

A variety of mechanisms have been put forth to explain 

how CS can cause aberrant miRNA expression. Several stud-

ies indicate that the potential for CS to disrupt global expres-

sion of miRNAs resides in the fact that many miRNA encod-

ing genes are located in vulnerable parts of the genome, such 

as fragile sites [20, 41]. Furthermore, these genes frequently 

harbor SNPs which render them susceptible to CS-induced 

genetic damage or altered transcript processing [20, 22]. 

Many components of CS can disrupt the mechanisms that 

regulate miRNA biogenesis. For instance, Ligorio et al. [42] 

have demonstrated in silico that components of CS can bind 

to DICER, thereby affecting function. Gross et al. [43] have 

shown that CS exposure modifies DICER post-transcriptio- 

nally via SUMOylation, leading to decreased production of 

mature miRNAs in alveolar macrophages of smokers. CS 

exposure can also affect DNA methylation. Breton et al. [44] 

observed that in utero exposure to CS leads not only to glob-

al hypomethylation but also to hypermethylation of promot-

er-specific CGIs (CpG islands), many of which are associat-

ed with CS metabolism. It was hypothesized that hypometh-

ylation results from DNA damage by ROS (Reactive Oxida-

tive Species), thus preventing the binding of maintenance 

methylases, whereas, CGI hypermethylation arises from in-

complete erasure in methylation reprogramming during early 

embryonic development [44]. 

2.2. CS Associated miRNAs in Embryonic Development 

Recent evidence indicates that miRNAs are sensitive to 

environmental stressors, including CS. Clinical studies [45-

47] and investigations utilizing cell lines [48, 49] have re-

vealed dysregulation of distinct panels of miRNAs associat-

ed with exposure to CS. Many additional examples of miR-

NA dysregulation by exposure to CS in vivo, or its conden-

sate in vitro, have been documented [50-53]. While these 

observations are derived primarily from the cancer literature, 

far less is known regarding the epigenetic effects of exposure 

to CS in the developing embryo. 

The placenta is an easily accessible organ, and as such, is 

ideally suited for studying factors that adversely affect em-

bryonic development by disrupting normal placental func-

tion. It supports the development and growth of the embryo 

by providing nutrients, secreting hormones, removing waste, 

and acting as a protective barrier against environmental in-

sults. The placental barrier, composed of both maternal and 

fetal tissue, acts as an internal barrier that can protect the 

embryo from xenobiotic agents, but allows more xenobiotics 

to pass through in comparison to the blood-brain or blood-

retinal barriers [54]. CS can impinge on embryonic develop- 

ment through alterations in placental gene expression (Fig. 1). 

Maccani et al. [55] observed that maternal cigarette smoking 

leads to the downregulation of miR-16, miR-21 and miR-
146a in human placental tissues, relative to unexposed con-

trols. Extending these observations to placental cell lines, 

they found that the downregulation of miR-146a was caused 

by nicotine and benzo(a)pyrene (BaP), two components of 

CS, whereas, other CS components were presumed to target 

the downregulation of miR-16 and miR-21. Analyses of three 

placental cell lines representing different stages and aspects 

of placental development – first trimester villous (3A) cells; 

first trimester extravillous (HTR8) cells; and, third trimester 

extravillous (TCL-1) cells – revealed a significant downregu-

lation of miR-146a in TCL-1 cells when exposed to a range 

of doses of nicotine and BaP. A potential target of miR-146a 

is TRAF6, associated with NFKB signaling. It can thus be 

hypothesized that downregulation of miR-146a enhances 

NFKB signaling. Since NFKB has anti-apoptotic and pro-

survival properties, increased expression of this molecule 

likely leads to prolonged survival of term placental cells that 

may cause cellular stress impinging on fetal programming. 

As the development and maturation of the lungs are 

completed only after birth, newborn lungs are subjected to a 

certain amount of oxidative stress when transitioning from a 

state of maternal dependency to autonomic respiration [21]. 

Izzotti et al. [21] identified at least 11 pulmonary miRNAs 

whose expression was significantly altered when exposed to 

CS from birth, the post-weanling period to adult stages. The-

se miRNAs were all found to be associated with embryologi-

cal development and morphological changes, thereby imply-

ing that embryonic CS exposure might affect early lung de-

velopment. 

Many of the mechanisms whereby maternal smoke expo-

sure may adversely affect proper embryonic growth and de-

velopment are thought to be mediated by alterations in miR-

NA expression. For example, maternal cigarette smoking 

during pregnancy has been associated with dysregulated ex-

pression of miRNAs in the embryo [56], placenta [55] and 

cord blood [57]. The expression of miR-140, known to regu-

late zebrafish palatal development in vivo [58], has been 

shown to be reduced by environmental smoke exposure in 
vitro [21]. In a case-control study, infants with CA/AA geno-

types at rs7205289 (located in the miR-140 gene) exposed to 

maternal passive smoking during the first trimester exhibited 
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Fig. (1). Effects of Cigarette Smoke (CS) on miRNA expression during embryonic/fetal development. CS can directly affect miRNA 

expression during embryonic development in, at least, two ways. Components of CS can affect miRNA expression in the placenta, a crucial 

organ required for normal embryonic development (bold arrow, left), or, penetrate the placental barrier and affect the developing  

embryo/fetus directly (bold arrow, right). CS can also affect the developing embryo indirectly by contributing to poor quality of miRNAs in 

parental germ cells or through transgenerational passage of affected miRNAs. Aberrantly expressed miRNAs can alter gene expression and 

developmental pathways, thereby enhancing the risk for abnormal embryonic/ fetal development. These include low birth weight, cleft 

lip/palate, congenital anomalies, poorly developed organs, and pre-term birth, to name a few. 

synergistically increased cleft palate risk [59]. As this SNP is 

located close to the cleavage site of Drosha, it can be specu-

lated that the processing of pri-miRNA may be affected. Im-

portantly, human epidemiological studies indicate that in-

fants with the A-allele (rs7205289) when exposed to mater-

nal passive smoking during the first-trimester exhibit inhibi-

tion of miR-140 expression and an increased risk for non-

syndromic cleft palate [59]. The cleft palate risk is attributed 

to increased signaling by Pdgf (a molecule necessary for 

proper palate development [60]) following downregulation 

of miR-140. Indeed, one of the functionally validated targets 

of miR-140 in mouse palatal mesenchymal cells is PDGFRA 

[58, 59]. A linkage has also been revealed between exposure 

to CS, expression of specific miRNAs and TGFß-dependent 

developmental processes [61]. Moreover, significant interac-

tions have been identified between maternal smoking, a

TGFß gene variant, and isolated cleft palate [62]. Taken to-

gether, these data offer support for the notion that exposure 

to CS may be associated with increased cleft palate risk via 
dysregulation of miRNA levels during palatal development.  

Marczylo et al. [63] observed that CS can induce signifi-

cant differential expression of miRNAs in the spermatozoa 

of smokers, compared to that of non-smokers. Out of a total 

of 130 miRNAs found to be expressed in spermatozoa, these 

authors identified 28 that were affected by CS. Many of the 

affected miRNAs were associated with sperm quality and

processes involved in normal embryonic development, such 

as cell differentiation, cell death and cell proliferation, there-

by linking paternal CS exposure to possible reproductive 

defects. Among altered miRNAs, there were several epi-

miRNAs (miRNAs associated with epigenetic modification) 

that target several DNA methyltransferases (DNMTs) and 

Histone deacetylases (HDACs). While similar studies of the 

ovum are not available, it has, nevertheless, been reported

that ovarian development can be severely affected by CS as 

well. Evaluation of ovarian tissues in mice exposed to CS, 

compared to control mice, revealed changes in 152 miRNAs 

[64]. One of the primary targets of these miRNA changes 

appears to be the MAPK signaling pathway, associated with 

cell proliferation, differentiation, apoptosis, survival and 

motility, all of which may contribute to ovarian dysregula-

tion, and possibly, to altered miRNA content of the ovum. 

The examples described above and summarized in Table 1 

indicate the significant CS-induced alterations that miRNAs

exert in a developing embryo. In most of these studies, the 

effects of miRNA on target gene expression should be  

considered speculative unless validated by functional exper-

imental evidence (Table 1). It is also evident that our 

knowledge in this area is limited warranting additional stud-
ies.  

CONCLUSION 

A plethora of reports, focused mainly on adults and can-

cer, indicate that CS-associated miRNAs alter basic devel-

opmental processes, such as cell proliferation, apoptosis, and 

cell differentiation, thereby underscoring the view that em-

bryonic development may be susceptible to alterations in 

miRNAs caused by maternal CS exposure (Fig. 1). Extensive 

lists of miRNAs affected by CS exist in the literature [20,

65] and a computational network associating tobacco com-
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ponents with ‘environment’ and ‘miRNAs’ has identified at 

least 58 miRNAs and 7 diseases [66]. Whether the identifica-

tion of these miRNAs can be extrapolated to embryonic or 

fetal systems in the context of CS exposure remains to be 

clarified. To affect the developing embryo, toxicants present 

in CS should be able to either penetrate the placental barrier, 

like nicotine [67], or influence placental gene expression 

(Fig. 1). miRNAs may also be subjected to spatial or tem-

poral regulation during embryonic/fetal development – i.e., 

they may not all be expressed in an embryonic tissue at the 

time of CS exposure. CS-mediated changes in embryonic 

development could also be indirect. These include poor qual-

ity of miRNAs present in parental germ cells and intergener-

ational passage of affected miRNAs to offsprings. In sum-

mary, more studies are warranted to clearly understand how 

the effects of CS impinge on embryonic development via 

altered miRNA expression. Identifying CS-affected miRNAs 

during embryonic/fetal development will be a critical step in 

identifying dysregulated signaling pathways and the genes 

that regulate them.  
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