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Glucagon-like peptide-1 receptor agonists (GLP-1RAs) were developed as insulinotropic
and anti-hyperglycemic agents for the treatment of type 2 diabetes, but their neurotrophic
and neuroprotective activities have been receiving increasing attention. Myelin plays a key
role in the functional maintenance of the central and peripheral nervous systems, and
recent in vivo and in vitro studies have shed light on the beneficial effects of GLP-1RAs on
the formation and protection of myelin. In this article, we describe the potential efficacy of
GLP-1RAs for the induction of axonal regeneration and remyelination following nerve
lesions and the prevention and alleviation of demyelinating disorders, particularly multiple
sclerosis.
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1 INTRODUCTION

Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted from gut enteroendocrine cells in
response to food intake, and display insulinotropic actions by stimulating specific G-protein linked
GLP-1 receptor (GLP-1R) on the pancreatic β cells. Endogenous GLP-1 is quickly metabolized into
the inactive peptide by dipeptidyl peptidase (DPP)-4, whereas GLP-1R agonists (GLP-1RAs) have a
substantially longer plasma half-life than GLP-1 because of their resistance to DPP-4. Numerous
GLP-1RAs have been developed and utilized in the treatment of type 2 diabetes as injections
(liraglutide, exenatide (exendin-4 (Ex-4)), lixisenatide, semaglutide, etc.) and oral formulations
(semaglutide) (Drucker, 2018). GLP-1Rs are found in not only the pancreas but also the extra-
pancreatic tissues, including the central nervous system (CNS) and peripheral nervous system (PNS),
and most of the agonists can cross the blood-brain barrier; therefore, neurotrophic and
neuroprotective activities of GLP-1RAs have been drawing increasing attention (Harkavyi and
Whitton, 2010). Recent studies have suggested the beneficial effects of GLP-1RAs toward
neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
multiple system atrophy, and amyotrophic lateral sclerosis (ALS) (Li et al., 2012; Bassil et al.,
2017; Zhang et al., 2021; Holscher, 2022). In particular, liraglutide and Ex-4 significantly mitigated
the symptoms and neuropathology of AD and PD in animal models and have provided encouraging
evidence in clinical trials for these diseases (Femminera et al., 2019; Esparza-Salazar et al., 2021;
Vijiaratnam et al., 2021). The neuroprotective effects of liraglutide and Ex-4 on the PNS have also
been documented; these agents facilitated axonal regeneration and functional repair after sciatic
nerve injury and ameliorated oxaliplatin-induced and diabetic peripheral neuropathies in rodent
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models (Himeno et al., 2011; Yamamoto et al., 2013; Fujita et al.,
2015; Ma et al., 2018). Recent clinical studies have suggested their
efficacy in the treatment of diabetic neuropathy independent of
anti-hyperglycemic actions (Wegeberg et al., 2020; Issar et al.,
2021). Together, these findings provide further evidence of the
direct actions of GLP-1RAs on the CNS and PNS; however, the
underlying mechanisms remain largely unclear.

Myelin is the structure that surrounds individual axons and
maintains saltatory conduction. In addition, myelin sheaths play
a pivotal role in the protection of axons from physical stresses and
inflammation. Oligodendrocytes and Schwann cells are myelin-
forming cells in the CNS and PNS, respectively. Adequate
remyelination of the regenerated axons is a prerequisite for
satisfactory functional recovery following peripheral nerve
injury (Sango et al., 2017). Previous in vivo and in vitro
studies suggest that Ex-4 accelerates the process of axonal
regeneration and remyelination (Yamamoto et al., 2013;
Kuyucu et al., 2017; Takaku et al., 2021). In addition,
demyelinating disorders (multiple sclerosis (MS),
Guillain–Barré syndrome, chronic inflammatory demyelinating
polyneuropathy (CIDP), amiodarone-induced neuropathy, etc.)
are intractable and life-threatening, as well as the
neurodegenerative disorders described above. Recent studies
have shed light on the therapeutic potential of liraglutide and
Ex-4 for demyelinating disorders, mainly MS (DellaValle et al.,
2016; Lee et al., 2018; Ammar et al., 2022).

The aim of this review is to characterize GLP-1RAs as
favorable factors for myelin formation and maintenance and
discuss the possibilities of their repositioning for peripheral
nerve injury and demyelinating disorders.

2 GLP-1RAS AS FAVORABLE FACTORS
FOR MYELIN FORMATION AND
MAINTENANCE
2.1 ALS Models
There is increasing evidence that impaired GLP-1 signaling is
associated with the progression of ALS (Shandilya and Mehan,
2021), and potential efficacy of GLP-1RAs for the disease
prevention has been implicated. Li et al. (2012) reported
neuroprotective activities of Ex-4 toward SOD1 (G93A) mice,
a well characterized animal model of familial ALS; Ex-4
administration via subcutaneous osmotic pump (3.5 pM/kg/
min) for 12 weeks attenuated motor neuron death and
myelinated nerve fiber loss in the spinal cord of the mutant
mice. In contrast, a recent study by (Keerie et al., 2021) showed no
significant effects of liraglutide (intraperitoneal injection of 25 or
75 nM/kg/day for 2–6 months) on the disease progression in 2
kinds of ALS model mice, such as SOD1 (G93A) and TDP-43
(Q331K).

2.2 Wolfram Syndrome Model
Wolfram syndrome (WS) is an autosomal recessive
neurodegenerative disorder characterized by childhood-onset
diabetes mellitus and various neurological manifestations,
including progressive optic nerve atrophy, sensorineural

hearing loss and cognitive impairment (Kabanovski et al.,
2022). Seppa et al. (2021) reported that subcutaneous
liraglutide injection (0.4 mg/kg/day) on male WS model rats
(Wfs1(−/−)) for 3.5 months delayed the progression of optic
nerve atrophy and induced remyelination. Because optic nerve
fiber degeneration and disruption of myelin sheath integrity
appears to be a cause of visual acuity loss in WS, the
neuroprotective and myelin restorative activities of liraglutide
might be helpful for the maintenance of visual function in WS
patients.

2.3 Nerve Injury Models
Yamamoto et al. (2013) observed that repeated intraperitoneal
injections of Ex-4 (2.5 μg/rat/day) for 14 days was efficacious for
the recovery of motor function (sciatic nerve index),
electrophysiological data (distal latency), and light and
electron microscopic findings (myelinated nerve fiber density
and myelin thickness) in rats following sciatic nerve crush injury.
Because GLP-1R immunoreactivity at Schwann cells was
augmented by Ex-4 (Liu et al., 2011), it seems plausible that
Ex-4 promotes axonal regeneration through stimulating Schwann
cells mediated by GLP-1R. Kuyucu et al. (2017) examined long-
term (12 weeks) effects of subcutaneous Ex-4 injections (10 μg/
rat/day) on rats following sciatic nerve transection. Ex-4
administration improved muscle strength of hindlimbs,
electrophysiological data (latency and amplitude), and nerve
fiber density; however, its effects on myelinated nerve fiber
density and myelin thickness were not documented. These
findings imply promising effects of Ex-4 and other GLP-1RAs
on remyelination of the regenerated axons following nerve injury,
although the precise actionmechanisms remain to be determined.

2.4 Diabetic Neuropathy Models
There is enough evidence that the main pathology of diabetic
neuropathy is axonal degeneration, which precedes
demyelination observed in patients with the disease at
advanced stages (Niimi et al., 2021). However, Schwann cell
apoptosis and de-differentiation under diabetic conditions
might contribute to myelin thinning and derangement (Hao
et al., 2015; Naruse, 2019). Several studies have been devoted
to the ameliorating effects of GLP-1RAs on reduced myelinated
nerve fibers and/or Schwann cell abnormalities in streptozotocin
(STZ)-induced diabetic rats. Intraperitoneal injections of Ex-4
(1 nmol/kg/day) for 24 weeks restored myelinated fiber size and
prevented Schwann cell apoptosis in STZ-diabetic rats (Liu et al.,
2011). Similarly, intraperitoneal injections of liraglutide
(200 μg/kg/day) for 8 weeks improved the delayed motor and
sensory nerve conduction velocities and reduced myelinated
nerve fiber density in STZ-diabetic rats (Ma et al., 2018).
Furthermore, treatment of STZ-diabetic rats with a new
synthetic arginine-rich Ex-4 (Peptide D, 0.1–10 μg/kg/day) for
80 days ameliorated neuropathic pain and reduced myelinated
nerve fiber diameters and myelin basic protein (MBP) expression
in sciatic nerves (Shekunova et al., 2020). These findings suggest
the favorable effects of GLP-1RAs on the maintenance of myelin
structure and function in the diabetic neuropathy model. Because
neither Ex-4 nor liraglutide normalized the blood glucose levels of
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diabetic rats, these agents are likely to exert myelin-protective
activities through direct actions on neurons and Schwann cells
rather than anti-hyperglycemic actions.

2.5 Neuron–Schwann Cell Co-Culture
Models
Co-culture systems of neurons and Schwann cells have enabled us
to generate myelin structures nearly equivalent to those in living
bodies, thereby being recognized as useful tools to investigate
neuron-Schwann cell interactions (Ogata et al., 2004).
Immortalized adult Fischer rat Schwann cells 1 (IFRS1)
established in our laboratory display distinct Schwann cell

phenotypes, including fundamental ability to myelinate
neurites in co-culture with adult rat dorsal root ganglion
(DRG) neurons (Sango et al., 2011), nerve growth factor-
primed PC12 cells (Sango et al., 2012), and NSC-34 motor
neuron-like cells (Takaku et al., 2018). As compared with the
previous co-culture models using embryonic and/or neonatal
animals, our DRG neuron-IFRS1 co-culture system has the
following advantages: 1) Both neurons and Schwann cells are
derived from adult rats and retain the biological properties of the
mature peripheral nervous system. 2) Immortalized Schwann
cells can be stably and effectively utilized in co-culture. In our
recent study, Ex-4 applied to culture medium (100 nM)
accelerated myelination process in the co-culture system with

FIGURE 1 |Myelination-inducible activities of GLP-1RAsmediated by PI3K/AKT signaling pathway. (A) Involvement of PI3K/AKT signaling pathway in the favorable
effects of Ex-4 on DRG neurons, IFRS1 Schwann cells, and their co-culture system in the authors’ studies (Tsukamoto et al., Histochem. Cell Biol. 2015; Takaku et al.,
Int. J. Mol. Sci. 2021). (B) Downstream molecules of GLP-1R-PI3K/AKT pathway and their potential roles in myelination. CREB; cAMP response element-binding
protein, FoxO1/O3; Forkhead boxO1/O3, GSK-3β; glycogen synthase 3β, mTOR;mammalian target of rapamycin (Modified from Athauda & Foltynie, Drug Discov.
Today 2016).
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activation of serine/threonine-specific protein kinase AKT
(Takaku et al., 2021). Ex-4 enhanced the movement of IFRS1
cells toward the neurites and upregulated the protein expression
of peripheral myelin protein 22 (PMP22) andmyelin protein zero
(MPZ). The existence of GLP-1R in both DRG neurons and
IFRS1 Schwann cells was confirmed by knock-out validated anti-
GLP-1R antibody (Takaku et al., 2021), and Ex-4 promoted
neurite outgrowth of DRG neurons (Himeno et al., 2011;
Tsukamoto et al., 2015) and survival/proliferation and
migration of Schwann cells (Pan et al., 2020; Takaku et al.,
2021). These findings suggest that Ex-4 stimulates GLP-1R in
both DRG neurons and Schwann cells to promote myelination.
Establishment of GLP-1R-deleted IFRS1 Schwann cells (Takaku
et al., in preparation) will further confirm this hypothesis.
Because Ex-4 induced AKT phosphorylation in the co-culture
and its beneficial effects on DRG neurons and IFRS1 cells were
attenuated by phosphatidyl inositol-3′-phosphate-kinase (PI3K)
inhibitor LY294002, the myelination-inducible activities of Ex-4
may be attributable to the activation of PI3K/AKT signaling
pathway in both cells (Figure 1A). Although the stimulation
of GLP-1R has been shown to activate PI3K/AKT pathway in the
PNS (Tsuboi et al., 2016; O’Brien et al., 2019) and this pathway
appears to be crucial for initiating myelination (Ogata et al.,
2004), which downstream molecules and pathways are more
involved in the Ex-4-induced myelination remain to be
proved. The neuroprotective activities of GLP-1RAs against
PD can be, at least partially, mediated by PI3K/AKT pathway
that modulates several downstream molecules, such as cAMP
response element-binding protein (CREB), glycogen synthase 3β
(GSK-3β), Forkhead box O1/O3 (FoxO1/O3), and mammalian
target of rapamycin (mTOR) (Athauda and Foltynie, 2016)
(Figure 1B). Among these molecules, activation of CREB and
inhibition of GSK-3β and FoxO1/O3 are likely to participate in
the neuroprotective activities of insulin, IGF-1, and GLP-1
toward DRG neurons (Leinninger et al., 2004; Tsuboi et al.,
2016). GSK-3β inhibition is also involved in Schwann cell
differentiation and myelination (Ogata et al., 2004). By using
insulin receptor-deleted Schwann cells, Hackett et al. (2020)
indicated a pivotal role of PI3K/AKT/mTOR signaling in
myelination. Besides these molecules, RhoA inhibition through
PI3K/AKT pathway was shown to stimulate survival and neurite
outgrowth of DRG neurons (Tsukamoto et al., 2015) and
proliferation of Schwann cells (Tan et al., 2018).

Although there have been no reports regarding the efficacy of
GLP-1RA for oligodendrocyte function in vitro, growing evidence
with Schwann cells may be applicable to CNS myelination in the
future.

2.6 Culture of Olfactory Ensheathing Cells
(OECs)
OECs are the glial cells of the primary olfactory system, and its
transplantation is a promising strategy for functional repair following
spinal cord and peripheral nerve injuries (Chou et al., 2014). Tseng
et al. (2021) observed stimulatory effects of liraglutide (100 nM) on the
migration of primary cultured and lined OECs with activation of the
extracellular signal-regulated kinases (ERK) pathway and modulation

of extracellular matrix proteins (upregulation of laminin-1 and
downregulation of type IV collagen). These findings imply the
potential efficacy of liraglutide and other GLP-1RAs for improving
OECs transplantation outcomes, including remyelination.

3 POTENTIAL EFFICACY OF GLP-1RAS
TOWARD DEMYELINATING DISORDERS

3.1 Multiple Sclerosis (MS)
There are more than 2 million patients with MS worldwide. Like
AD and PD, MS can be categorized into neurodegenerative
disorders in the CNS; however, it has distinct features of
progressive immune-mediated neuro-inflammatory evens
resulting in multiple demyelinating lesions (Yamasaki and Kira
2019). Although tremendous efforts have been made on the
achievement of myelin repair and neuroprotection in MS, its
complex pathogenesis obstacles satisfactory outcomes for the
patients with progressive phase (Sandi et al., 2022).

It is recognized that immune cells play a major pathological role
in MS; they disrupt myelinated axons and evoke demyelination and
oligodendrocyte cell death. To better understand the pathology of
demyelination in MS, several animal models have been established;
in particular, experimental autoimmune encephalomyelitis (EAE),
and cuprizone-induced demyelination models are widely used
(Bando, 2019). The potential efficacy of GLP-1RAs toward MS
has been documented in recent studies with EAE models, but their
activities are mostly restricted to the modulation of immune
reactions. For instance, intraperitoneal Ex-4 injection (5 μg/kg/
day) for 13 days to EAE mice reduced the clinical symptoms,
histopathological sequelae (demyelination, astrogliosis, and
microglial activation), and mRNA expression of proinflammatory
cytokines (IL-1β, IL-6, IL-17, and TNF-α) (Lee et al., 2018). Likewise,
subcutaneous dulaglutide injection (180 μg/kg/twice per week) to
EAE mice attenuated the clinical manifestations and
histopathological outcomes (lymphocyte infiltration, vacuolar
degeneration, and neuronal demyelination), as well as decreased
incidences of encephalitogenic Th1/Th17 cells and Th1 granulocyte-
macrophage-colony-stimulating factor expression in the CNS
(Chiou et al., 2019). Therapeutic potential of liraglutide and a
novel GLP-1RA, NLY01, in EAE mice has been documented
(Gharagozloo et al., 2021; Song et al., 2022), although their action
mechanisms seem to be like those of Ex-4 and dulaglutide described
above. It is of interest to note that subcutaneous liraglutide injection
(200 μg/kg/twice-daily) to EAE rats for 2 weeks reduced the clinical
debut and severity and increased the mitochondrial manganese
superoxide dismutase (MnSOD) in the brain (DellaValle et al.,
2016). These findings imply the capacity of GLP-1RAs against
oxidative stress. In a recent study (Ammar et al., 2022),
intraperitoneal injection of liraglutide (25 nmol/kg/day) to
cuprizone-induced MS model mice for 4 weeks improved the
behavioral profiles and remyelination process through stimulating
oligodendrocyte progenitor cell differentiation. To our knowledge,
this is the first study to introduce GLP-1RAs as oligodendrocyte-
protective molecules. Because the expression of GLP-1R in myelin-
forming oligodendrocytes has been implicated (Smith et al., 2022)
and the stimulatory effects of GLP-1RAs on Schwann cells and
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OECs have been delineated (Pan et al., 2020; Takaku et al., 2021;
Tseng et al., 2021), it seems plausible that the agents can directly act
on oligodendrocytes and their progenitor cells to promote
remyelination under MS conditions.

3.2 Other Demyelinating Disorders
As far as we searched, no studies have ever tried to investigate the
potential efficacy of GLP-1RAs for demyelinating disorders other
than MS (Guillain–Barré syndrome, CIDP, combined central,
and peripheral demyelination, etc.). However, accumulating
evidence regarding their utility toward MS might be diverted
to those diseases. The dual effects of GLP-1RAs, such as
modulatory actions to immune cells (lymphocytes, microglia,
astrocytes, etc) and trophic and protective activities to
oligodendrocytes and Schwann cells, would be variable for the
strategies of myelin protection and repair in the CNS and PNS.
Immune checkpoint inhibitors (ICIs), a novel class of
antineoplastic remedies, have shown clinical efficacy toward a
variety of intractable tumors. However, ICIs can evoke
demyelinating disorders in the CNS (Oliveira et al., 2020) and
PNS (Okada et al., 2021) as neurological immune-related adverse
events (nirAE). Although demyelination induced by ICIs should
be promptly diagnosed and treated according to the guideline for
each specific disease (e.g., MS), prescription of GLP-1RAs might
be efficacious for the nirAE as a concomitant therapy with
immunosuppressors (corticosteroids, intravenous immune
globulin, plasmapheresis, etc) (Rajendram et al., 2021).

4 CONCLUSION

We briefly summarized the recent progress regarding the
beneficial effects GLP-1RAs on myelin formation and
maintenance and their potential efficacy toward MS and other

demyelinating disorders. The underlying action mechanisms
remain largely obscure, and no clinical trials of GLP-1RAs
toward axonal injury or MS have been conducted; however,
the broad distribution of GLP-1R in the nervous tissue and
diverse biological activities of GLP-1RAs (Drucker, 2018;
Holscher, 2022) would enable their repositioning for those
disorders. Considering the utility and safety of GLP-1RAs as
existing anti-diabetic remedies (Gilbert et al., 2020) and the
advancement of clinical trials of Ex-4 toward PD (Vijiaratnam
et al., 2021), it does not seem exaggerated to describe them as
promising agents for myelin regeneration and repair.
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