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Extracellular neuritic plaques, composed of aggregated amyloid-β (Aβ) peptides, are
one of the major histopathological hallmarks of Alzheimer’s disease (AD), a progressive,
irreversible neurodegenerative disorder and the most common cause of dementia in
the elderly. One of the most prominent risk factor for sporadic AD, carrying one or
two aberrant copies of the apolipoprotein E (ApoE) ε4 alleles, closely links AD to
lipids. Further, several lipid classes and fatty acids have been reported to be changed
in the brain of AD-affected individuals. Interestingly, the observed lipid changes in
the brain seem not only to be a consequence of the disease but also modulate Aβ

generation. In line with these observations, protective lipids being able to decrease
Aβ generation and also potential negative lipids in respect to AD were identified.
Mechanistically, Aβ peptides are generated by sequential proteolytic processing of the
amyloid precursor protein (APP) by β- and γ-secretase. The α-secretase appears to
compete with β-secretase for the initial cleavage of APP, preventing Aβ production. All
APP-cleaving secretases as well as APP are transmembrane proteins, further illustrating
the impact of lipids on Aβ generation. Beside the pathological impact of Aβ, accumulating
evidence suggests that Aβ and the APP intracellular domain (AICD) play an important role
in regulating lipid homeostasis, either by direct effects or by affecting gene expression or
protein stability of enzymes involved in the de novo synthesis of different lipid classes.
This review summarizes the current literature addressing the complex bidirectional link
between lipids and AD and APP processing including lipid alterations found in AD
post mortem brains, lipids that alter APP processing and the physiological functions
of Aβ and AICD in the regulation of several lipid metabolism pathways.
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ALZHEIMER’S DISEASE

Worldwide currently there are more than 46 million people suffering from dementia and the
number of affected individuals is estimated to double every 20 years. Alzheimer’s disease (AD) is a
devastating neurodegenerative disorder, which is themost common cause of dementia in the elderly
population. Clinically AD is characterized by a progressive loss of cognitive brain functions leading
to memory dysfunction, impaired judgment, disorientation and finally to a total loss of memory
and personality (Plassman et al., 2007; World Alzheimer Report, 2015). AD-patients typically die
in average within 3–10 years after diagnosis due to secondary disorders (Zanetti et al., 2009). The
clinical symptoms of AD might be caused by an extensive loss of synapses and neurons leading
to a strong hippocampal and cortical atrophy (Scheff and Price, 1993; Gómez-Isla et al., 1996;
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Mouton et al., 1998; Dickerson et al., 2001). The characteristic
neuropathological hallmarks of the disease are intracellular
neurofibrillary tangles (NFTs) and extracellular localized
amyloid plaques. While the NFTs are composed of the
microtubuli-associated protein tau in a hyperphosphorylated
state (Grundke-Iqbal et al., 1986a,b), the amyloid plaques are
mainly built up of amyloid-β (Aβ) peptides. Aβ-peptides are
hydrophobic, 38–43 amino acid long products generated by
the sequential proteolytic processing of the amyloid precursor
protein (APP; Glenner and Wong, 1984; Masters et al., 1985;
Kang et al., 1987). The significant cerebral accumulation
of Aβ, starting several years prior to the first symptoms, is
respected to trigger the disease process (Glenner and Wong,
1984; Glenner, 1989; Hardy and Higgins, 1992; Hardy and
Selkoe, 2002). Especially the accumulation of Aβ42 (indicating
42 amino acids), which is the major Aβ species found in neuritic
plaques, is considered to initiate AD progression (Iwatsubo
et al., 1994; Tamaoka et al., 1995). Due to the additional
hydrophobic amino acids isoleucine and alanine Aβ42 has a
higher tendency to aggregate compared to the more prevalent
Aβ40 (indicating 40 amino acids; Jarrett et al., 1993). Increasing
evidence suggests small oligomers of Aβ to represent the
most toxic form of the peptide (Lambert et al., 1998; Lesné
et al., 2006; Shankar et al., 2008). Several mechanisms are
discussed to contribute to Aβ neurotoxicity, among them
the induction of inflammatory processes, a disruption of
calcium homeostasis and membrane integrity, cholinergic
and mitochondrial dysfunction and increased oxidative stress
(Grimm and Hartmann, 2012).

There are two forms of AD, the more common sporadic
AD with a disease onset after the age of 65 (late onset AD,
LOAD) and the genetically based form (familial AD, FAD)
with an earlier manifestation of symptoms. The two variants
are basically distinguishable from each other in clinical and
neuropathological terms. Less than 5% of all AD-cases belong
to FAD which is caused by mutations in the genes encoding
for APP and the presenilins (PS) 1 and 2, proteins involved
in proteolytic APP-processing (Levy et al., 1990; Goedert
et al., 1994; Levy-Lahad et al., 1995; Sherrington et al., 1995;
Tanzi, 2012). Besides aging, hypercholesterolemia, hypertension,
atherosclerosis, homocysteinemia, diabetes mellitus and obesity
are discussed as non-genetic risk factors for LOAD (Barnes
and Yaffe, 2011; Polidori et al., 2012). The ε4 allele of the
apolipoprotein E (ApoE) has been identified as the most
important genetic risk factor for the sporadic form of the disease
(Corder et al., 1993; Strittmatter et al., 1993).

As already mentioned, Aβ is generated by proteolytic
processing of the precursor protein APP. APP is a ubiquitously
expressed type I-transmembrane protein cycling between the
plasma membrane and acidic intracellular compartments (Haass
et al., 1992; Koo and Squazzo, 1994; Thinakaran and Koo, 2008).
It consists of a large ectodomain, a single transmembrane domain
and a short intracellular part. APP belongs to an evolutionary
conserved protein family including the APP-like proteins 1 and
2 (APLP1, APLP2) in mammals. APP can be sequentially cleaved
via two different pathways (Haass et al., 1992; Thinakaran and
Koo, 2008; De Strooper, 2010; Figure 1). In the predominant

non-amyloidogenic processing pathway the generation of Aβ

is precluded. It is initiated by the α-secretase dependent
cleavage of APP within the Aβ-domain shedding off the soluble
ectodomain sAPPα and generating the membrane-anchored
C-terminal fragment (CTF) C83 (indicating 83 amino acids).
Members of the ADAM (a disintegrin and metalloprotease)
protein family have been identified as catalytically active
α-secretases with ADAM10 representing the physiologically
relevant, constitutive α-secretase in neurons (Lammich et al.,
1999; Kuhn et al., 2010). In contrast, the aspartyl protease β-site
APP cleaving enzyme 1 (BACE1) initiates the amyloidogenic
APP-processing pathway generating the membrane-spanning
CTF C99 (indicating 99 amino acids) and releasing sAPPβ

into the extracellular space (Vassar et al., 1999). The two
alternative pathways differ in their subcellular localization:
due to the acidic pH-optimum of BACE1 the amyloidogenic
APP-processing is localized in acidic intracellular compartments,
while non-amyloidogenic APP-processing mainly takes place
at the cell surface (Parvathy et al., 1999; Grbovic et al., 2003;
Carey et al., 2005). In both pathways the CTFs are subsequently
processed by the γ-secretase complex, which consists of the
proteins PS1 or PS2 as the catalytic core, Aph1 (anterior pharynx
defective 1) a or b, PEN2 (presenilin enhancer 2) and nicastrin
(Baulac et al., 2003; Edbauer et al., 2003; Kimberly et al., 2003).
The γ-secretase possesses the unusual property to cleave its
substrates within their transmembrane domains after shedding
off the ectodomain, a process called regulated intramembrane
proteolysis (RIP; Brown et al., 2000; Lichtenthaler et al., 2011).
This catalytic activity leads to the generation of the non-toxic
peptide p3 out of C83 and of Aβ out of C99 combined
with the release of APP intracellular domain (AICD) into
the cytosol in both processing pathways (Passer et al., 2000;
Kakuda et al., 2006; Grimm and Hartmann, 2012). Due to
multiple γ-secretase cleavage sites within the transmembrane
domain of APP, the generated Aβ- and AICD-peptides can
vary in length (Funamoto et al., 2004; Qi-Takahara et al.,
2005; Kakuda et al., 2006). AICD is reported to translocate
to the nucleus and to regulate the transcription of target
genes, among them the genes encoding for APP, BACE1,
the Aβ-degrading protease neprilysin (NEP) as well as several
enzymes involved in lipid metabolism (Cao and Südhof, 2001;
von Rotz et al., 2004; Grimm et al., 2011b,d, 2012c, 2013,
2015a).

LINK BETWEEN LIPIDS AND AD

A link between AD pathology and lipids was already observed
more than a century ago by Alois Alzheimer, who described a
higher occurrence of ‘‘adipose inclusions’’ or ‘‘lipoid granules’’
in post mortem AD-brain tissue as a third pathological hallmark
of the disease (Foley, 2010). In the meantime the content
of several lipid classes and fatty acids has been found to be
altered in the brain of AD-patients. A physiological function
of Aβ and AICD in the regulation of several lipid metabolism
pathways has been reported, possibly explaining the altered
cerebral content of some lipid species in AD-affected brain
tissue. Inversely, APP-processing is strongly influenced by the
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FIGURE 1 | Overview of the two alternative amyloid precursor protein (APP) processing pathways, which are highly influenced by lipid homeostasis.
Amyloidogenic pathway: APP is first cleaved by the β-secretase β-site APP cleaving enzyme 1 (BACE1) resulting in the release of sAPPβ and the generation of C99,
which is further processed by the γ-secretase complex to amyloid-β (Aβ)-peptides and the APP intracellular domain (AICD). The neurotoxic Aβ-peptides can be
cleared by different mechanisms including enzymatic degradation. The intracellular AICD-domain is known to translocate into the nucleus and to regulate the
transcription of several target genes. Non-amyloidogenic pathway: APP is cleaved by the α-secretases belonging to the ADAM protein family within the Aβ-domain.
This results in the release of sAPPα into the extracellular space and the formation of C83. C83 is further processed by the γ-secretase complex resulting in the
release of the non-toxic peptide p3 into the extracellular space and of AICD into the cytosol. In contrast to the AICD generated by amyloidogenic APP processing the
AICD derived from α-/γ-secretase-dependent APP processing is rapidly degraded in the cytosol and transcriptionally inactive.

surrounding lipid environment indicating a bidirectional link
between APP-proteolysis and lipid metabolism (Grimm et al.,
2012b; Mett et al., 2014).

The link between lipid homeostasis and AD-pathology is
strengthened by the identification of the ApoEε4-allele as the
most important genetic risk factor for LOAD. ApoE is a
lipoprotein involved in the transport of cholesterol and other
lipids in the central nervous system (CNS). In humans there are
three different ApoEε alleles encoding for the isoforms ApoEε2,
ApoEε3 and ApoEε4 (Weisgraber et al., 1981; Mahley et al.,
1996; Holtzman et al., 2012). The ApoEε4-allele is associated
with an increased AD-risk, earlier disease onset and enhanced
cerebral plaque load (Corder et al., 1993; Kuusisto et al., 1994;
Breitner et al., 1999; Tiraboschi et al., 2004). In contrast, ApoEε2-
carriers have a reduced risk of developing AD (Corder et al.,
1994). These associations might be explained by an isoform-
dependent binding of ApoEε (ε2 > ε3 > ε4) to Aβ-peptides
influencing the clearance and aggregation of the peptide (Ma
et al., 1994; Deane et al., 2008; Castellano et al., 2011; Holtzman
et al., 2012).

A strong impact of the surrounding lipid bilayer on
APP-processing is given by the fact that APP as well as all
secretases are transmembrane proteins and that γ-secretase
dependent APP cleavage even takes place in the hydrophobic
membrane environment. For example, the exact position of
γ-secretase cleavage and hence the length of the generated
Aβ-peptides depends on membrane thickness (Grziwa et al.,
2003; Winkler et al., 2012). In addition, the membrane fluidity
influences APP-processing. Increased membrane fluidity
seems to stimulate the non-amyloidogenic APP-processing
by reducing APP internalization (Kojro et al., 2001). In this
context it is important to note that APP-processing is also
influenced by the subcompartmentalization of the membrane.
Lipid raft microdomains are compact, dynamic assemblies
of membrane proteins enriched in cholesterol, gangliosides
and other sphingolipids. They are detergent-resistent and
strongly differ in their lipid composition from the surrounding
non-raft domains. Implications of lipid rafts in the intracellular
protein trafficking, protein-lipid and protein-protein
interactions as well as transmembrane signaling have been
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reported (Brown and Rose, 1992; Lingwood and Simons, 2010).
The generation of Aβ has been shown to mainly take place in
lipid rafts due to the co-localization of APP with BACE1 and
the γ-secretase complex within these membrane microdomains
(Lee et al., 1998; Riddell et al., 2001; Ehehalt et al., 2003; Vetrivel
et al., 2004). In contrast, the non-amyloidogenic APP-proteolysis
seems to occur predominantly in non-raft regions (Ehehalt
et al., 2003; Harris et al., 2009). All these details indicate that a
modulation of the membrane lipid composition might provide
the opportunity of influencing Aβ-generation.

In the following sections of this article, the impact of several
lipids and fatty acids on Aβ-associated AD-pathology is reviewed
as well as the regulation of the correspondingmetabolic pathways
by APP-processing.

THE IMPACT OF CHOLESTEROL ON AD

The brain is the most cholesterol-rich organ in the body
(23 mg/g), it contains 23% of the total body sterol while only
accounting for 2.1% of the total body weight (Dietschy and
Turley, 2004).Within brain tissue cholesterol is mainly present in
myelin sheaths and in themembranes of glial cells and neurons in
its unesterified form. Due to the limited transport of cholesterol
across the blood-brain barrier the cerebral cholesterol level is
mainly dependent on de novo synthesis by oligodendrocytes,
astrocytes and to a lesser extent by neurons. The conversion
of 3-hydroxy-3-methylglutaryl-CoA to mevalonate catalyzed by
the hydroxymethylglutaryl-CoA reductase (HMGCR), which is
inhibited by statins, is the rate-controlling step in cholesterol
biosynthesis (Martins et al., 2009; Di Paolo and Kim, 2011). The
first evidence for a link betweenAD-pathogenesis and cholesterol
metabolism was provided in 1994 by the observation that dietary
cholesterol increases Aβ-production in rabbits (Sparks et al.,
1994). Today there are many lines of evidence arguing for
a connection between the pathology of AD and cholesterol
homeostasis which are summarized below.

In several epidemiological studies elevated serum/plasma
cholesterol contents have been identified as a risk factor for
developing AD. Especially high serum cholesterol level in midlife
are associated with a higher AD-risk (Pappolla et al., 2003;
Solomon et al., 2009; Matsuzaki et al., 2011; Meng et al.,
2014). Additionally, enhanced level of low-density lipoprotein
(LDL) cholesterol and reduced level of high-density lipoprotein
(HDL) cholesterol in serum correlate with the cerebral amyloid
deposition in living human beings (Reed et al., 2014). In line,
in human post mortem AD-brains cholesterol was found to be
elevated and highly enriched in amyloid plaques (Cutler et al.,
2004; Xiong et al., 2008; Panchal et al., 2010).

Most cell culture studies revealed that increasing cellular
cholesterol level lead to an enhanced Aβ production whereas
a depletion or reduction of cholesterol by e.g., cyclodextrin or
statins shows the opposite effect (Simons et al., 1998; Fassbender
et al., 2001; Maulik et al., 2013). The Aβ increasing property of
cholesterol is based on a direct activation of β- and γ-secretase
proteolytic activity (Kalvodova et al., 2005; Grimm et al.,
2008; Osenkowski et al., 2008). Cholesterol is enriched in
lipid raft membrane microdomains, in which amyloidogenic

APP-processing mainly takes place. Thus modulating cellular
cholesterol content inevitably affects membrane structure,
membrane fluidity as well as cellular processes associated with
lipid raft microdomains. Cholesterol depletion leads to the
disruption of lipid rafts and therefore to a reduced association
of APP, BACE1 and the components of the γ-secretase complex
to lipid raft membrane microdomains, resulting in decreased
amyloidogenic APP processing. Vice versa, an increase of
cellular cholesterol leads to a higher lipid raft content of the
membranes and hence to Aβ-overproduction (Simons et al.,
1998; Hao et al., 2001; Hicks et al., 2012). High membrane
cholesterol levels additionally promote APP endocytosis
leading to enhanced Aβ-production in acidic intracellular
compartments (Cossec et al., 2010). Conversely, APP is
primarily localized at the cell surface in cholesterol-depleted cells
leading to increased α-secretase-dependent non-amyloidogenic
APP processing (Kojro et al., 2001). Beside the cholesterol-
mediated effects on APP-proteolytic processing, cholesterol
has been shown to promote Aβ-aggregation and -toxicity
(Schneider et al., 2006; Ferrera et al., 2008; Abramov et al.,
2011).

A strong correlation between hypercholesterolemia and
enhanced Aβ level has also been observed in several animal
models (Sparks et al., 1994; Refolo et al., 2000; Maulik
et al., 2013). Inversely, a reduction of accumulated Aβ-peptides
along with improved behavioral memory was achieved in
animalmodels after administration of cholesterol-lowering drugs
including statins (Fassbender et al., 2001; Refolo et al., 2001;
Kurata et al., 2012). It should be noted, that there are also a few
studies in which statins had no or oppositional effects on the
cerebral Aβ-content in vivo (Park et al., 2003; Cibickova et al.,
2009).

The impact of statins on AD has also been analyzed in
observational studies and randomized controlled trials leading
to inhomogeneous results. Statin intake is associated with a
reduced incidence of AD or dementia in general in most, but
not all of these studies (Wolozin et al., 2000, 2007; Rea et al.,
2005; Arvanitakis et al., 2008; Haag et al., 2009). Especially the
reduction of serum cholesterol level by the intake of statins in
midlife might have a preventive effect towards the development
of AD (Kivipelto et al., 2002; Pappolla et al., 2003; Shinohara
et al., 2014). In strong contrast, most clinical trials failed to
observe any benefit of statins in individuals already suffering
from AD (Feldman et al., 2010; Sano et al., 2011; McGuinness
et al., 2014), indicating cholesterol-lowering drugs to have rather
a protective than a therapeutic potential in respect to AD.

Beside the described influence of cholesterol on APP-
proteolysis, there is also an impact of APP-processing on
cholesterol homeostasis. APP/APLP2- and PS1/PS2-deficient
fibroblasts have a significantly increased cellular cholesterol
content, which can be reversed by the supplementation of
Aβ40-peptides. In line with this, enhanced cerebral cholesterol
concentrations were found in APP- and PS-deficient mice
(Grimm et al., 2005; Umeda et al., 2010). Analysis of the
underlying mechanisms revealed that Aβ40 reduces cholesterol
de novo synthesis by inhibiting HMGCR activity (Grimm et al.,
2005).
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Summary
The existence of a regulatory feedback cycle, in which
Aβ-production is stimulated by cholesterol while cholesterol
de novo synthesis is inhibited by high cellular Aβ40-
concentrations is indicated.

Future Directions
The heterogeneous results of studies analyzing the impact of
statins on the incidence of AD denote the existence of responders
and non-responders. For the future it will be important to find
biomarkes to identify patients that might profit from statins.

THE IMPACT OF DOCOSAHEXAENOIC
ACID (DHA) ON AD

Docosahexaenoic acid (DHA, 22:6) is a polyunsaturated fatty
acid (PUFA) naturally occurring in high amounts in marine
food, especially in fish oil (Mann et al., 2010). It accounts
for 30%–40% of all esterified fatty acids in neuronal plasma
membrane phospholipids and for 8% of the brain dry weight,
thus belonging together with α-linolenic acid (ALA, 18:3) and
eicosapentaenoic acid (EPA, 20:5) to themost importantω3-fatty
acids in the CNS (Lauritzen et al., 2001; Muskiet et al., 2006).
As endogenous DHA-biosynthesis is highly limited in humans,
the main part of this fatty acid is provided by dietary intake
(Pawlosky et al., 2001). DHA is efficiently transported across the
blood brain barrier (Ouellet et al., 2009; Nguyen et al., 2014) and
rapidly incorporates into phospholipids of cellular membranes
leading to increased membrane fluidity (Horrocks and Farooqui,
2004; Yang et al., 2011).

The DHA content is reported to be reduced in the
serum/plasma of AD-patients as well as in certain regions of
post mortem AD-brains (Söderberg et al., 1991; Conquer et al.,
2000; Tully et al., 2003). Because of its six double-bonds DHA
is very susceptible to lipid-peroxidation resulting in oxidative
stress known to be involved in AD pathogenesis (Smith et al.,
1994; Yatin et al., 1998; Fam et al., 2002; Cai et al., 2011).
Indeed, the levels of PUFA oxidation products are elevated in
AD-affected brains, indicating the reduced DHA content in these
tissues to be caused by increased oxidative damage (Sayre et al.,
1997; Markesbery and Lovell, 1998; Montine and Morrow, 2005;
Grimm et al., 2016a).

Several epidemiological trials found the dietary intake of DHA
or higher DHA serum/plasma levels to be associated with a
reduced risk of developing AD indicating a potential of DHA
in AD-prevention (Kalmijn et al., 1997; Barberger-Gateau et al.,
2002; Morris et al., 2003b). However, other studies failed to find
an association between PUFAs and AD-risk (Engelhart et al.,
2002; Kröger et al., 2009; Jicha and Markesbery, 2010; Mett et al.,
2014).

We and others analyzed the impact of DHA on
APP-processing revealing the fatty acid to reduce Aβ-levels
via pleiotropic mechanisms. DHA reduces β- and γ-secretase
activity and stimulates α-secretase-dependent APP-cleavage. In
addition to direct effects, the activities of γ- and β-secretase are
reduced by DHA due to a PS1-displacement out of lipid rafts and
a reduced BACE1 internalization. The stimulated α-secretase

activity in presence of DHA is based on the enhanced gene
expression and protein stability of ADAM17. Altogether these
effects lead to a shift from amyloidogenic to non-amyloidogenic
APP-processing and thus to reduced total Aβ-level. DHA
additionally has cholesterol-lowering effects further inhibiting
Aβ-production. It reduces cholesterol de novo synthesis via
inhibition of HMGCR and disturbs lipid raft integrity by
shifting cholesterol out of these membrane microdomains
(Hashimoto et al., 2005a; Stillwell et al., 2005; Grimm et al.,
2011c). Beside the described effects on APP-processing an
impact of DHA on Aβ-degradation and -aggregation has
also been reported. We recently observed a highly enhanced
insulin-degrading enzyme (IDE)-dependent Aβ-degradation in
neuroblastoma cells after the supplementation of DHA- and
EPA-containing phosphatidylcholine (PC; Grimm et al., 2016b).
Others reported an increased microglial phagocytosis of Aβ as
well as a reduction of Aβ-fibrillation and Aβ-induced toxicity
in the presence of DHA (Hossain et al., 2009; Hjorth et al.,
2013).

A protective effect of dietary DHA with regard to cerebral
Aβ-level and amyloid plaque load could be further confirmed
in vivo in several animal models (Lim et al., 2005; Green
et al., 2007; Perez et al., 2010). In line with this, higher
cognitive performances were observed in AD-animal models
after DHA supplementation (Hashimoto et al., 2002, 2005b;
Calon et al., 2004). However, others failed to find any beneficial
effect of DHA in AD transgenic mice (Arendash et al.,
2007).

A possible therapeutic use of DHA regarding AD has
been investigated in several clinical trials showing inconsistent
results. Some studies revealed a beneficial effect of daily DHA
treatment in patients with very mild cognitive dysfunctions
(Freund-Levi et al., 2006; Kotani et al., 2006; Chiu et al.,
2008). Others did not observe any influence of DHA on
AD-biomarkers and cognitive decline in AD patients (Freund-
Levi et al., 2009; Quinn et al., 2010). It should be mentioned,
that oxidized DHA species and the lipid-peroxidation products
of PUFAs are able to increase amyloidogenic APP-processing
and hence Aβ-generation. In a recent study we demonstrated,
that only 1% oxidized DHA reverts the positives effects of
DHA on Aβ-production indicating that PUFAs have to be
prevented from oxidation in nutritional approaches (Grimm
et al., 2016a). In such approaches DHA often is combined
with E-vitamins due to their high antioxidative properties
acting as scavengers of radicals and peroxides (Kamal-Eldin and
Appelqvist, 1996). However, we demonstrated in two recent
studies that several tocopherol and tocotrienol species have
beside their protective antioxidative properties the undesirable
effect of increasing amyloidogenic APP processing and reducing
the enzymatic degradation of Aβ-peptides (Grimm et al., 2015b,
2016c).

Summary
Despite the inhomogeneous results of clinical studies there
are several epidemiological and molecular indications for a
beneficial effect of DHA in preventing AD and possibly halting
its progression, at least at very early disease stages. The fact that
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its oxidation products are able to reverse the beneficial effects of
DHA might partially explain the divergent outcomes of clinical
DHA studies and underlines the need to prevent DHA from
oxidation in such trials.

Future Directions
Because of the controversial effects of several E-vitamins
regarding the molecular mechanisms of AD, the identification
of further molecules for the prevention of DHA from oxidative
damage in nutritional approaches without side effects on APP
processing might be valuable. Additionally, the combination of
DHA with precursors/cofactors for membrane synthesis and
synaptogenesis as for example uridine-monophosphate, choline
and phospholipids might further strengthen its beneficial effects
on cognition as demonstrated in a transgenic mouse model of
AD (Koivisto et al., 2014).

THE IMPACT OF TRANS FATTY ACIDS
ON AD

Trans fatty acids (TFAs) are unsaturated fatty acids, which
are characterized by having at least one double-bond in trans-
configuration. This means that the two hydrogen atoms are, in
contrast to cis-configuration, localized on opposite sides of the
double-bond. Because of their straighter shape compared to the
cis-counterparts, TFAs have higher melting points and lead to a
decreased fluidity of biological membranes (Roach et al., 2004;
Ibrahim et al., 2005). TFAs in our diet arise from industrial
procedures and to a lesser extent from biological processes
in the digestive tract of ruminant animals. The key source of
TFAs is commercially prepared food due to hydrogenation or
thermal treatment of oils (Bhardwaj et al., 2011). Accumulation
of these fatty acids in the body as well as incorporation in
brain tissue has been reported indicating an impact of TFAs
on cerebral biochemistry (Laryea et al., 1990; Teixeira et al.,
2012).

Studies analyzing the relationship between TFAs and AD-risk
or the progression of cognitive decline came to inconsistent
results. A positive correlation between dietary TFA intake and
AD-risk was found in one study while others reported the
AD-risk not to be influenced by TFAs (Engelhart et al., 2002;
Morris et al., 2003a). Similarly, some authors observed the TFA
intake to result in a higher rate of cognitive decline in women
with type 2 diabetes, in persons with high copper consumption
and in older persons in general while others failed to find a
relationship between TFA intake and cognitive decline in women
(Morris et al., 2004, 2006; Devore et al., 2009; Naqvi et al., 2011;
Okereke et al., 2012).

We investigated the effects of TFAs on APP-processing
and Aβ-generation in neuroblastoma cells compared to their
cis-counterparts. In presence of TFAs, we found a shift
from non-amyloidogenic to amyloidogenic APP-processing
accompanied by a significant increase in Aβ-production. TFA
supplementation increases the activity of β- and γ-secretase
due to direct effects and an enhanced gene expression of
BACE1 and the γ-secretase complex components (Grimm
et al., 2012a). The direct effect on γ-secretase activity was

confirmed by others demonstrating the activity of purified γ-
secretase to be stimulated by an increased trans/cis-ratio of
supplemented fatty acids (Holmes et al., 2012). In contrast,
non-amyloidogenic APP-processing is reduced in TFA-treated
cells because of enhanced APP-internalization and a reduction
in ADAM10 gene expression. Additionally, we found TFAs to
stimulate Aβ-aggregation in vitro (Grimm et al., 2012a).

The impact of TFAs on cerebral Aβ-levels and cognition
has also been investigated in vivo with less clear results. In
a study by Phivilay et al. (2009), Aβ- and tau-pathology was
unaltered in the brain tissue of an AD-mouse model after dietary
supplementation of TFAs. Another study reported a declined
spatial learning performance of mice fed with a TFA- and
monosodium glutamate-rich diet (Collison et al., 2010).

As TFAs are reported to be linked to cholesterol and
DHA homeostasis they might also affect APP-processing and
Aβ-generation via indirect mechanisms. The dietary intake of
TFA leads to an inauspicious enhanced ratio of LDL/HDL plasma
cholesterol (Mensink and Katan, 1990; Judd et al., 1994), which
might be associated with a higher AD-risk as described above.
Furthermore, high TFA consumption was shown to modify the
fatty acid profile of murine brain tissue with a reduction in DHA
content. Nevertheless, in this study the cerebral Aβ-levels were
unaltered as already mentioned (Phivilay et al., 2009).

Summary
Due to the dissimilar results of studies analyzing the impact of
TFAs on AD-risk and Aβ-associated pathology in vivo, further
trials are necessary to clarify the role of these fatty acids in AD-
pathogenesis.

Future Directions
If the negative effects of TFA on AD-risk can be confirmed
in vivo, a stronger reduction of TFA intake should be
recommended, particularly because of the accumulation of these
fatty acids in the human body over time and their incorporation
into brain tissue (Laryea et al., 1990; Teixeira et al., 2012).

THE IMPACT OF PLASMALOGENS ON AD

Plasmalogens (PL) are commonly occurring phospholipids
accounting for 22% of the total phospholipid mass in human
brain tissue. They are characterized by an enol ether double-bond
at the sn1-position, which links an alkenyl chain to the
glycerol backbone. At the sn2-position they are enriched
in PUFAs including DHA and arachidonic acid (AA, 20:4).
Phosphatidylethanolamine (PE) and PC are the most common
polar head groups of PLs, which have a high susceptibility to
oxidative stress due to their enol ether double-bond (Broniec
et al., 2011; Braverman and Moser, 2012). PL-biosynthesis takes
place in peroxisomes and the endoplasmic reticulum. The initial
committed step reaction of PL de novo synthesis is catalyzed
by the peroxisomal enzyme alkyl-dihydroxyacetonephosphate-
synthase (AGPS; De Vet et al., 1999). PL level in the human body
are mainly modulated by PL metabolism, but to a lesser extent
also by the dietary consumption of PL-rich meat and fish (Blank
et al., 1992).
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While one study by Pettegrew et al. (2001) did not detect
an AD-dependent alteration in the cerebral PL-content, we and
others found a reduction of PE-PLs and PC-PLs in human
post mortem AD-brains (Ginsberg et al., 1995; Han et al., 2001;
Grimm et al., 2011a; Igarashi et al., 2011; Rothhaar et al., 2012).
In line with this, a reduced PE-PL content was also observed
in the serum and in erythrocyte membranes of AD-patients
(Goodenowe et al., 2007; Oma et al., 2012).

The reduction of PL content in AD-affected brain tissue
might be explained by enhanced PL degradation due to increased
oxidative stress and a stimulated activity of phospholipases
in presence of Aβ-peptides (Sanchez-Mejia et al., 2008).
Additionally, we demonstrated PL biosynthesis to be regulated
by APP-processing. Under physiological conditions AGPS
gene expression and hence PL biosynthesis is upregulated
by AICD. In contrast, under pathological conditions the
Aβ-induced reactive oxidative species impair AGPS protein
stability leading to a decreased PL de novo synthesis (Grimm
et al., 2011d).

Because of the altered PL content in AD-brain tissue,
we analyzed the impact of PLs on APP-processing. Our
results demonstrate that PLs reduce γ-secretase activity in
living cells as well as in purified membranes derived from
neuroblastoma cells and murine brain tissue. Compared to
the corresponding phospholipids lacking the enol ether, all
tested PC-PL- and PE-PL-species independent of the bound
fatty acid directly inhibited γ-secretase activity. In contrast,
the activities of α- and β-secretase remained unchanged after
PL-supplementation (Rothhaar et al., 2012). The direct inhibitory
effect of PE-PLs on the γ-secretase complex has been recently
confirmed by others (Onodera et al., 2015). Interestingly, in
our study the addition of PLs to cellular membranes derived
from human AD-brains also resulted in a decreased γ-secretase
activity. This indicates the rebuilding of a normal PL level
to have a positive impact in the pathologic situation of AD
(Rothhaar et al., 2012). However, such ex vivo experiments
have their clear limitations and further studies are necessary
to analyze the in vivo relevance of PLs on APP-processing. In
addition to Aβ-production, there is also an impact of PLs on
the aggregation of Aβ-peptides. PE-PL has been reported to
eliminate the neurotoxicity-associated Aβ-oligomerization phase
while allowing fibril formation (Lee et al., 2011).

Summary
In the pathologic situation of AD a vicious cycle between
PLs and Aβ-generation can be postulated: the accumulation
of Aβ results in a reduced cerebral PL content stimulating
γ-secretase activity and hence leading to a further increased
Aβ-production.

Future Directions
In the future the in vivo-relevance of the effects of PLs on the
generation of Aβ-peptides should be analyzed. An interesting
human model for such trials could be cells derived from patients
affected by Zellweger syndrome, which show deficient PL-levels
due to a defective peroxisome assembly (Styger et al., 2002; Saitoh
et al., 2009).

THE IMPACT OF SPHINGOLIPIDS ON AD

Sphingolipids are an inhomogeneous group of lipids
characterized by a backbone consisting of the amino alcohol
sphingosine. Sphingolipid biosynthesis is initiated by the serine
palmitoyl-CoA transferase (SPT) catalyzing the condensation
of palmitoyl-CoA and L-serine to 3-ketosphinganin, which
is further metabolized to ceramide. Ceramide is the most
important branching point within the sphingolipid metabolism
pathways serving as precursor for the generation of sphingosine,
sphingomyelin (SM) and more complex glycosphingolipids.

All sphingolipids are anchored in the membrane bilayer via
their ceramide moiety, besides cholesterol they represent major
components of lipid raft membrane microdomains (Posse de
Chaves and Sipione, 2010). The first evidence for a role of
sphingolipids in neurodegeneration came from the observation
of lysosomal storage diseases, inherited disorders characterized
by the lysosomal accumulation of different sphingolipids.
These diseases are associated with early dementia and the
development of AD-related Aβ- and tau-pathology (Tarasiuk
et al., 2012). The link between sphingolipid metabolism and
AD-pathogenesis is further strengthened by alterations of
several sphingolipids in post mortem AD-brain tissue and
their potential to modulate APP-processing and Aβ-aggregation
summarized below. Additionally, SPT gene expression and
hence total sphingolipid biosynthesis is downregulated by the
APP-processing product AICD (Grimm et al., 2011b).

Ceramide
As already mentioned, ceramide is generated by de novo
synthesis and by hydrolysis of various more complex
sphingolipids. Ceramides are pro-apoptotic and neurotoxic
signaling molecules, additionally participating in the regulation
of cellular proliferation and differentiation (Dawson et al., 1998;
Toman et al., 2002).

The ceramide level has been reported to be increased in
different brain regions and in the cerebrospinal fluid (CSF) of
AD-patients. As the increase in ceramide content is already
present at the earliest clinical stages of AD, it might be speculated
that it is involved in disease development (Han et al., 2002; Satoi
et al., 2005; Katsel et al., 2007; He et al., 2010; Filippov et al.,
2012). Such a relationship is supported by a 9-year-follow-up
study reporting an association between elevated baseline serum
ceramide levels and an enhanced risk for developing AD (Mielke
et al., 2012).

As reported by Katsel et al. (2007) the accumulation of
ceramide in AD-affected individuals might be explained
by multiple gene expression abnormalities. The authors
found an increased cerebral expression of genes involved in
ceramide de novo synthesis along with a reduced expression
of genes required for glycosphingolipid formation out of
ceramide. Another explanation for the increased ceramide
content in AD-brain tissue is the Aβ-mediated activation of
sphingomyelinases (SMases) catalyzing the brake down of SM to
ceramide. We and others found Aβ-peptides to directly stimulate
neutral SMase (nSMase)-activity (Jana and Pahan, 2004; Lee
et al., 2004; Grimm et al., 2005), a stimulation of acidic SMase

Frontiers in Molecular Neuroscience | www.frontiersin.org 7 March 2017 | Volume 10 | Article 63

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Grimm et al. Lipids and APP Function

(aSMase) by Aβ has also been observed (Malaplate-Armand
et al., 2006). The resulting enhanced ceramide level is reported
to be a mediator of Aβ-induced apoptosis. Besides a probable
involvement in Aβ-induced cell death, ceramide also affects
APP-cleavage. Accumulation of endogenous ceramide levels in
cultured cells by the use of cell-permeable C6-ceramide or by
nSMase treatment promotes amyloidogenic APP-processing.
The resulting ceramide-induced enhanced Aβ biogenesis is
caused by a post-translational stabilization of the β-secretase
BACE1 due to elevated acetylation of the protein (Puglielli et al.,
2003; Ko and Puglielli, 2009).

In their entirety these facts indicate the existence of
a feed-forward cycle between ceramide and Aβ under the
pathological conditions in AD-brain tissue: enhanced ceramide
level lead to an increased Aβ-production resulting in the
activation of SMases and hence in a further elevation of ceramide
content, which stimulates Aβ-production and might be involved
in the induction of apoptotic cell death.

Sphingomyelin
SM accounts for approximately 10% ofmammalian cellular lipids
and is highly enriched in myelin sheets. It is produced out of
ceramide by the activity of SM-synthases, SMases catalyze the
catabolic break down of SM back to ceramide.

The already mentioned increased ceramide content and the
upregulation of SMases in post mortem AD brains (Katsel et al.,
2007; He et al., 2010) suggests that SM concentrations might be
reduced in these tissues. However, the results of studies analyzing
the SM content in AD-affected brains are inhomogenous
(Pettegrew et al., 2001; Cutler et al., 2004; Bandaru et al., 2009; He
et al., 2010). In addition, SM level were found to be significantly
increased in the CSF of individuals with prodromal AD while
there was a slight, but not significant reduction of SM in the CSF
of patients with mild and moderate AD (Kosicek et al., 2012).
In an epidemiological study by Mielke et al. (2011) higher SM
concentrations and an enhanced SM/ceramide-ratio in plasma
was found to correlate with a decelerated disease progression
among AD-patients.

In strong contrast to ceramide, SM was demonstrated to
inhibit Aβ-production. Increasing SM content of cultured cells
either by direct exposure or nSMase inhibition leads to a
significant decrease of Aβ-peptides caused by an inhibition
of γ-secretase dependent APP-processing. In this study we
additionally identified the already mentioned direct stimulation
of nSMase by Aβ42 (Grimm et al., 2005).

Accordingly, the Aβ-induced elevation of SMase-activity in
AD-brain tissue results in an enhanced ceramide/SM-ratio.
The increase in γ-secretase activity due to lowered SM-level
in combination with the ceramide-dependent activation of
β-secretase further promotes Aβ-production might result in a
futile cycle.

Sphingosine and Sphingosine 1-Phosphate
Ceramidases catalyze the conversion of ceramide to sphingosine,
which is phosphorylated by sphingosine kinase (SK) generating
the anti-apoptotic and neuroprotective molecule sphingosine
1-phosphate (S1P). S1P has been demonstrated to induce cell

survival and proliferation and to antagonize Aβ- and ceramide-
induced cell death (Cuvillier et al., 1996; Gomez-Brouchet
et al., 2007; Czubowicz and Strosznajder, 2014). In contrast,
sphingosine seems to have a role in apoptosis, cooperatively or
independently from ceramide signaling (Sweeney et al., 1998;
Lepine et al., 2004).

In line with an increased acid ceramidase expression and
activity, the sphingosine content has been found to be elevated
in post mortem AD-brains (Huang et al., 2004; He et al.,
2010). It should be mentioned, that there is also another
study reporting a decreased acid ceramidase gene expression in
AD-brain tissue (Katsel et al., 2007). In contrast, the cerebral
S1P-content seems to be declined in AD-affected individuals and
to negatively correlate with the level of Aβ and phosphorylated
tau protein (He et al., 2010). In line with these observations,
γ-secretase activity is reduced in cells devoid of S1P-lyase
degrading intracellular S1P (Karaca et al., 2014). Contrariwise,
S1P has been shown to increase the production of Aβ-peptides
by directly stimulating β-secretase activity in another study
(Takasugi et al., 2011). Therefore, further studies are necessary
to clarify the role of sphingosine and S1P in APP-processing and
AD-pathogenesis.

Sulfatides
Sulfatides are complex glycosphingolipids generated from
ceramide by the addition of a galactose moiety and a
sulfate group catalyzed by ceramide galactosyltransferase (CGT)
and cerebrosidesulfotransferase (CST), respectively. They are
highly enriched in myelin sheaths and mainly synthesized by
oligodendrocytes.

Several studies reported the cerebral sulfatide content to be
dramatically decreased in AD-patients compared to cognitive
normal controls. These alterations were already observed in
the earliest recognizable states of the disease (Han et al., 2002;
Bandaru et al., 2009; Cheng et al., 2013). However, there are
two other studies which failed to find a significant alteration in
sulfatide content in AD-brain tissue (Cutler et al., 2004; Chan
et al., 2012). CSF sulfatide level are also strongly reduced in
AD-patients as reported by Han et al. (2003b) who suggested the
sulfatide/phosphatidylinositol ratio in the CSF to be a potential
AD-biomarker.

Interestingly, there seems to be a link between sulfatide
homeostasis and ApoE: sulfatides are associated with
ApoE-containing particles in the CSF and ApoE is involved
in the modulation of cellular sulfatide content in an isoform-
dependent manner. This possibly provides an explanation for
the genetic association between ApoE and AD (Han, 2010).
A role of ApoE in the regulation of cerebral sulfatide level
has been demonstrated by Cheng et al. (2010). In this study
the age-dependent decline in cortical sulfatide concentrations
of APP transgenic mice was found to be totally abolished
in ApoE-knockout animals. The sulfatide content in murine
brain tissue was further demonstrated to be dependent on
ApoE-genotype. In comparison to human ApoEε3 and wildtype
ApoEε, the human ApoEε4-isoform is associated with a strong
sulfatide depletion in the brain of transgenic mice (Han
et al., 2003a). Additionally, sulfatides seem to be involved in

Frontiers in Molecular Neuroscience | www.frontiersin.org 8 March 2017 | Volume 10 | Article 63

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Grimm et al. Lipids and APP Function

ApoE-dependent Aβ-clearance. Treatment of cultured cells with
sulfatides results in a strong reduction of Aβ-peptides in the
culture media. The underlying mechanism was identified as a
facilitated ApoE-mediated Aβ-clearance through an endocytotic
pathway in response to elevated sulfatide levels (Zeng and Han,
2008).

Their robust depletion in post mortem AD-brain tissue and
their potential to strongly reduce Aβ-levels in vitro indicate that
sulfatides might be an attractive target in AD research. Further
studies are necessary to investigate the role of this lipid class in
the molecular mechanisms of the disease.

Gangliosides
Gangliosides, sialic acid containing glycosphingolipids, represent
6% of the total lipid content in brain. They are abundant
in the luminal leaflet of cellular organelles and the outer
leaflet of the plasma membrane, where they are localized in
lipid raft microdomains. Important functions of gangliosides in
the development, proliferation and differentiation of neuronal
cells have been reported. The glycosylceramide synthase (GCS)
catalyzes the first step of ganglioside biosynthesis by glycosylating
ceramide. Dependent of the number of sialic acid residues
gangliosides are classified into four catagories, the o-, a-, b-
and c-series. In brain tissue the most common gangliosides are
GM1, GD1a, GD1b and GT1b belonging to the a- and b-series.
GM3 is the precursor of all a- and b-series gangliosides, which
are segregated by the GD3-synthase (GD3S)-catalyzed addition
of sialic acid to GM3 (Busam and Decker, 1986; Lahiri and
Futerman, 2007; Yu et al., 2011).

In AD-brain tissue there is a reduction of total ganglioside
content along with significant regional differences in the
distribution of specific ganglioside species. In brains affected by
FAD and LOAD the total ganglioside level is decreased in several
brain regions (Kalanj et al., 1991; Svennerholm and Gottfries,
1994; Gottfries et al., 1996). Kracun et al. (1991) reported a
reduction of all major brain gangliosides combined with an
increase in the more simple GM2 and GM3 in the cortex of
AD-patients. In line with this, the GM1 and GM2 level were
found to be elevated in the lipid raft fraction derived from
cortical regions of AD brains (Molander-Melin et al., 2005).
In summary, in AD-affected brains complex gangliosides tend
to decrease while there is an elevation of simple ganglioside
species.

Interestingly, in post mortemAD-brains GM1 and GD1a have
been found to be associated with Aβ-plaques forming GAβ-
complexes exhibiting early pathological changes of AD. This
indicates a role of these ganglioside species in Aβ-aggregation
(Nishinaka et al., 1993; Yanagisawa et al., 1995). Indeed,
GM1 induces a conformational transition of Aβ from random
coil to β-sheet structure and triggers the formation of toxic
Aβ-fibrils (Choo-Smith et al., 1997; Hayashi et al., 2004; Okada
et al., 2007). Further studies demonstrated an accumulation and
aggregation of Aβ in GM1-enriched lipid rafts leading to an
increased cytotoxicity (Wakabayashi et al., 2005).

Besides Aβ-aggregation, APP-processing and hence
Aβ-generation is also influenced by GM1 and other gangliosides.
Direct administration of total ganglioside extract to purified

γ-secretase leads to an enhanced enzyme activity and increases
the ratio of generated Aβ42 to Aβ40 peptides (Holmes et al.,
2012). In line, the inhibition of GCS and hence total ganglioside
biosynthesis results in a significant reduction of Aβ-production
in various cell lines. The addition of exogenous brain gangliosides
reverses these effects indicating the reduction of total ganglioside
biosynthesis to be beneficial in AD. In this study, the authors
found glycosphingolipids to affect APP-processing via regulating
the subcellular APP-transport in the secretory pathway (Tamboli
et al., 2005). In our own study we demonstrated GCS gene
expression to be regulated by PS and APP. Deficiency in these
proteins or the inhibition of γ-secretase activity results in
an increased GCS gene expression and hence in increased
glycosylceramide and total ganglioside level in vitro and in vivo.
We showed that GCS is upregulated in the brain tissue of
an AD-mouse model and of patients suffering from LOAD.
Accordingly, total ganglioside de novo synthesis is modulated by
APP-processing and deregulated in the pathological situation of
AD (Grimm et al., 2014).

The treatment of neuroblastoma cells with GM1 has been
shown to stimulate Aβ-generation and to reduce the sAPPα

level without affecting sAPPβ (Zha et al., 2004). In strong
contrast to this, peripheral injections of GM1 reduce the
cerebral Aβ-burden in an AD-mouse model, possibly due to the
promotion of Aβ-degradation in the periphery (Matsuoka et al.,
2003). In another study the impact of GD3S deficiency, which
results in a loss of b-series gangliosides and an accumulation
of GM3, GM1 and GD1a, on the cerebral Aβ-levels in an
AD-mouse model has been analyzed. Compared to the control
animals, the GD3S-depleted mice showed an almost completely
eliminated Aβ-associated neuropathology and no cognitive
decline (Bernardo et al., 2009). In line with this, we found
the generation of Aβ in cultured cells to be reduced after
GM3 supplementation while the addition of the GD3S-product
GD3 stimulated Aβ-release. In this context it is important to
mention that we also found a regulation of GD3S by APP-
processing. The activity of GD3S is inhibited by a direct
interaction of Aβ with GM3 leading to a reduced substrate
availability and hence to an impaired conversion of GM3 to GD3.
Additionally, the gene expression of GD3S is downregulated
by AICD. These results indicate the existence of a regulatory
feedback cycle, in which Aβ and AICD increase the GM3/GD3-
ratio leading to a reduction of amyloidogenic APP-processing
(Grimm et al., 2012c).

All these data indicate a strong link between ganglioside
homeostasis and AD. As the single ganglioside species
differ in their amyloidogenic potential, further studies are
necessary to identify the most promising molecular target in
ganglioside metabolism for developing therapeutic approaches
regarding AD.

Summary
In post mortem AD-brain tissue there are alterations in the
content of several sphingolipid species, which can be partially
explained by an impact of Aβ and AICD on enzymes involved
in sphingolipid homeostasis. Several sphingolipid classes have
been shown to affect the proteolytic processing of APP and
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Aβ-clearance: ceramides, total gangliosides, GM1 and GD3 are
associated with an increased Aβ-level while SM, sulfatides and
GM3 have the opposite effect.

Future Directions
The fact that ceramide is associated with an increased
amyloidogenic APP processing while an increase in SM-levels
results in a decreased Aβ-generation indicates SMases to
be interesting pharmacological targets regarding AD. Hence,
the impact of SMase-inhibitors as for example fluoxetine,
maprotiline or desipramine (Kölzer et al., 2004; Kornhuber
et al., 2008) on the proteolytic processing of APP and on
cognitive functions should be analyzed in suitable models.
Another molecular target might be the GD3S, whose inhibition
results in an enhanced GM3/GD3-ratio leading to a reduction
in amyloidogenic APP proteolysis. In this context it should
be mentioned, that mice lacking the GD3 synthase gene show

abnormalities in the sciatic nerve and in peripheral nerve
regeneration along with impaired neurogenesis and behavioral
deficits (Ribeiro-Resende et al., 2014; Wang et al., 2014).
This phenotype indicates that pharmacological interventions in
ganglioside homeostasis might be associated with severe side
effects.

LIPIDS AS POTENTIAL BIOMARKERS FOR
AD

Regarding therapeutic interventions for AD an early diagnosis of
the disease and hence the identification of biomarkers, which can
be used for the in vivo diagnosis prior to the first symptoms, is
important. So, the identification of early AD-biomarkers with a
high specificity and reliability is a central topic in AD research
(Fiandaca et al., 2014). The lipid alterations connected to AD,
which are partially detectable at the very early disease stages

FIGURE 2 | Summary of the bidirectional link between proteolytic processing of the APP and lipid homeostasis. In brain tissue affected by Alzheimer’s
disease (AD) the levels of several lipid classes and fatty acids are altered (indicated by ↓ = decreased, ↑ = increased). Lipids and fatty acids have a strong impact on
the cerebral Aβ-levels and there is also a regulation of lipid homeostasis by the APP-processing products Aβ and AICD (delineated by + = increasing effect,
− = decreasing effect) indicating the existence of complex regulatory cycles between lipid homeostasis and proteolytic APP processing (green arrows = beneficial
effects, red arrows = negative effects, gray arrows = neutral/unknown effects). AGPS, alkyl-dihydroxyacetonephosphate-synthase; DHA, docosahexaenoic acid;
GCS, glycosylceramide synthase; GD3S, GD3-synthase; HMGCR, hydroxymethylglutaryl-CoA reductase; PLA2, phospholipase A2; S1P, sphingosine 1-phosphate;
SMases, sphingomyelinases; SPT, the serine palmitoyl-CoA transferase.
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as described above, might have the potential to be used as
biomarkers for early AD diagnosis by lipidomic approaches.
For example, Mapstone et al. (2014) discovered a set of eight
PC species and two acylcarnitines in the peripheral blood
that predicts the development of mild cognitive impairment
or AD within 2–3 years with an accuracy of more than 90%.
However, further studies are needed to identify combinations of
lipidomics-based biomarkers which can be used for the detection
of preclinical AD with the required sensitivity and specificity.

CONCLUSION

In conclusion all these findings demonstrate a close link
of APP, APP processing and AD to lipid homeostasis. It
could be demonstrated that APP processing and especially
AICD has a physiological function in in the regulation of
several lipid metabolic pathways. Inversely, APP-processing is
strongly dependent on the lipid microenvironment indicating a

bidirectional link betweenAPP-proteolysis and lipidmetabolism.
This results in tightly connected complex regulatory cycles
(Figure 2). Under pathological situations such as AD, this
balanced regulation might be disrupted leading to pathological
alterations in lipid homeostasis and Aβ peptide overproduction,
resulting in increased neurodegeneration.
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