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Abstract

Genomic prediction uses DNA sequences and phenotypes to predict genetic values. In homogeneous populations, theory indicates that
the accuracy of genomic prediction increases with sample size. However, differences in allele frequencies and linkage disequilibrium pat-
terns can lead to heterogeneity in SNP effects. In this context, calibrating genomic predictions using a large, potentially heterogeneous,
training data set may not lead to optimal prediction accuracy. Some studies tried to address this sample size/homogeneity trade-off
using training set optimization algorithms; however, this approach assumes that a single training data set is optimum for all individuals in
the prediction set. Here, we propose an approach that identifies, for each individual in the prediction set, a subset from the training data
(i.e., a set of support points) from which predictions are derived. The methodology that we propose is a sparse selection index (SSI) that
integrates selection index methodology with sparsity-inducing techniques commonly used for high-dimensional regression. The sparsity of
the resulting index is controlled by a regularization parameter (k); the G-Best Linear Unbiased Predictor (G-BLUP) (the prediction method
most commonly used in plant and animal breeding) appears as a special case which happens when k ¼ 0. In this study, we present the
methodology and demonstrate (using two wheat data sets with phenotypes collected in 10 different environments) that the SSI can achieve
significant (anywhere between 5 and 10%) gains in prediction accuracy relative to the G-BLUP.
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Introduction
Selection decisions in plant and animal breeding rely on the

predicted genetic merit of selection candidates. Early prediction

methods were based either on phenotypes measured in the can-

didates of selection or on progeny testing (e.g., Lush 1935). These

methods were later extended into selection indices (Smith 1936;

Hazel 1943) that can use information from various sources of cor-

related data, including secondary traits measured on the same

individual, measurements of the same phenotype collected from

relatives, and combinations thereof (Lush 1948). Henderson

(1950) further extended the methodology by developing mixed-

models that can include fixed and random effects.
The Best Linear Unbiased Predictor (BLUP) predicts breeding

values by borrowing (i.e., averaging) information from multiple

sources of correlated data. Pedigrees often trace back a limited

number of generations and often define “families.” In this con-

text, borrowing of information spans within the scope of each

family. However, this is not the case in genomic-BLUP (G-BLUP;

VanRaden 2008) because genomic relationships are not sparse as

pedigree-derived relationships.
In the last two decades, genomic models (aka, genomic selec-

tion, GS; Meuwissen et al. 2001) have become the method of

choice for breeding value prediction. GS models predict breeding
values using genome-wide markers and rely in the multi-locus
linkage disequilibrium (LD) between SNPs and quantitative trait
loci (QTL). However, it is also well-established that family rela-
tionships and population structure contribute to the accuracy of
genomic prediction (Habier et al. 2007). In a Genomic relationship
matrix (VanRaden 2007) all individuals are related to some ex-
tent; therefore, every training data point contributes to the pre-
diction of each individual in the testing set.

Genomic prediction models were originally developed with ref-
erence to a homogeneous population in which marker effects are
assumed to be the same across subgroups of the data. However,
several factors, including imperfect LD between markers and QTL
and nonadditive effects coupled with population structure and ad-
mixture, can make marker effects vary across subgroups in the
sample (Pritchard and Donnelly 2001; de los Campos et al. 2015). All
these factors can make the genomic relationships derived from
markers inaccurate predictors of the genomic relationships real-
ized at causal loci (de los Campos et al. 2013b). Therefore, the accu-
racy of G-BLUP may be suboptimal when the training data consists
of heterogeneous groups (e.g., multiple families or multiple strains
or breeds) or even multi-generation data in which LD patterns may
vary across distant generations.
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Several authors have recognized the need to model heteroge-
neous SNP effects in the context of multi-breed (e.g., Hayes et al.
2009) and structured (e.g., de los Campos et al. 2015) data. Most of
the existing methods model group-specific effects using either
multivariate Gaussian models (e.g., Olson et al. 2012; Schulz-
Streeck et al. 2012; Lehermeier et al. 2015) or interaction models
(e.g., de los Campos et al. 2015; Veturi et al. 2019). However, these
approaches can be difficult to use in the presence of cryptic
genetic-heterogeneity patterns where no clear groups can be dis-
cerned.

Another line of research seeks to identify an optimal training
set for a given prediction set. These optimal training sets often
consist of individuals that are closely related to the individuals in
the prediction set, i.e., the candidates of selection (Rincent et al.
2012; Akdemir et al. 2015; Isidro et al. 2015; Pszczola and Calus
2016; Akdemir and Isidro-Sanchez 2019). However, these meth-
ods assume that a single training set is optimal for all the individ-
uals in the prediction set which is not necessarily the case.
Therefore, in this study, we focus on developing a genomic pre-
diction method that identifies, for each individual in a prediction
set an optimal training set (i.e., a set of support points). Our ap-
proach achieves this goal by integrating sparsity (by adding an
L1-penalty) into a selection index (SI) problem, we refer to the
method as a sparse selection index (SSI).

Materials and Methods
A standard selection index (Ti) predicts the breeding value of an
individual (ui) using a linear combination of the training pheno-
types (y ¼ ðy1; . . . ; ynÞ0): Ti ¼ b

0

iy ¼
Pn

j¼1 bijyj. Here, phenotypes are
assumed to be centered and corrected by nongenetic effects (e.g.,
experiment and block effects), and bi ¼ bij

� �
is a vector of weights

that are obtained as the solution to the following optimization
problem:

b̂ i ¼ arg min
bi

1
2
Eðui � b

0

iyÞ
2:

The right-hand side of the above problem expands to
Eðu2

i Þ þ b
0

iEðyy
0 Þbi � 2Eðy� uiÞ0bi. Assuming that genetic (ui) and

nongenetic effects (ei) are independent, each with mean zero and
(co)variance matrices varðuÞ ¼ r2

uG and varðeÞ ¼ r2
e I, we have that

Eðui � b
0

iyÞ
2 ¼ r2

u þ b
0

iPbi � 2r2
uG

0

ibi, where r2
u is a genetic variance

parameter, P ¼ r2
uGþ r2

e I is the phenotypic (co)variance matrix of
the training phenotypes, and Gi is a vector containing the genetic
relationships between the ith subject of the prediction set and
each of the subjects in the training data. Because r2

u does not de-
pend on bi, the aforementioned optimization problem can be re-
duced to

b̂ i ¼ arg min
bi

1
2

b
0

i Gþ k0Ið Þbi � G
0

ibi

)(
(1)

where k0 ¼ r2
e

r2
u
¼ 1�h2

h2 is the ratio of the error to the genetic vari-
ance, which can be expressed in terms of the heritability, h2. The
solution to the above problem can be shown to be

b̂ i ¼ Gþ k0Ið Þ�1Gi (2)

The vector b̂ i can be shown to be the ith row of the Hat matrix
of the BLUPs of the genetic values of the individuals in the predic-
tion set (see Supplementary File S1 in the Supplementary

Material for a proof). Therefore, depending on whether G is a ped-
igree- or genomic-derived relationship matrix, the standard SI is
equivalent to a pedigree- (Henderson 1963) or genomic-BLUP, re-
spectively.

When G is a pedigree-based relationship matrix, the off-
diagonal entries corresponding to pairs of subjects not connected
through the pedigree are equal to zero. In that case, some of the
entries of b̂ i can also be equal to zero which implies that the cor-
responding predicted breeding value (T̂ i ¼ b̂

0

iy) draws information
from a subset of the training data. However, when G is a genomic
relationship typically none of the off-diagonals are equal to zero;
therefore, none of the entries of b̂ i will be exactly equal to zero.
This implies that all the observations in the training set contrib-
ute to some extent to predict the breeding values of all the indi-
viduals in the prediction set.

Sparse selection index (SSI) Methodology
As noted earlier, there are several reasons (e.g., imperfect LD, ef-
fect heterogeneity) why borrowing of information between dis-
tantly related individuals may have a detrimental effect on
prediction accuracy. Therefore, to achieve sparsity (and possibly
differential shrinkage on the b̂ i) we considered adding an L1-
penalty to the objective function in Equation (1); therefore,

b
�

i ¼ arg min
bi

1
2

b
0

i Gþ k0Ið Þbi � G
0

ibi þ k
Xn

j¼1
bij
�� ��):(

(3)

The above optimization problem does not have a closed-form
solution; however, solutions can be obtained using a Coordinate
Descent algorithm very similar to the one used to solve LASSO
problems (see Lopez-Cruz et al. 2020). Specifically, in Equation (3),
the relationships between the prediction point and the training
genotypes (Gi) enters in the optimization problem in the same
way the right-hand-side term X0y enters in least-square and
LASSO problems for linear models of the form y ¼ Xbþ e. On the
other hand, the term ðGþ k0IÞ, which accounts for relationships
among training genotypes, enters in Equation (3) in the same way
that X0X enters in least-square and LASSO problems.

The regularization parameter k controls how sparse b
�

i will be;
this parameter is also expected to affect the accuracy of the in-
dex. Therefore, an optimal value of k can be found by maximizing
the accuracy of the resulting index.

Data
We used two wheat breeding data sets to evaluate and to com-
pare the prediction performance of standard and sparse selection
indices. The first data set (Wheat-large) is a multi-generation
wheat breeding data set of a very large sample size (n � 29; 000).
The second one is (Wheat-small) is a small, structured data (see
Supplementary Figure S1).

The Wheat-large data set is from CIMMYT’s Global Wheat
Program and it includes phenotype data from 58,798 wheat lines
that were evaluated during 5 years (2009–2013) at the CIMMYT’s
experimental station in Ciudad Obregon, Mexico. Lines were eval-
uated under six environmental conditions (B2I, B5I, MEL, LHT,
DRB, and EHT) representing a combination of planting system
(bed vs. flat, the later referred to as melgas), number of irrigations
(2, 5 irrigations or drip irrigation), and sowing date (optimum, late
or early planting). Each year, grain yield trials were established in
an a-lattice design with three replicates into incomplete blocks.
Moisture-standardized grain yield (ton ha�1) was measured at
each plot. We used mixed-effects models with a (“fixed”)
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intercept and the random effects of the trial, block (within trial),
and replicate (within trial) to derive least-square means by line
and environmental condition. Separate mixed models were fitted
to data from each of the simulated environments. The average
grain yield in this data set varied from 2.72 to 7.12 ton ha�1 (see
Supplementary Figure S2B for boxplots of grain yield) and the
heritability of single-plot records varied between 0.23 and 0.57
(see Supplementary Table S1 for a summary of the data). Only a
subset of 29,484 genotypes was genotyped using a GBS
(Genotyping-by-sequencing) technology that yielded 42,706 SNPs.
We removed SNPs with more than 70% of missing values and
those with minor allele frequency lower than 5%. After applying
these filters, we retained 9,045 SNPs. The remaining genotypes
that were missing were imputed with the sample mean of geno-
types at the corresponding loci. The data set has been previously
described and analyzed by Pérez-Rodrı́guez et al. (2017).

The Wheat-small data set is also from CIMMYT’s Global
Wheat Program and it is comprised of grain yield and genotype
data for 599 historical inbred lines derived along 25 years. Lines
were evaluated in the Elite Spring Wheat Yield Trials (ESWYT)
that were grouped into four different mega-environments (ME1,
. . ., ME4). The available phenotypic values are least-square
means from two replicates. The average grain yield in this data
set ranged from 3.23 to 5.14 ton ha�1 (see Supplementary Figure
S2A for boxplots of grain yield data) with heritability estimates
for the least-square means ranging between 0.43 and 0.50 (see
Supplementary Table S2). Each of the lines was genotyped for
1,279 diversity array technology (DArT) markers. The data set is
available with the BGLR R-package (Perez and de los Campos
2014) and has been described and analyzed by previous authors
(e.g., de los Campos et al. 2009; Crossa et al. 2010).

Analyses
For each data set, we computed a genomic relationship matrix G us-
ing (centered and standardized) marker information, X ¼ ximf g,
as G ¼ ZZ

0
=p, where p is the number of markers and Z ¼

xim � x�m

� �
=sdxm

� �
is the matrix of centered and standardized

markers obtained by subtracting from each marker entry, xim, the
mean of each column, x�m, followed by scaling by the standard de-
viation of the column, sdxm . The resulting matrix has an average
of the diagonal elements equal to 1.

To quantify the prediction accuracy of each of the indices, we di-
vided each data set into training (trn) and testing (tst) sets by ran-
domly assigning 30% (70%) of the data points to testing (training).
Predictions were derived by first using Equation (2),

b̂ i ¼ Gþ k0Ið Þ�1Gi

(for the standard SI) and Equation (3),

b
�

i kð Þ ¼ arg min
bi

1
2

b
0

i Gþ k0Ið Þbi � G
0

ibi þ k
Xn

j¼1
bij
�� ��)(

(for the SSI), with G ¼ Gtrn representing the genomic matrix of
the training data points (i.e., with dimensions ntrn � ntrn, where
ntrn ¼ 0:7n), and Gi ¼ Gtrn; tst ið Þ being the vector containing the ge-
nomic relationships between the ith data-point of the testing set,
with each of the individuals assigned to the training set (i.e., the
dimensions of Gi are ntrn � 1). This was repeated for each individ-
ual in the testing set (i ¼ 1; . . . ; ntst, where ntst ¼ 0:3n).
Subsequently, predictions for each individual were obtained us-
ing T̂ i ¼ b̂

0

iytrn (for the standard SI) and T̂ i kð Þ ¼ b
�0

i kð Þytrn (for the

SSI) where ytrn is a ntrn � 1 vector with the adjusted-centered phe-
notypes of the training set.

The implementation of the SI requires heritability estimates. We
derived those by fitting a G-BLUP model of the form yi ¼
lþ ui þ ei with ei �iid N 0;r2

e

� �
and ueN 0;r2

uG
� �

. Separate models
were fitted to grain yield within each environment in each data
set within the training set. We then used the variance parameters
estimates to derive h2 ¼ r2

u
r2

uþr2
e

for grain yield.
Prediction accuracy (q) was measured as the correlation between

the phenotype and the index, divided by the square-root of the
heritability of the trait (grain yield), q ¼ Acc T̂ð Þ ¼ Cor T̂ i ;yið Þ

h (Dekkers
2007). We applied all methods to the same training-testing parti-
tions (trn–tst partitions) and report, from these analyses, the av-
erage prediction accuracy and the proportion of times that one
method was better than the other.

For the SSI, we estimated the accuracy over a grid of values of
the regularization parameter (k ¼ 0 < kð1Þ < kð2Þ < . . . < kmaxÞ
where kmax ¼maxi

Gi
diag Gð Þþk0

n o
. Here; kmax is the minimum value

of k that yields an SSI with no active predictors (i.e., with all coef-
ficients bij equal to zero), and k ¼ 0 gives the weights of the stan-
dard SI. Following Friedman et al. (2010), we used a grid of values
evenly spaced in the logarithm scale with a total of 100 values.
Thus, for each value of k in the grid, we had an estimate of the
resulting accuracy of the SSI. This was used to profile the accu-
racy as a function of the regularization parameter and also to
choose an optimal value of k.

To determine an optimal value of k we implemented a calibra-
tion analysis using data from the training data only. Specifically,
for each training set, we conducted an internal cross-validation
(CV) as follows: (i) The training data set was partitioned into k
subsets. (ii) SSIs were derived over a grid of values of k using data
from k-1 folds for training and the data in the kth fold as testing
(i.e., for estimation of accuracy, see the previous paragraph). (iii)
The resulting curves profiling accuracy (q) by values of k were
used to identify the value of k (k̂cv) that maximized accuracy. (iv)
Finally, we used all the data from the training set to derive
Ti k̂cv

� �
and evaluated the accuracy of the resulting index in the

left-out data from the testing set.

Software
All the analyses were performed in the R environment-language
(R Core Team 2019) version 3.5. Genomic relationships were de-
rived using the getG() function of the BGData R-package
(Grueneberg and de los Campos 2019). The heritability of the trait
was estimated using the rrBLUP R-package (Endelman 2011).
Sparse SIs were derived using the SSI() function from the SFSI R-
package that implements the Coordinate Descent algorithm de-
scribed in Lopez-Cruz et al. (2020). The package is aided by ggplot2
(Hadley 2016) and parallel (R Core Team 2019) packages to visual-
ize results and to speed computation. This package is available
through the GitHub repository at https://github.com/
MarcooLopez/SFSI. Scripts illustrating the use of this package us-
ing the Wheat-small data set are presented in the Supplementary
Material, Supplementary File S2. Training set optimization via
subset selection (presented in the Section Discussion) was imple-
mented in the STPGA R-package (Akdemir et al. 2015).

Data availability
Both phenotypic and marker data for the Wheat-large data set
can be downloaded from CIMMYT’s repository at http://geno
mics.cimmyt.org/wheat_50k/PG/ (accessed March 6th, 2021). The
Wheat-small data set can be downloaded from the BGLR R-pack-
age by calling “data(wheat).” Supplementary File S1 contains a

M. Lopez-Cruz and G. de los Campos | 3

https://github.com/MarcooLopez/SFSI
https://github.com/MarcooLopez/SFSI
http://genomics.cimmyt.org/wheat_50k/PG/
http://genomics.cimmyt.org/wheat_50k/PG/


proof on the equivalence between the standard SI and the BLUP.

Code showing how to perform all analyses is provided in

Supplementary File S2. All supplementary figures and tables are

contained in Supplementary File S3. All supplementary files are

available at figshare: https://doi.org/10.25386/genetics.14098952.

Results
Sparsity improves prediction accuracy
We assessed the effect of sparsity on the accuracy, by fitting the

SSI for 100 values of k (0 < kð1Þ < kð2Þ < . . . < kmax; the value

k ¼ 0 produces the coefficients of the standard SI or G-BLUP. The

results (averaged over 100 trn–tst partitions) are shown in

Figure 1. The number of support points (i.e., the number of train-

ing data points contributing to the prediction) was, as expected,

inversely proportional to k; therefore, to facilitate interpretation,
the x-axis of Figure 1 is displayed as the average (across geno-
types in the testing set) number of support points, which is more
meaningful than the k values. The accuracy of the G-BLUP is also
shown at the rightmost side of the plot whose number of support
points is equal to the size of the training data set. Intermediate
values of k led to sparse indices that, in most cases, achieved
higher prediction accuracy than that of the G-BLUP (shaded
“belly” area in Figure 1). The maximum accuracy in the environ-
ment EHT (see Figure 1A) was obtained with a penalization that
leads to a sparse index with an average of 120 support points
(nsupÞ. This predictive set of individuals represents around 8% of
the total training set (ntrn ¼ 1; 428) available for prediction.

For the small data set (Figure 1B), the same “belly” pattern can
be observed in all environments, except for ME2. This case shows

Figure 1 Prediction accuracy for grain yield (average across 100 trn–tst partitions) of the SSI versus the (average) number of support points of the SSIs.
The G-BLUP (blue rightmost point) is a special case of an SSI when k ¼ 0. Each panel represents one environment within data set. (A) Wheat-large data
set. B2I, bed planting þ 2 irrigations; B5I, bed planting þ 5 irrigations; MEL, flat planting þ 5 irrigations; LHT, late planting date; EHT, early planting date;
DRB, bed planting þ drip irrigation. (B) Wheat-small data set. ME, mega-environment. Vertical bars represent a 95% confidence interval for the average.
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that the SSI does not always outperform the G-BLUP; however,
the SSI achieves the prediction accuracy of the G-BLUP with a
smaller support set (nsup � 151 out of 419).

Using an internal CV to achieve optimal sparsity
The results in Figure 1 suggest that one can find a value of k that
leads to an index with a predictive performance as least as high
(and in most cases higher) as the G-BLUP. However, to obtain an
unbiased estimate of the maximum accuracy that the SSI can
achieve, one should not use data from the testing set to select the
optimal value of k. Therefore, we repeated the analyses described
above, this time performing the grid search for an optimal value
of k by implementing 10 fivefold CVs within each training data
set. This CV was used to choose an optimal value of k ðk̂cvÞ. Then,
we solved the SSI using k̂cv and all the training genotypes, and
evaluated the accuracy of Ti k̂cv

� �
in a testing set that was not

used to choose k̂cv. This was repeated for 100 trn–tst partitions.
Figure 2 shows the accuracy of Ti k̂cv

� �
versus that of the G-BLUP,

each point in the plot represents a trn–tst partition. In the
Wheat-large data set, the optimal SSI outperformed the G-BLUP
in 94% of the cases (Table 1). For this data set, the SSI offered ac-
curacy gains ranging from 5% (in the environment B2I) to 10% (in
the environments B5I and MEL) in the correlation metric. Similar
patterns were observed with the Wheat-small data set. In envi-
ronments ME1 and ME4 the SSI outperformed the G-BLUP in
more than 80% of the trn–tst partitions (Table 1), with gains in ac-
curacy ranging from 5% to 8%. However, in ME2 and ME3, there
were no significant gains in accuracy (see Table 1).

Sparse selection indices build subject-specific
training sets
For each individual in the prediction set, an SSI yields a set of
support points in the training set consisting of the subjects with a
nonzero entry in b

�
i kð Þ. Figure 3 shows the distribution (across 100

trn–tst partitions) of the number of support points (nsup) for k̂cv

for each of the environments of the Wheat-large data set. At k̂cv,
nsup ranges from 30 to �5; 000. In 3 of the environments (B2l, MEL,

and LHT), the average number of support points was nsup � 450,
that is �15-20% of the size of the training set. In environment B5l,
the proportion of active training support points was �5–10%. On
the other hand, in environment EHT predictions relied on an av-
erage of nsup � 178 (out of 1,428) individuals from training
(Figure 3). Similar patterns were also observed in the Wheat-
small data (Supplementary Figure S3). For instance, testing phe-
notypes from environment ME1 were optimally predicted using,
on average, nsup � 78 (out of 419); however, the relative sparsity
(nsup=ntrnÞ was smaller in the Wheat-large data set (5-17%) than
in the Wheat-small data set (12-60%).

Figure 4 shows (for selected testing genotypes) the coordinates
on the 1st and 2nd PC of both the prediction point (yellow circle)
and the training genotypes. Active training genotypes are repre-
sented in a green circle, and those nonactive (i.e., with zero
weight in the index) are represented in gray. In some cases, the
support set includes training genotypes that are nearby (accord-
ing to the coordinates on the top 2 PCs) the prediction point.
However, in other cases, the support set spanned outside clusters
that could be defined by top PCs (a similar plot for the Wheat-
small data set is presented in Supplementary Figure S4). We note
that the plots in Figure 4 (and Supplementary Figure S4) use coor-
dinates that are based on two PCs that together explain 10.3%
(and 16.3%) of the variance in genotypes. Thus, it is still possible
that some points that appear distant in the top 2 PCs coordinates
may still have a sizable genomic relationship. This could happen
if, for instance, two lines share one ancestor but have the other
ancestors originating from divergent populations. Thus, in the
next section, we study in more detail the link between genomic
relationships and the weights on the SSI.

Genomic relationships and weights in standard
and sparse selection indices
Figure 5A shows the coefficients of the G-BLUP and the SSI (i.e.,
the bij’s derived from Equations (2) and (3), respectively) versus
the genomic relationship (gij, the ij entry of G). In Figure 5A, the
bij’s were derived for one trn–tst partition with fixed heritability

Figure 2 Prediction accuracy for grain yield of the optimal SSI versus that of the G-BLUP. Each point represents a trn–tst partitions (a total of 100
partitions were implemented), the point shape and color represent environments. (A) Wheat-large data set. B2I, bed planting þ 2 irrigations; B5I,
bed planting þ 5 irrigations; MEL, flat planting þ 5 irrigations; LHT, late planting date; EHT, early planting date; DRB, bed planting þ drip irrigation.
(B) Wheat-small data set. ME, mega-environment. The value of k in the SSI was estimated using 10 fivefold CVs conducted within the training data.
In parenthesis, by the legend, P is the proportion of times the SSI was better than the G-BLUP.
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and k chosen by CV conducted within the training set, for envi-
ronment EHT from the Wheat-large data set. The weights used
by the G-BLUP are, as expected, all different from zero and
are positively associated with the genomic relationships (i.e., on
average, training genotypes closely related to genotypes in the
prediction set receive higher weight on the index). However, the

points do not fall over a perfect line because the weight given to
each of the training points depends not only on the relationship
between the training point and the prediction point but also on
the relationships among training genotypes. On the other hand,
as expected, the SSI zero-outs most of the weights. The SSI seems
to zero-out most of the weights that are in the top left and lower-

Table 1 Prediction accuracy for grain yield (average across 100 partitions) achieved by sparse selection indices (SSIs) and by the G-BLUP
(standard SI), by data set and environmental condition

Environment ntst ntrn Method kcva nsupb Accuracy (SD) Pc

Wheat-large
B2I 1,120 2,612 G-BLUP 0.0000 2,612 0.617 (0.031) 0.97

SSI 0.0135 434 0.648 (0.031)
B5I 8,842 20,631 G-BLUP 0.0000 20,631 0.555 (0.010) 1.00

SSI 0.0107 1,470 0.609 (0.009)
MEL 1,321 3,082 G-BLUP 0.0000 3,082 0.600 (0.045) 0.99

SSI 0.0131 524 0.661 (0.046)
LHT 1,322 3,082 G-BLUP 0.0000 3,082 0.669 (0.024) 0.99

SSI 0.0168 380 0.709 (0.025)
DRB 1,129 2,634 G-BLUP 0.0000 2,634 0.629 (0.035) 0.98

SSI 0.0322 136 0.675 (0.037)
EHT 612 1,428 G-BLUP 0.0000 1,428 0.614 (0.049) 0.94

SSI 0.0301 178 0.649 (0.047)
Wheat-small
ME1 180 419 G-BLUP 0.0000 419 0.721 (0.070) 0.87

SSI 0.0413 78 0.760 (0.067)
ME2 180 419 G-BLUP 0.0000 419 0.702 (0.087) 0.41

SSI 0.0123 254 0.692 (0.085)
ME3 180 419 G-BLUP 0.0000 419 0.585 (0.101) 0.53

SSI 0.0613 84 0.586 (0.093)
ME4 180 419 G-BLUP 0.0000 419 0.663 (0.082) 0.87

SSI 0.0617 54 0.714 (0.075)

B2I, bed planting þ 2 irrigations; B5I, bed planting þ 5 irrigations; MEL, flat planting þ 5 irrigations; LHT, late planting date; EHT, early planting date; DRB, bed
planting þ drip irrigation; ME, mega-environment; ntst and ntrn, size of the testing and training data sets, respectively; SD, standard deviation across trn–tst
partitions.

a Optimal value of k (average across partitions) estimated by cross-validating the training set.
b Average number of support points in the SSIs. G-BLUP model corresponds to an SSI with k ¼ 0 and nsup ¼ ntrn.
c P: proportion of times (out of the 100 partitions) that the SSI outperformed the G-BLUP in prediction accuracy.

Figure 3 Distribution of the number of training support points (nsup) in the optimal SSI for grain yield (results obtained over 100 trn–tst partitions;
ntrn, size of the training data set), by environmental condition. B2I, bed planting þ 2 irrigations; B5I, bed planting þ 5 irrigations; MEL, flat planting þ 5
irrigations; LHT, late planting date; EHT, early planting date; DRB, bed planting þ drip irrigation. Wheat-large data set.
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right quadrants (i.e., points that had a negative (positive) relation-
ship and in the G-BLUP got positive (negative) weight, compare
both plots in Figure 5A).

Figure 5B shows the proportion of coefficients that are zeroed-
out by level of genomic relationship. Most of the coefficients cor-
responding to training genotypes with relationships with predic-
tion points between �0.1 and 0.1 are zeroed-out; the proportion
of coefficients that are zeroed decreases rapidly as gij increases;
however, the decrease seems to be faster for the Wheat-large
data set than for the Wheat- small (Supplementary Figure S6).
Interestingly, the proportion of coefficients zeroed-out also
decreases for “negative” genomic relationships, suggesting that
the SSI does not only use a “local” support set; instead, the SSI
seems to use informative support points.

The linear kernel used here can have negative off-diagonal
values (i.e., gij < 0, mostly between pairs of genotypes from

different clusters); these negative covariances are, in the
context of the additive model fitted here, informative and thus
some of the training points with negative covariance with the
prediction genotypes can become active in the SSI. However,
note that the size of the coefficients corresponding to points
with negative genomic relationships is considerably smaller
than the size of the coefficients for points with positive relation-
ships with the prediction genotypes. The patterns observed in
other environments of the Wheat-large data set and the four
environments of the Wheat-small data set were conceptually
similar to the ones presented in Figure 5 (see Supplementary
Figures S5 and S6).

Discussion
Sample size has been recognized as one of the main factors limit-
ing prediction accuracy in genomic prediction (Lorenzana and
Bernardo 2009; de los Campos et al. 2013a; Habier et al. 2013). In
unstructured populations, SNP effects can be assumed to be ho-
mogeneous, in this context, genomic prediction accuracy is
expected to increase with sample size (e.g., Daetwyler et al. 2008;
de los Campos et al. 2013a). However, this is not necessarily the
case in structured and admixed populations, in multi-family data
(e.g., data from bi-parental families), or in multi-generation data.
In those cases, differences in allele frequencies and LD-patterns
may make SNP effects heterogenous across subgroups in the
sample. In that context, a larger training data set may not trans-
late into a higher prediction accuracy. This phenomenon has
been recognized in both plant and animal breeding, as well as in
complex traits prediction in humans.

For example, using data from a broiler breeding population,
Wolc et al. (2016) showed that using training sets that included
data from many previous generations led to slightly lower predic-
tion accuracy than the one achieved when models were trained
with data from just the last 3 generations. Likewise, Hayes et al.
(2009) showed that the prediction accuracy for Holstein cattle
was not improved by adding to the training set data from Jersey
cattle. In plant breeding, using data from bi-parental families,
Jacobson et al. (2014) reported that within family prediction
accuracy could be increased by training models using only data
from families that share at least one of the parents. Finally, in
the context of human data, de los Campos et al. (2013b) noted
that the accuracy of SNP-derived genomic relationships could be
very low for distantly related individuals. Thus, combining
family data with large volumes of data from distantly related

Figure 4 First two principal components coordinates for prediction
points (yellow) and the corresponding support points (green). Gray points
represent genotypes that did not contribute to the prediction of the
genetic value of grain yield of the genotype in yellow. All panels
represent solutions for the environment. EHT, early planting date,
wheat-large data set.

Figure 5 (A) Weights (bij) of a standard SI (G-BLUP) and the optimal SSI for grain yield versus the genomic relationship (gij). (B) Proportion of weights in
the SSI that were zero (nonactive) and nonzero (support points); environment. EHT, early planting date, wheat-large data set.
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individuals may not improve (or may even reduce) prediction
accuracy relative to models trained with family data only
(Makowsky et al. 2011).

Trade-offs between sample size and effect
homogeneity
When data originates from heterogeneous sources there may be
trade-offs between sample size and the possibility of having a ho-
mogenous data set in which SNP effects can be conceived as ho-
mogenous within the training data, and between training and
testing sets. The recognition that in genomic prediction “bigger is
not always better” led to the development of several models and
model-training strategies aiming to improve prediction accuracy.
One line of research models effect heterogeneity using group-
specific effects (e.g., Veturi et al. 2019; Rio et al. 2020). This ap-
proach is useful when individuals cluster in a few (e.g., 2 or 3)
well-defined clusters; however, the approach becomes less useful
and more difficult to apply when data are characterized by either
a large number of groups (e.g., bi-parental families) or when
groups overlap in cryptic manners (e.g., admixed populations or
partially overlapping-multi-generation data).

Training-set optimization techniques: one-size
may not fit all
Another line of research seeks to identify an “optimal training
set” by either selecting data from individuals that are closely re-
lated to the prediction set (e.g., Jacobson et al. 2014; Lorenz and
Smith 2015; Wolc et al. 2016) or by using more sophisticated opti-
mization algorithms (e.g., Rincent et al. 2012; Akdemir et al. 2015).
Given an available training set, optimization procedures aim at
identifying a subset that is optimal for all the genotypes in the
prediction set.

We applied the training set optimization methodology
described in Rincent et al. (2012) to the same trn–tst partitions
that we used to evaluate the predictive performance of the SSI
(see Section Materials and Methods for details of the trn–tst parti-
tions, and Figure 1 and Table 1 for results obtained using an SSI).
For each data set and environment, we evaluated the prediction
accuracy achieved by the G-BLUP using the entire data set, and
using smaller sets chosen either at random or by optimizing the
training set using the CDmean criteria (Rincent et al. 2012) as
implemented in the STPGA R-package (Akdemir et al. 2015).
Across data sets and environments, the optimized training sets
did not produce higher prediction accuracy than the one
achieved when using the entire training data (Supplementary
Figure S7). Furthermore, in all cases, the SSI outperformed the
G-BLUP calibrated with the entire data set and all the G-BLUP
models calibrated using smaller (optimized) training sets
(Supplementary Figure S7).

The above-results highlight the challenge of selecting a train-
ing set that is optimal for all the genotypes in a prediction set.
Our approach tackles this problem by identifying an optimal
training set for each testing genotype. Because different sparse
indices are obtained for each individual in the prediction set,
almost all individuals in the training set end up contributing to
the index of one or more testing genotypes.

Sparsity of the SSI
When the training data consists of disconnected families, pedi-
gree BLUP equations can also be sparse. However, this is not the
case of the G-BLUP because genomic relationship matrices are
dense. The SSI brings back sparsity into genomic prediction. The
level of sparsity is largely controlled by the penalization

parameter (k). This parameter can be tuned using CV within the
training data. As with any other parameter, the value of k that
maximizes accuracy may change slightly between trn–tst parti-
tions; however, in our experience, using a few (e.g., 10) trn–tst
partitions are enough to obtain an accurate estimate of the value
of the regularization parameter that maximizes accuracy.

SSI and k-nearest neighbor
As noted, an SSI identifies, for each individual in the prediction
set, a network of genotypes in the training data set (see Figure 4
and Supplementary Figure S4) that contribute to the prediction.
At first glance, this appears similar to the approach used in a
k-nearest neighbor (KNN) regression (Cover and Hart 1967). In
KNN, the k genetically closest individuals (neighbors) predict
each selection candidate, and predictions are derived using an
average of the phenotypes in the neighborhood. There are impor-
tant differences between the KNN and the SSI. First, the KNN
uses only marginal similarities/distances between a prediction
point and the points in the training data to identify a
“neighborhood.” However, the SSI also considers the correlations
(i.e., redundancies between training genotypes which are de-
scribed by off-diagonal matrices of the G matrix). As a conse-
quence, the optimal support set of the SSI may zero-out
coefficients for close relatives of prediction genotypes, and may
include active coefficients for some distantly related individuals
(see Figure 4 and Supplementary Figure S4). Second, while in the
standard KNN predictions are simply the arithmetic mean of the
phenotypes in the neighborhood, in the SSI each training point
contributes differently with weights (the bij

0s) that reflect both
the correlation of the training point with the prediction point as
well as correlations among points in the training set.

SSI and sparse genomic relationship matrices
At first glance, it may seem that an SSI could be obtained using
G-BLUP equations by simply zeroing-out small off-diagonal coef-
ficients of the G matrix. However, this approach would be differ-
ent and will not necessarily yield a sparse index. First, as noted
before, simply zeroing-out small coefficients of a G matrix does
not consider the fact that training genotypes are also related.
(The results in Figure 5 show that the SSI also zero-out weights
for training genotypes with sizable genomic relationships with
testing genotypes.) Second, zeroing-out coefficients of the G ma-
trix does not guarantee that the inverse of G (and therefore, the
G-BLUP equations) will be sparse (making sparse the inverse of G,
as in Graphical-LASSO, Friedman et al. 2008, may be more effec-
tive). Third, zeroing-out off-diagonals coefficients of G that are
close or below zero ignores the fact that genotypes with negative
genomic relationships with testing genotypes may be informa-
tive, simply because negative (co)variances are informative (this
can also be seen in Figure 5, where some points with the negative
genomic relationship are active in some SSIs).

Borrowing of information in the SSI
The fact that some points with negative genomic relationships
contribute to the prediction equations of SSIs (see Figure 5) may
be counter-intuitive, and may be considered undesirable. This
happens simply because negative (co)variances are informative.
However, the weights for training genotypes with negative geno-
mic relationships with testing genotypes, if not zero, are small in
absolute value. In other words, the SSI draws information pri-
marily from closely related individuals. If one would like to ob-
tain an SSI that is “strictly local” (i.e., that only training genotypes
are closely related to testing genotypes) one would need to use a
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kernel that specify nonnegative prior (co)variances (e.g., a
Gaussian kernel or additive-by-additive structure G#G).

SSI and elastic-net penalty
BLUP methods are equivalent to L2-penalized regressions. In
BLUP, shrinkage is controlled by the noise and signal variances
(k0 ¼ r2

e=r
2
u, see Equation (2). We added to the optimization prob-

lem an L1-penality; thus, the SSI uses both L1 and L2 (which is in-
trinsically built in the SI) penalties. Therefore, the SSI can be seen
as being a type of Elastic-Net (Zou and Hastie 2005) regression.
However, in the SSI the weight on the L2-penalty is only deter-
mined by the ratio of variance components (k0 ¼ r2

e=r
2
u) which

may or may not be an optimal choice from a prediction perspec-
tive (particularly if the underlying assumptions of the BLUP
method, e.g., homogeneity of effects, do not hold). Therefore, to
add flexibility to the SSI we considered explicitly adding L1- and
L2-penalties, and searching for an optimal combination, using
CV, of the relative weights of the penalization parameters of the
Elastic-Net (a and k) optimization problem:

b
�

i a; kð Þ ¼ arg min
bi

1
2

b
0

i Gþ k0Ið Þbi � G
0

ibi þ k
1
2

1� að Þ
Xn

j¼1
b2

ijþ
�

ka
Pn

j¼1 bij
�� ��):

To avoid too-much penalization, we decreased the weight of
the initial L2-penalty to 0.5k0. We found that this practice could
increase prediction accuracy by a small factor (2–3.5%, see
Supplementary Table S3 for the Wheat-large data set) relative to
the original SSI method (Equation 3). However, this practice did
not provide any additional advantage over the original SSI in the
Wheat-small data (see Supplementary Table S4).

The effect of sample size on the relative
performance of the SSI
Sample size, SNP density, and genetic structure are features that
may affect the ability of the SSI to achieve a higher prediction ac-
curacy than the G-BLUP. To shed light on the effect of sample
size we repeated the analysis presented before with varying sam-
ple size within each data set and environment (i.e., holding the
structure and the number of SNPs constant). The results
(Supplementary Figure S8) showed that the difference in predic-
tion performance of the SSI and that of the G-BLUP increased
with sample size. Clearly, the use of an SSI is more appealing
when either there is a strong structure and the sample size is
very large. Such conditions offer opportunities for the SSI to
identify optimal support points for each genotype in the
prediction set.

Finally, we note that the derivation of the weights of the SSI
depends on the trait only through the heritability (see
Equation 3). Therefore, one could imagine deriving the weights of
the SSI for each candidate of selection and then using these
weights to predict breeding values for a range of traits with com-
parable heritability.

Conclusion
We presented a novel prediction method that combines in a sin-
gle framework, selection index methodology with sparsity-
inducing methods. The resulting SSI identifies optimal training
sets for each genotype in a prediction set. The method can be
useful for multiple applications, including the use in genomic
prediction of data from structured populations, bi-parental fami-
lies, and the analyses of multi-generation data sets. The

superiority of the SSI relative to a standard G-BLUP is clearer with
large sample size.
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