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Abstract: In-situ rehabilitation of fly ash at dumping sites has rarely been addressed for crop
production due to growth-related constraints, largely of heavy metal (HM) contamination in soils and
crops. Current communication deals with a novel approach to identify a suitable management option
for rejuvenating the contaminated soils. In this background, a 60-days incubation experiment was
conducted with different fly ash-soil mixtures (50 + 50%, A1; 75 + 25%, A2; 100 + 0%, A3) along with
four ameliorants, namely, lime (T1), sodium sulphide (T2), di-ammonium phosphate (T3), and humic
acid (T4) at 30 ± 2 ◦C to assess the ability of different fly ash-soil-ameliorant mixtures in reducing
bio-availability of HMs. Diethylenetriaminepentaacetic acid (DTPA)-extractable bio-available HM
contents for lead (Pb), cadmium (Cd), nickel (Ni), and chromium (Cr) and their respective ratios to
total HM contents under the influence of different treatments were estimated at 0, 15, 30, 45, and
60 days of incubation. Further, the eco-toxicological impact of different treatments on soil microbial
properties was studied after 60 days of experimentation. A1T1 significantly recorded the lowest
bio-availability of HMs (~49–233% lower) followed by A2T1 (~35–133%) among the treatments.
The principal component analysis also confirmed the superiority of A1T1 and A2T1 in this regard.
Further, A1T1 achieved low contamination factor and ecological risk with substantial microbial
biomass carbon load and dehydrogenase activity. Thus, liming to fly ash-soil mixture at 50:50 may
be considered as the best management option for ameliorating metal toxicity. This technology may
guide thermal power plants to provide the necessary package of practices for the stakeholders to
revive their contaminated lands for better environmental sustainability.

Keywords: ameliorants; metal bioavailability; environmental risk; biological indicator

1. Introduction

Fly ash is the end residue from the combustion of crushed coal in the furnace of thermal
power plants and comprises mineral constituents of coal which is not entirely burnt. It
contains fine powdery spherical, amorphous ferro-aluminosilicate particles and is globally
considered to be a hazardous waste to the ecosystem since, it generally contains various
toxic heavy metals such as Pb, Cd, Cr, Ni, Hg, V, B, As, Se [1]. In the process of burning
coal, the organic part is eliminated and subsequently, enhancement and accumulation
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of the heavy metals from coal to ash take place [2]. However, in many countries, this
industrial by-product has not been appropriately utilized rather it has been ignored and
dumped like a leftover substance. As a consequence, it poses a significant threat to the soil
environment, streams as well as groundwater [3,4] and becomes a noxious source of health
hazards for humans and animals when reached to the domestic areas [5,6]. Furthermore,
the dumping sites do not support sound plant growth because of its nutritional deficiency
(generally N and P), low microbial activity, high salt concentration along enhanced heavy
metal loads [7,8]. Moreover, disposal of such a high amount of fly ash requires enormous
water, energy, and land areas [9]. Though it is not estimated scientists speculate that there
are more than 82,200 ha area of only fly ash ponds in India adjacent to the power plant
areas [4]. Therefore, appropriate fly ash management would remain a great apprehension
of the century.

Many researchers have tried to utilize fly ash in agriculture use [8,10]. However,
the major problem related to the application of fly ash in agriculture is heavy metal
accumulation in the soil environment. A few attempts in this regard have been initiated
by different researchers to reduce metal contaminations in different ways. Ecological
engineering by employing phytoremediation and bioremediation is very useful to lessen the
hazardous effects of the fly ash dump sites in many studies [11,12]. However, those methods
do not address immediate risk minimization rather it takes a certain time, sometimes years
to restrict the toxic nature of fly ash. Other than that, very few amendments such as
farmyard manure, press mud, compost, and bio-solids have been studied to stabilize fly
ash with limited success [13,14]. No other scientific method has been defined to stabilize
dumps in this regard.

Chemical immobilization is a remediation technique that decreases the concentration
of dissolved contaminants by sorption and/or precipitation in heavy metal contaminated
soils. Their applicability is mainly concentrated on reducing the bioavailability, solubility,
or extractability of metals. In this context, ameliorants such as lime, sodium sulphide
(SS), di-ammonium phosphate (DAP), humic acid have been studied successfully in a
vast number of studies [15,16]. However, their applicability to reclaim fly ash in situ at
dumping sites to make the sites productive has never been studied. Thus, the cognizance
of the applicability of chemical ameliorants in heavy metal contaminated soils led us to this
background to test their applicability in our experiment. Fifteen different combinations
of fly ash-soil-ameliorant involving 3 fly ash-soil combinations along with 4 different
ameliorants (lime, DAP, Na2S, and humic acid) were employed in an incubation study to
find out the most suitable treatment combination in reducing the bio-availability of heavy
metals. Probably, this study will help to develop a scientific method for immobilizing and
reducing the bio-availability of heavy metals within the shortest period. The outcome of
the study will provide technical know-how to the power plant authorities to manage huge
fly ash in the soil environment safely.

2. Results

This section is divided into the following sub-headings. It should provide a concise
and precise description of the experimental results, their interpretation, as well as the
experimental conclusions that can be drawn.

2.1. Bio-Availability of Heavy Metals

DTPA-extractable bioavailable fraction of heavy metals was varied across different
stages of incubation for various fly ash-soil-ameliorants combinations used in this exper-
iment (Figure 1). The extractable amounts of Pb, Cd, Ni, and Cr significantly differed
for different treatment combinations after 60 days of incubation (Figure 1a1–d1) and a
noticeable reduction in metal concentration was detected in different combinations.
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Figure 1. DTPA‐extractable of heavy metals (a1–a3: Pb, b1–b3: Cd, c1–c3: Ni, d1–d3: Cr; mg kg−1) during 60 days of in‐

cubation. Error bars indicate the standard error of the mean. A1: fly ash (50%) + soil (50%), A2: fly ash (75%) + soil (25%), 

A3: fly ash (100%); T0: without ameliorants, T1:  lime at 5 Mg ha−1, T2: sodium sulfide at 2 Mg ha−1, T3: di‐ammonium 

phosphate at 0.5 Mg ha−1, T4: humic acid at 4 Mg ha−1. 

A1T1 recorded the lowest value for bio‐available Pb (1.07 mg kg−1; ~49% lower), Cd 

(0.05mg kg−1, ~171%  lower), Ni  (0.11mg kg−1, ~233%  lower), and Cr  (0.06mg kg−1, ~65% 

lower) whereas A3T0 recorded the highest (2.24, 0.26, 0.65, 0.22 mg kg−1 respectively, for 
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Figure 1. DTPA-extractable of heavy metals ((a1–a3): Pb, (b1–b3): Cd, (c1–c3): Ni, (d1–d3): Cr; mg kg−1) during 60 days of
incubation. Error bars indicate the standard error of the mean. A1: fly ash (50%) + soil (50%), A2: fly ash (75%) + soil (25%),
A3: fly ash (100%); T0: without ameliorants, T1: lime at 5 Mg ha−1, T2: sodium sulfide at 2 Mg ha−1, T3: di-ammonium
phosphate at 0.5 Mg ha−1, T4: humic acid at 4 Mg ha−1..

A1T1 recorded the lowest value for bio-available Pb (1.07 mg kg−1; ~49% lower), Cd
(0.05 mg kg−1, ~171% lower), Ni (0.11 mg kg−1, ~233% lower), and Cr (0.06 mg kg−1, ~65%
lower) whereas A3T0 recorded the highest (2.24, 0.26, 0.65, 0.22 mg kg−1 respectively, for
the same; ~29–55% higher) among the treatments. On an average, the amount of DTPA-
extractable Pb, Cd, Ni, and Cr was increased with the increased proportion of fly ash in
fly ash-soil combinations (A3 > 1.09 A2 > 1.26 A1, A3 > 1.28 A2 > 1.59 A1, A3 > 1.16 A2 >
1.46 A1, and A3 > 1.15 A2 > 1.31 A1 for Pb, Cd, Ni, and Cr respectively) irrespective of
ameliorants applied (Figure 2A2–D2). However, the efficacy of ameliorants in reducing
the bio-availability of heavy metals was varied significantly within themselves. In this
regard, T1 (mean ~1.26, 1.51, 1.83, and 1.65 times lower for Pb, Cd, Ni, and Cr, respectively)
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retained the lowest amount of bio-available HMs followed by the variant T3 (mean ~1.35,
1.70, 0.80, and 1.24 times lower, respectively, for the same) among all the treatments.
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Figure 2. Bioavailability of heavy metals (Pb, (A1,A2); Cd, (B1,B2); Ni, (C1,C2); Cr, (D1,D2)) after 60-days incubation under
different treatment combinations. A1: fly ash (50%) + soil (50%), A2: fly ash (75%) + soil (25%), A3: fly ash (100%); T0:
without ameliorants, T1: lime at 5 Mg ha−1, T2: sodium sulfide at 2 Mg ha−1, T3: di-ammonium phosphate at 0.5 Mg ha−1,
T4: humic acid at 4 Mg ha−1. Values followed by different lowercase letters are significantly different by Tukey’s test
(p = 0.05) for a heavy metal. Error bar represents the standard error of mean.
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2.2. Changes in DTPA-Extractable Heavy Metal to Total Heavy Metal Ratio under Different Fly
Ash-Soil-Ameliorant Combinations

After 60 days of incubation, the ratio of DTPA-extractable to total heavy metal concen-
trations for Pb, Cd, Ni, and Cr was varied from its initial across the interventions imposed
(Figure 3).
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Figure 3. Changes in DTPA extractable heavy metal to the total-heavy metal ratio for Pb, Cd, Ni, and Cr under different fly
ash-soil-ameliorant combinations after 60-days incubation. A1: fly ash (50%) + soil (50%), A2: fly ash (75%) + soil (25%),
A3: fly ash (100%); T0: without ameliorants, T1: lime at 5 Mg ha−1, T2: sodium sulfide at 2 Mg ha−1, T3: di-ammonium
phosphate at 0.5 Mg ha−1, T4: humic acid at 4 Mg ha−1.

On average, a declining trend was observed in the ratio for all the heavy metals
with the application of different ameliorants (mean~0.009, 0.003, 0.004, and 0.001 for
Pb, Cd, Ni, and Cr respectively). All the treatments comprised of A1 i.e., fly ash-soil
(50% + 50%) combination showed a greater declining trend as compared to A2 (fly ash-
soil: 75% + 25%) and A3 (fly ash: 100%), respectively, irrespective of the heavy metals
considered (A1 > 2 A2 > 5 A3). Overall, A1T1 (0.01) followed by A1T3 (0.009) recorded
the highest decrease whereas A2T0 (−0.001) followed by A3T0 (−0.0006) recorded the
lowest among the treatments. In most cases, these ratios for different metals were highly
correlated with their respective bioavailable fraction than the total metal load under all the
treatments (Table 1).

Table 1. Pearsons’ correlation matrix between bio-available to total heavy metal (HM) ratios and
different forms of HMs.

HM Fractions
Bio-Available to Total HM Ratios

Pb Cd Ni Cr

Bio-available 0.76 ** 0.30 0.97 ** 0.86 **
Total 0.46 0.36 0.70 ** 0.35

** indicate significant correlation at 0.01 levels of confidence.
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2.3. Efficacy of Different Fly Ash-Soil-Ameliorant Combinations in Minimizing Bio-Availability of
Heavy Metals

Among different treatment combinations, a greater decrease of Pb and Cd by A2T3; Ni
by A1T1, and Cr by A2T1 in the tune of 0.89, 0.15, 0.46, and 0.07 mg kg−1 was achieved after
60 days incubation. However, considering the four heavy metals, the total decrease was
highest for A1T1 (1.43 mg kg−1; ~226% decrease) followed by A2T1 (1.36 mg kg−1; ~126%
decrease) averagely whereas A3T0 (0.26 mg kg−1, mean ~10% increase) recorded the lowest
(Figure 4). Overall, among the treatments, the trend in decreasing the bio-availability of
heavy metals observed in this experiment was: A1T1 > A2T1 > A2T3 > A1T3 > A2T2 >
A1T2 > A3T1 > A3T3 > A3T2 > A1T4 > A3T4 > A2T4 > A1T0 > A2T0 > A3T0.
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Figure 4. Changes in bioavailability of heavy metals (mg kg−1) under different fly ash-soil-ameliorant
combinations after 60 days of incubation. A1: fly ash (50%) + soil (50%), A2: fly ash (75%) + soil
(25%), A3: fly ash (100%); T0: without ameliorants, T1: lime at 5 Mg ha−1, T2: sodium sulfide at
2 Mg ha−1, T3: di-ammonium phosphate at 0.5 Mg ha−1, T4: humic acid at 4 Mg ha−1.

PCA results showed that ~97% of the total variation in declining the bioavailability
of HMs for different fly ash-soil-ameliorant combinations was explained by the first three
components (Table 2). Principle component 1 (PC1) explained 73% of the total variance
having a significant loading on each of the variables. The highest loading was attained by
the A1T1 treatment combination in PC1 (PC1 loading on A1T1: 2.32). The second (PC2)
and third principal components (PC3) explained only ~18 and 6% of the total variance
respectively and loaded highest on A2T3 and A1T0.

Using PC1 and PC2, we analyzed PCA biplot (Figure 5), which signifies the perfor-
mance of the fifteen different treatments combinations (points in the plane) in reducing
HMs bioavailability considering four different HMs (arrows/vectors). The vectors begin
at the origin (0,0) and extend to coordinates given by the loading vectors. The treatments
positioned on the positive X-axis i.e., closer to the vectors are the good performing treat-
ment with respect to that variable(s). In this biplot, treatments such as A1T1, A2T1, and
A1T3 performed brilliantly concerning all HMs and among those three treatments, the rela-
tive performance of A1T1 was better for all four vectors in reducing their bio-availability.
On the other hand, the performance of the remaining treatments was relatively poor
where A3T0 followed by A2T0 were considered as the poorest. Accordingly, A1T1 was
found as the most suitable soil-fly ash-ameliorant combination in this experiment to serve
our objectives.
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Table 2. Loadings (Eigen vectors) of different fly ash-soil-ameliorant combinations for reducing
bio-availability of heavy metals by principal component analysis (PCA).

Fly Ash-Soil-Ameliorant Combinations PC1 PC2 PC3

A1T0 −1.705 −0.676 0.749
A1T1 2.328 −0.478 −0.142
A1T2 0.608 −0.909 0.292
A1T3 1.634 0.111 −0.209
A1T4 −0.276 −0.886 −0.312
A2T0 −2.705 −0.711 0.225
A2T1 2.132 −0.326 0.238
A2T2 1.041 −1.041 0.359
A2T3 1.418 1.195 0.292

A2T4 −0.423 −0.095 −1.364
A3T0 −3.622 0.644 0.024
A3T1 0.732 0.892 0.087
A3T2 −0.452 0.914 −0.256
A3T3 0.0749 1.600 0.398
A3T4 −0.784 −0.231 −0.383

Standard deviation 1.71 0.84 0.49

Proportion of Variance (%) 73.36 18.05 6.02

Cumulative Proportion (%) 73.36 91.41 97.43
A1: fly ash (50%) + soil (50%), A2: fly ash (75%) + soil (25%), A3: fly ash (100%); T0: without ameliorants, T1: lime
at 5 Mg ha−1, T2: sodium sulfide at 2 Mg ha−1, T3: di-ammonium phosphate at 0.5 Mg ha−1, T4: humic acid at
4 Mg ha−1; PC: principal component.
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2.4. Evaluation of Environmental Risk

The efficacy of different amendments to improve fly ash-soil quality in terms of
reduced mental load and its impact on soil ecology was evaluated by using the two most
widely used indexes i.e., contamination factor (CF) and ecological risk factor (ERF) for four
different HMs (Figure 6).
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Values for CF for different metals under the influence of different fly ash-soil-ameliorant
combinations significantly varied among themselves. All the treatment combinations ex-
hibited a ‘moderate contamination’ level for Pb (CF: 1–3) excepting the A3T0 combination
which showed a ‘considerable contamination’ (CF: 3–6). Pollution load for Cd under the
influence of A1T0 and A2T0 showed a ‘considerable contamination’ level whereas the
others depicted a ‘moderate contamination’ considering all A1 and A2 combinations. In
addition, a ‘considerable contamination’ level for Cd was attained for all the treatments
constituted by 100% fly ash in conjunction with different inorganic and organic amend-
ments excepting sole application of fly ash (A3T0) which recorded the ‘high contamination’
level (CF: >6). For Ni, only A1T1 had a ‘low contamination’ level and the others presented
mostly of moderate level. A3T0, A3T2, A3T3 had a value between 3 to 6 and categorized
‘considerable contamination’ level. All the treatments showed a ‘low contamination’ level
for Cr apart from A3T0 which was categorized under ‘moderate contamination’ level.

Results for ERF showed that all the treatment combinations had a value less than
40 and were classified under ‘low ecological risk’ for Pb, Ni, and Cr. However, the values of
ERF for Cd varied considerably. A3T0 showed a ‘high ecological risk’ (ERF: >160) whereas
A1T0, A2T0, and all other treatments comprising A3-ameliorant combinations were classi-
fied under ‘considerable ecological risk’ (ERF: 80–160) for Cd. A1T1 and A1T3 recorded a
value less than 40 and were considered as ‘low ecological risk’ and the remaining treatments
presented moderate level-values for the same.

2.5. Assessment of Microbial Endpoints under the Influence of Fly Ash-Soil-Ameliorant Combinations

To support the environmental risk factor in the earlier section, two widely used soil
health indicators viz. microbial biomass carbon (MBC) and dehydrogenase activity under
the influence of different treatment combinations were assessed (Table 3).

Table 3. Microbial biomass carbon (MBC; µg g−1) and dehydrogenase activity (µg TPF g−1 h−1)
under different fly ash-soil-ameliorant combinations.

Fly Ash-Soil-Ameliorant Combinations MBC Dehydrogenase

A1T0 34.34 e ± 1.2 4.35 f ± 1.26
A1T1 65.84 b ± 0.81 11.92 b ± 1.16
A1T2 55.45 c ± 0.81 7.64 d ± 0.81
A1T3 56.82 c ± 0.21 8.80 c ± 0.65
A1T4 79.53 a ± 0.99 13.8 a ± 1.24
A2T0 18.39 g ±1.63 1.77 g ± 0.31
A2T1 31.24 f ± 1.65 5.07 e ± 0.11
A2T2 33.89 ef ± 1.85 5.06 e ± 0.60
A2T3 33.86 ef ± 1.34 5.11 e ± 0.77
A2T4 45.09 d ± 0.66 7.69 d ± 1.10
A3T0 4.88 i ± 0.43 0.47 h ± 0.11
A3T1 4.84 i ± 0.99 0.47 h ± 0.07
A3T2 6.78 i ± 0.94 0.50 h ± 0.01
A3T3 4.68 i ± 1.23 0.29 h ± 0.02
A3T4 11.63 h ± 2.22 0.63 h ± 0.12

Values followed by different lowercase letters are significantly different Tukey’s test (p = 0.05) for heavy metal; A1:
fly ash (50%) + soil (50%), A2: fly ash (75%) + soil (25%), A3: fly ash (100%); T0: without ameliorants, T1: lime
at 5 Mg ha−1, T2: sodium sulfide at 2 Mg ha−1, T3: di-ammonium phosphate at 0.5 Mg ha−1, T4: humic acid at
4 Mg ha−1.

Among the base material, MBC load and dehydrogenase activity was highest in
A1 followed by A2 and A3 (A1 > 1.8A2 > 8.9A3 and A1 > 1.9A2 > 19.7A3 respectively),
irrespective of the ameliorants applied. While different ameliorants were imposed on the
base materials, a noticeable increase in MBC was recorded in A1 followed by A2 over sole
fly ash as a base material (A3) by 52 and 26 µg g−1. However, in all cases, irrespective
of the base material, T4 excelled over others. On the whole, A1T4 holds significantly
higher MBC followed by A1T1 by ~493% and 391%, respectively. A similar trend was also
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followed in the case of dehydrogenase activity under different treatment combinations and
A1T4 followed by A1T1 recorded the highest values (~9 and 7 µg TPF g−1 h−1 respectively)
over others.

3. Materials and Methods
3.1. Raw Material

Fly ash was randomly collected from three spots of the fly ash storage facility (ash
pond) of Haldia Energy Limited (HEL) power plant, a subsidiary of Calcutta Electric
Supply Corporation (CESC, Haldia, India) in 2018. It was located at Baneswarchak, Haldia,
East Medinipur, WB, India (22◦06’ N 88◦10’ E and 6 m above mean sea level). The power
plant has a capacity of 2 × 300 MW and the required coal is supplied from Mahanadi
Coalfields Ltd. which mainly provides bituminous coal from the mines of Odisha and
Jharkhand (www.haldiaenergy.co.in, accessed on 7 April 2021). The collected fly ash
was thoroughly mixed to prepare a representative sample and subsequently air-dried,
sieved with 2-mm mesh, and characterized for different physical, chemical, and biological
parameters following the standard procedures [14].

3.2. Experimental Soil

To comprise different fly ash-soil combinations, the required amount of soil was
collected from Central Research Farm, Bidhan Chandra Krishi Viswavidyalaya, Gayeshpur
(22◦58′ N, 88◦29′ E and 9.75 m above mean sea level) under the new alluvial zone of West
Bengal, India. The zone falls under a sub-tropical, humid climate having an average annual
rainfall of approximately 1550 mm and pan evaporation of 1.2 to 5.0 mm day−1. The mean
annual maximum and minimum temperatures were 36.3 ◦C and 12.5 ◦C, respectively [17].
The soil was qualified for the hyperthermic temperature class and classified as Aeric
Haplaquept [18] with silty loam texture. Soils were sampled from the surface layer (0–20 cm
depth), stored in polyethylene bags and all the samples were bulked together in the
laboratory to obtain an “average” sample. Soil material was homogenized, air-dried, and
manually crushed. After that, the average sample was passed through a 2-mm sieve and
subsequently analyzed for different physical, chemical, and biological properties following
the standard procedures as proposed by Page et al. [19]. Some important soil properties
have been presented in Table 4.

Table 4. Physio-chemical and biological properties of experimental materials.

Parameters Fly Ash Soil Referenced Methods

Physical properties

Sand (%) 56.66 29.47

Bouyoucos [20]Silt (%) 38.45 52.20
Clay (%) 4.32 18.33

Textural Class Sandy silty loam Silty loam
Bulk density (g cm−3) 1.01 1.35

Physio-chemical and chemical properties

pH (1:2.5, H2O) 7.91 7.01
Jackson [21]

EC (dsm−1) 0.41 0.21
Organic C (%) 0.004 0.61 Walkley and Black [22]

Available N (mg kg−1) - 92.31 Subbai and Asija [23]
Olsen-P (mgkg−1) 46.21 16.38 Olsen et al. [24]

NH4OAc-K 85.32 80.51 Hanway and Heidel [25]
Fe (mgkg−1) 12.11 7.45

Lindsay and Norvell [26]Mn (mgkg−1) 9.15 14.21
Zn (mgkg−1) 1.98 1.08
Cu (mgkg−1) 2.49 1.66

www.haldiaenergy.co.in
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Table 4. Cont.

Parameters Fly Ash Soil Referenced Methods

Biological properties

MBC (µg g−1) 15.21 188.61 Vance et al. [27]
Dehydrogenase (µg TPF g−1 h−1) 2.14 19.21 Klein et al. [28]

3.3. Experimental Details and Analysis

Three altered combinations of fly ash and soil (fly ash—50, 75, 100%) along with
four different ameliorants, namely, lime (T1), sodium sulphide/Na2S (T2), di-ammonium
phosphate/DAP (T3), and humic acid (T4) were used to comprise different treatment
combinations for this experiment (Table 5). All the treatments were laid out in a completely
randomized design (CRD) with three replications to assess their ability in reducing the
bio-availability of heavy metals in the soil environment.

Table 5. Fly ash-soil-ameliorants combinations were used in this experiment.

Different Combinations of Treatments Notations

50% fly ash + 50% soil + no ameliorant A1T0
50% fly ash + 50% soil + lime at 5 Mg ha−1 A1T1

50% fly ash + 50% soil + sodium sulphide at 2 Mg ha−1 A1T2
50% fly ash + 50% soil + di-ammonium phosphate at 0.5 Mg ha−1 A1T3

50% fly ash + 50% soil + humic acid at 4 Mg ha−1 A1T4
75% fly ash + 25% soil + no ameliorant A2T0

75% fly ash + 25% soil + lime at 5 Mg ha−1 A2T1
75% fly ash + 25% soil + sodium sulphide at 2 Mg ha−1 A2T2

75% fly ash + 25% soil + di-ammonium phosphate at 0.5 Mg ha−1 A2T3
75% fly ash + 25% soil + humic acid at 4 Mg ha−1 A2T4

100% fly ash + no ameliorant A3T0
100% fly ash + lime at 5 Mg ha−1 A3T1

100% fly ash + sodium sulphide at 2 Mg ha−1 A3T2
100% fly ash + di-ammonium phosphate at 0.5 Mg ha−1 A3T3

100% fly ash + humic acid at 4 Mg ha−1 A3T4

For the incubation experiment, 1 kg of processed fly ash was taken in each of the forty-
five different plastic pots (15 cm diameter). The required amount of soil and ameliorant
were added to the pots according to the specific treatment combination and thoroughly
mixed. The treatment combinations in different pots were maintained at field capacity
(28.2% w/w) throughout the incubation period (60 days) by adding the same volume of
distilled water lost due to evaporation. The pots were incubated at 30± 2 ◦C in an incubator.
Soil from each of the pots was sampled after 15, 30, 45, 60 days and immediately analyzed
for bio-availability of different heavy metals (Pb, Cd, Cr, and Ni contents) following the
standard procedure as suggested by Lindsay and Norvell [26]. The estimation was carried
out using DTPA extraction procedure (0.005 M diethylenetriaminepentaacetic acid (DTPA) +
0.01 M CaCl2·2H2O + 0.1 M tri-ethanol amine or TEA), buffered at pH 7.3. Subsequently, the
concentrations of these elements in the soil extracts were analysed by an atomic absorption
spectrophotometer (PerkinElmer PinAAcleTM 900F, Waltham, MA, USA).

To find out the total heavy metal concentrations in different fly ash-soil-ameliorant
combinations, samples were digested (wet acid digestion) with concentrated HNO3, H2SO4,
and HClO4 (5:1:1) at 80 ◦C [29] until the solution became transparent. The digested
samples were filtered through the Whatman No.42 filter paper and the filtrates were
diluted to 50 mL with distilled water. All used reagents were Merck, analytical grade (AR)
including standard stock solutions of known concentrations for different heavy metals. The
heavy metal (Pb, Cd, Ni, Cr) concentrations of these samples were analyzed by an atomic
absorption spectrophotometer. The monochromator was set at the wave-length of 213.9 nm,
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228.8 nm, 232.0, and 357.9 for Pb, Cd, Ni, and Cr respectively at the time of estimation and
the programming was controlled using Perkin-Elmer Gem software (version 7.2.1).

Biological parameters like microbial biomass carbon (MBC) by chloroform fumigation
method [27] and dehydrogenase activity by tri-phenyl formazan (TPF) method [28] were
also measured for different fly ash-soil-ameliorant combinations after 60 days of incubation.

3.4. Soil and Environment Risk Assessment
3.4.1. Contamination Factor (CF)

The contamination factor is a very popular soil index used to measure levels of metal
pollution in soil. This index determines which element represents the highest threat to a
soil environment. The factor is defined as the ratio between the metal concentration in the
soil (CM) and the reference concentration of that same metal in unpolluted soil (CB) [30].
From the generated CF values soil can be classified as “very low contamination” (CF < 1)
to “very high contamination” (CF > 6).

CF = CM ÷ CB (1)

As the reference concentration of heavy metals in unpolluted soil (CB), the DTPA-
extractable Pb, Cd, Ni, and Cr concentrations of the experimental soil (before fly ash
addition) were considered to compute this factor. The corresponding values were 0.79, 0.05,
0.20, and 0.25 respectively.

3.4.2. Ecological Risk Factor (ERF)

The ecological risk factor (ERF) is a very useful index to assess the ecological risk of
an element in the soil and can be obtained using the following Equation:

ERF = TR × CF (2)

where ‘CF’ is the contamination factor and ‘TR’ is the toxic response factor of an element.
The toxic response factors for Pb, Cd, Ni, and Cr are 5, 30, 5, and 2 respectively [30]. ERF
values are divided into five ranges from “low potential ecological risk” for ERF < 40 to
“very high ecological risk” when ERF > 320.

3.5. Statistical Analysis

To meet the normality and additivity criteria of the data set obtained from the ex-
periment were log-transformed and tested by the Shapiro–Wilk test [31]. The significant
differences among the treatments were tested by analysis of variance (ANOVA) at 5%
probability levels (p ≤ 0.05) [32] by Tukey’s test using ‘CRAN R’. Further, to know the per-
formance of the treatments on environmental sustainability, data for contamination factors
and ecological risk factors were also compared by Tukey’s test. To eliminate the outliers
caused by extreme values in the data set for the parameters like bio-availability of HMs at
different incubation stages, contamination factors and ecological risk factors for different
HMs were log-transformed [33]. A boxplot analysis also confirmed the absence of outliers
in the working data set. Lastly, principal component analysis (PCA) and PCA-biplot were
performed with the qualified data set, to screen out the best fly ash-soil-ameliorant combi-
nation which contributes minimum in total bioavailability of heavy metals using ‘CRAN R’
software (tidy verse package). To understand the relationship between bio-available (at
60 days) to total heavy metal (HM) ratios and different forms of HMs, Pearson’s correlation
study was also performed.

4. Discussion

The bio-availability of the four HMs was increased along with the increasing pro-
portion of fly ash in fly ash-soil combinations (Figure 2A2–D2). This is mainly because
of the increased load of HM concentrations [14,33,34]. However, the variation in such
HM contents within different fly ash-soil combinations during incubation (Figure 1) as
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well as after 60 days of incubation (Figure 2) may be related to the HM reduction capacity
of different ameliorants used in this experiment. The decrease in the availability of Pb,
Cd, Ni, and Cr is mainly due to the production of insoluble salts by metals sorption at
higher pH [35,36]. The addition of lime or Na2S increases the pH of the system which in
turn might help reduce the solubility with enhanced sorption and/or precipitation [37,38].
With the application of lime, the chances of the formation and precipitation of insolu-
ble and moderately stable carbonate and hydroxide salts of the metal cations increase in
higher pH (within 7–9). This noticeably immobilizes the bio-available fraction of HMs
and reduced their accumulation in the system [39–41]. On the other side, the application
of Na2S performs this job in two mechanistic ways: first, by forming sodium hydroxide
(NaOH) and hydrogen sulphide (H2S) in the system which immobilizes HMs as metal
sulphide ensuing the reduction with H2S followed by precipitation with NaOH [42], and
second, by producing hydroxides during the dissolution process which in turn form metal
hydroxide and increases pH. This is in the line of work of Lewis [43] who detected such
a mechanism while working with cadmium. Ammonium-based fertilizers like DAP can
potentially acidify the system, because ammonium is readily oxidized to nitrate in high soil
pH, thereby releasing protons [44,45]. Phosphorus in the system with the application of
DAP might have been able to form Pb/Cd/Ni/Cr-phosphate insoluble salts that minimize
the availability of the respective HMs in the system [3,16]. Soil organic matter specifically
humic acid has been of particular interest in this study because of the tendency of transition
metal cations to form stable and strong complexes with organic ligands [46,47]. Thus, the
incorporation of various ameliorants in the treatments helped to immobilize the free ions
of HMs by complexation which in turn reduced its bio-availability in the system [48,49].
Contrarily, A1T0, A2T0, and A3T0 due to lack of ameliorant recorded the opposite trend
with higher HMs accumulation.

Assessment of different ameliorants in reducing bio-availability of HMs showed that
the treatments containing lime performed better (~41% higher decrease in bio-availability
of Pb, Cd, Ni, and Cr) over others in our experiment (Figure 2). Overall comparison of
different fly ash-soil-ameliorant combinations in maintaining less accumulation of bio-
available HMs showed the superiority of A1T1 followed by A2T1 (Figure 4). Differences in
the bio-availability of HMs among different treatment combinations could be attributed
to the sorption capacity of the surface of the ameliorants with concomitant insolubility
of the metal salts. The stability and insolubility of the carbonate and hydroxide salts are
higher than that of the sulphate salts of HMs produced on the application of lime and Na2S
respectively [50]. Na2S application also significantly increases electrical conductivity, salt
pressure, and dispersive action in soils due to increased sodium concentrations [15,51].
Hence, Na2S may deteriorate the physical properties of base materials and reveal their
unsuitability in our conditions. On the other hand, DAP, though mostly preferred, is easily
available fertilizer input to farmers, but potentially acidifies the soil systems [52]. This
ultimately affects the solubility of the metal salts and proved its poor efficiency in reducing
metal bioavailability. Accordingly, lime performed better in reducing bio-available HMs
as compared to DAP and Na2S. Furthermore, on the application of lime, Pb, Cd, Ni,
and Cr may be physically entrapped within a solid matrix resulting from the pozzolanic
reactions between lime and fly ash and leads to lower accumulation of such elements in the
system [15]. Calcium aluminate hydrate and calcium silicate hydrate gels also have formed
here due to the acid-base reaction of calcium from lime with alumina and silica in fly
ash-soil combination [53,54]. Formation of these cementitious products adsorb, exchange,
or encapsulate metals, fill the soil pores, and finally decrease HMs solubility as well as their
bio-availability in the system [15,55]. On the contrary, humic acid could not act well due to
the initial high pH of the system which possibly hampered the stability and insolubility
of humic acid-HM complexes [56,57]. Additionally, adsorption or complexation of HMs
induced by humic acid application also may be revived and/or remobilized into soils
with the microbial degradation of humic matter over time [58,59]. The superiority of lime
as an ameliorating agent in this regard was attested by many researchers for HMs [60]
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smelter-ash contaminated soils [61] as well as for fly ash-sewage sludge [62,63] soils. The
efficacy of lime (at the rate of 5% and 10%) in reducing the bio-availability of Cd (71–99%)
and Pb (61–88%) in an incubation study with metal contaminated soils was also reported
by Mahar et al. (2018). This finding was further supported by the results of the variation in
DTPA extractable HM to total- HM ratios (Figure 3) which showed a higher decrease in
bio-available Pb, Cd, Ni, and Cr contents occurred in the limed treatments (~70% higher
decrease over others) and A1T1 followed by A2T1 recoded the best performance. The
strong correlation between bio-available metal to the ratio of metal bioavailability to total
metal suggests that the changes in the reduction of the ratio are influenced by the bio-
available fraction of metals which is subject to immobilization by different ameliorants
(Table 4).

The potentiality of different treatment combinations in reducing the bio-availability
of HMs was further assessed with PCA results (Table 4, Figure 5). The highest principal
component score of A1T1 (2.32, Table 4) followed by A2T1 (2.13) in PC1 (explained 73%)
indicates its significant performance in reducing bio-available HMs over other variables.
Further, PCA-biplot depicted the presentation of different treatment combinations in
reducing bio-availability of HMs where again A1T1 considered as the best while A3T0, the
poorest (Figure 5). This finding may be attributed to the potentiality of lime in reducing
the bio-availability of HMs as compared to other ameliorating agents. However, a fly
ash-soil-ameliorant combination, to be qualified as the most suitable treatment in reducing
bio-availability of HMs, must exhibit a satisfactory decline in HM accumulation from its
initial in one side, and acts well with minimum risk to the environment, on the other. In
this context, two useful indices, namely, CF and ERF were computed for different treatment
combinations [64]. A1T1 attained the safest limit of CF for Ni, and Cr (CF < 1) and low to
moderate levels for Pb, and Cd. Considering ERF, a similar trend was recorded like CF
where A1T1 showed a low ERF level for all HMs (Figure 6). Again, the finding suggests
that lime is the safest ameliorant while curbing the metal bioavailability in different fly ash
soil combinations (Figures 2–5).

Despite the well-tested ability of chemical amendments to reduce metal bioavailability,
little attention has been paid towards assessing microbial endpoints under the influence
of different treatments administered to contaminated environments. In this context, two
highly sensitive bio-indicators, namely, MBC and dehydrogenase activity were assessed to
detect the impact of treatments of soil microorganisms and their vital activity in the present
investigation. Improvement of MBC load and dehydrogenase activity with the decreasing
rate of fly ash suggests a lower accumulation of reactive metals inhibiting microbial growth
and activities [65,66]. Significant improvement in MBC and dehydrogenase activity under
the influence of different ameliorants in conjunction with different fly ash soil mixtures
(A1 and A2) over sole fly ash (A3) is due to the attainment of low to moderate environ-
mental risk factor (ERF) by lowering deleterious bio-available HMs. Humic acid sustained
significantly the highest MBC and dehydrogenase activity over others as it supplies car-
bon to the microbes to facilitate their growth as well as for energy to perform different
enzymatic activities [67]. Lime-treated fly ash soil mixtures proved their efficacy next
to humic acid to harbor more microbes as reflected in MBC and also facilitate congenial
ecological conditions for performing enzyme activity [68,69]. Accordingly, A1T4 followed
by A1T1 performed the best.

Overall the study thus established the superiority of the A1T1 combination (50% fly
ash + 50% soil+ lime) in reducing bio-availability of HMs along with minimum ecological
risk and improved microbial habitat.

5. Conclusions

Fly ash as soil ameliorant has been a topic of scientific research for a long time and
its performance is well documented as per bibliographic antecedent. Rejuvenating fly
ash at dumping sites for agricultural production by arresting metal mobility through
chemical ameliorants applications is a new approach as per our knowledge. Accordingly,
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to perform this task, fifteen different fly ash-soil-ameliorant combinations were studied
under 60-days incubation to evaluate their effectiveness in reducing the bio-availability
of heavy metals. Fly ash-soil (50% basis) + lime, i.e., A1T1 has been worked out from
the current experimental finding as to the best approach in this direction. In addition,
a low environmental risk factor for Pb, Cd, Ni, and Cr, as well as congenial microbial
ecology for supporting higher MBC load and dehydrogenase activity were achieved by the
conjoint application of lime and 50:50 fly ash-soil mixture. To discern its potentiality, the
applicability of this finding should be tested in situ in the ash pond areas of a power plant
by growing root, leafy, and fruit vegetables for understanding the metal profile in different
vegetable crops in diverse agro-ecological conditions. More so, metal accumulation in
crop plants is to be tested to comply with the World Health Organization guideline for the
permissible limit of metals in the edible portion of crop plants.
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