
insects

Article

Reduced Glutamine Synthetase Activity Alters the
Fecundity of Female Bactrocera dorsalis (Hendel)

Dong Wei 1,2 , Meng-Yi Zhang 1,2, Ying-Xin Zhang 1,2, Su-Yun Zhang 1,2, Guy Smagghe 1,2,3

and Jin-Jun Wang 1,2,*
1 Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection,

Southwest University, Chongqing 400716, China
2 International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of

Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest
University, Chongqing 400716, China

3 Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
* Correspondence: wangjinjun@swu.edu.cn; Tel.: +86-23-6825-0255

Received: 4 May 2019; Accepted: 25 June 2019; Published: 27 June 2019
����������
�������

Abstract: Glutamine synthetase (GS) is a key enzyme in glutamine synthesis and is associated with
multiple physiological processes in insects, such as embryonic development, heat shock response,
and fecundity regulation. However, little is known about the influence of GS on female fecundity in
the oriental fruit fly, Bactrocera dorsalis. Based on the cloning of BdGSs, mitochondrial BdGSm and
cytoplasmic BdGSc, we determined their expressions in the tissues of adult B. dorsalis. BdGSm was
highly expressed in the fat body, while BdGSc was highly expressed in the head and midgut. Gene
silencing by RNA interference against two BdGSs isoforms suppressed target gene expression at
the transcriptional level, leading to a reduced ovarian size and lower egg production. The specific
inhibitor L-methionine S-sulfoximine suppressed enzyme activity, but only the gene expression
of BdGSm was suppressed. A similar phenotype of delayed ovarian development occurred in the
inhibitor bioassay. Significantly lower expression of vitellogenin and vitellogenin receptor was observed
when GS enzyme activity was suppressed. These data illustrate the effects of two GS genes on adult
fecundity by regulating vitellogenin synthesis in different ways.

Keywords: oriental fruit fly; glutamine synthetase; fecundity; L-methionine S-sulfoximine;
vitellogenin

1. Introduction

Glutamine synthetase (GS, EC 6.3.1.2, L-glutamate: ammonia ligase) is widely distributed in
microorganisms, animals, and higher plants, and is involved in many biological processes. It is required
to modulate the level of the neurotransmitter glutamate and the level of glutamine biosynthesis. GS is
also an essential detoxification enzyme in stress and immune responses [1,2]. Recently, a new role
for GS in endothelial cell migration during pathological angiogenesis has been reported in mammals,
beyond that of glutamine synthesis [3]. GS is classified into three distinct form: GSI, which is present
only in prokaryotes; GSII, found in eukaryotes and some prokaryotes; and GSIII, which is present in
anaerobes [4]. In insects, the two types of GS isoforms are mitochondrial GS and cytoplasmic GS, both
belonging to the GSII form [5].

The physiological function of both GS isoforms has seldom been reported in insects. In Drosophila,
mitochondrial GS is necessary in the early stages of embryonic development, and interruption of
GS expression causes female sterility [6,7]. In Aedes aegypti, GS is continuously expressed at all
developmental stages [8], and provides the glutamine needed for the initial steps of chitin biosynthesis
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in the female peritrophic matrix [9]. In Apis cerana cerana, GS is involved in response to environmental
stress, e.g., thermal stress, oxidative stress, and pesticides [2]. In Acyrthosiphon pisum, GS works
with glutamate synthase (Glts) to incorporate ammonium nitrogen into glutamate. This is a key
source of nitrogen, fueling integrated amino acid metabolism in the aphid–Buchnera endosymbiont
partnership [10]. GS is also an important regulator involved in female Nilaparvata lugens fecundity by
activating the target of the rapamycin signal pathway [11,12]. The microRNA miR-4868b also plays a
crucial role in targeting the GS gene in N. lugens [11].

The oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the most economically important fruit
flies. Its high reproductive rate can lead to significant crop losses [13,14]. Two type II BdGSs genes,
mitochondrial BdGSm and cytoplasmic BdGSc, have been cloned from B. dorsalis, and the function
of BdGSc in larval development has been studied [15]. Their high expression in adults indicates an
important role in the adult stage. In this study, we provide experimental evidences demonstrating that
BdGSm and BdGSc are functionally involved in B. dorsalis fecundity.

2. Materials and Methods

2.1. Insects

A stock colony of B. dorsalis was collected as pupae from Haikou, Hainan Province of China, in
2008, and then continuously maintained in our laboratory. The larvae and adults were cultured on an
artificial diet at 27.5 ± 0.5 ◦C, relative humidity of 75 ± 5%, and 14 h light: 10 h dark photoperiod [16].
All insects used for experiments were of the same age.

2.2. Gene Expression in Adults

Both BdGSs genes, BdGSm and BdGSc, are expressed at high levels in adult B. dorsalis [15]. In this
study, we detected their expressions during maturation of the adult stage. Newly emerged adults were
caged, and female and male adults were maintained separately. Virgin female and male adults at 0
to 10 d were collected for total RNA isolation using TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
according to manufacturer’s instructions. The quality was evaluated by a NanoDrop One instrument
(Thermo Fisher Scientific, Madison, WI, USA). After genomic DNA digestion with RQ1 RNase-free
DNase (Promega, Madison, WI, USA), the RNA samples were used for first-strand complementary
DNA synthesis using a PrimeScript kit (Takara, Dalian, China). The relative expression of both BdGSs
genes was calculated by a quantitative real-time polymerase chain reaction (qRT-PCR) protocol as used
in previous studies [17,18], with a CFX384 Optics Module (Bio-Rad, Singapore). The qRT-PCR reaction
was carried out in a 10 µL reaction volume including 5 µL of Novostar-SYBR Supermix (Novoprotein,
Shanghai, China), 3.5 µL of nuclease-free water, 0.5 µL of cDNA (400–500 ng/µL), and 0.5 µL each
of forward and reverse primers (10 µM). A melting curve analysis from 60 to 95 ◦C was conducted
at the end to ensure the specificity and consistency of all generated products. The fragments of 185
and 150 bp from BdGSm and BdGSc were selected for qRT-PCR [15]. Alpha-tubulin was used as an
internal reference gene [19]. Thereafter, the head, thorax, midgut, fat body, Malpighian tubules, and
ovary tissues from 9-day-old virgin female adults were dissected in phosphate-buffered solution (PBS,
pH = 7.2) for total RNA isolation as above. The relative expressions of both BdGSs genes among the
adult tissues were also analyzed by qRT-PCR. The gene expression in adults post-eclosion and gene
expression among tissues were conducted with three biological replicates, and analyzed by qBase Plus
software (Biogazelle, Ghent, Belgium) [20].

2.3. RNAi Bioassay

The specific fragments of 497 and 345 bp from the open reading frame of BdGSm and BdGSc
were selected and amplified, respectively. The primers of BdGSc were the same as in a previous
study [15], and the primers of BdGSm were as follows: forward (5’→3’) taatacgactcactataggg
GAACCTTGGTTCGGCATTG, reverse (5’→3’) taatacgactcactataggg CCTACGATCCAAAGGAAGG.
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These fragments show a short overlap with the region for qRT-PCR. Both BdGSs gene-specific
double-stranded RNAs were synthesized using the Transcript Aid T7 High Yield Transcription Kit
(Thermo Scientific, Vilnius, Lithuania). Three batches of females (30 individuals in each) were injected
with gene-specific dsRNA of both BdGSs genes at 2-, 4-, and 6-day-old three times with 2 µg dsRNA
each. Females injected with the same amount of dsGFP were used as a negative control. One batch
of injected females was used for total RNA isolation and cDNA preparation as above. The RNAi
efficiencies were determined and calculated by qRT-PCR with three biological replicates. The gene
expression between control and treatments were analyzed using the 2−44Ct method [21]. Twenty
of the second batch of injected females were dissected in PBS. The ovaries were observed under a
binocular stereoscope (KEYENCE, VHX-S550E, Osaka, Japan), and the sizes of each pair of ovaries
were calculated according to the mean diameter of each ovary. Thirty of the third batch of injected
females were exposed to males of the same age for mating. Ten mated females were randomly selected
and separately reared for egg production. Subsequent egg-laying was recorded using a previously
described method [14]. Briefly, the orange juice in pored Eppendorf tube was used as the attractant in
the container, and the number of eggs was recorded every day. The difference of the RNAi efficiency
and the mean number of eggs laid per female individual was analyzed using a Student’s t-test (P < 0.05)
and SPSS 19.0 (IBM, Chicago, IL, USA).

2.4. The MSX Bioassay

The GS-specific inhibitor, L-methionine S-sulfoximine (MSX, Sigma, Shanghai, China), which
irreversibly blocks the catalytic activity of GS [12], was used to observe the gene expression and
enzymatic activity in B. dorsalis adult females. Three groups (30 individuals in each) of newly emerged
adult females were reared on an artificial diet for two days and then reared with 10 µL/fly of MSX-added
solution at three doses of 0.5, 1.0, and 2.5 µM every day. Flies fed on a diet with only purified water
added were used as the control. One group of the test female flies was collected after five days of MSX
feeding (8-day-old) for gene expression and enzymatic activity determination. The total RNA isolation
and RT-qPCR were conducted and analyzed as above to study the gene expression. Enzymatic activity
was determined using the GS enzyme reagent kit (Solarbio, Beijing, China) according to manufacturer’s
instructions and the methods as used in a previous study [15]. Thirty of the second group of females
were collected for ovary dissection in PBS. Ovary diameter was the parameter used to evaluate female
ovarian size as described above. The third group of females was collected and allowed to mate with
males of the same age. Mating successes were recorded, and the fecundity of the mated females
was calculated based on the number of eggs laid for at least five days. The analysis of the ovarian
size was performed in the same manner as in the RNAi bioassay. The expressions of two marker
genes, vitellogenin (BdVg1, AF368053) and vitellogenin receptor (BdVgR, JX469118) [18,22], were thereafter
detected by qRT-PCR. Three biological replicates were performed.

2.5. Statistical Analysis

The significant differences of both BdGSs genes expressions among tissues were evaluated by
one-way analysis of variance (ANOVA) with a Turkey LSD using SPSS 19.0 (IBM, Chicago, IL, USA)
(P < 0.05). The gene expression and enzymatic activity of females feeding with MSX were also analyzed
by one-way ANOVA. The significant differences of the RNAi efficiency, the diameter of the ovaries, the
mean number of eggs laid per female individual, and two marker genes’ expressions were analyzed
using Student’s t-test (P < 0.05).

3. Results

3.1. Gene Expression during Sex Maturation

The gene expression data showed that both BdGSs genes were widely expressed in the adult
stages (Figure 1). We then determined their expressions in various tissues of 9-day-old female adults.
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Relative expression profiling showed that BdGSm was prominently expressed in the fat body of female
adults, while BdGSc was highly expressed in most of the tested tissues except for the reproductive
tissue (Figure 2). The difference in expression may indicate different roles in B. dorsalis female adults.
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Figure 2. Gene expression of BdGSm and BdGSc among tissues from 9-day-old female adults. HE,
TH, MG, FB, MT, and OV stand for head, thorax, midgut, fat body, Malpighian tubules and ovary,
respectively. The gene expression was calculated by qBase Plus software. The bar represents the mean
gene expression and the error bar represents the positive standard error of the mean. A different letter
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(P < 0.05).

3.2. RNAi Bioassay

We used RNAi to investigate the potential roles of BdGSm and BdGSc in the female fecundity
of B. dorsalis. The results indicated that both BdGSs genes can be suppressed by gene-specific
double-stranded RNA injection. The silencing efficiencies of BdGSm and BdGSc were 75.4% and 71.8%,
respectively, in B. dorsalis adults (Figure 3A), after three serial injections with dsRNA at 2-, 4-, and
6-day-old. To investigate their roles in female fecundity, the GS-suppressed females were dissected
for ovarian size determination. The average ovarian size of the residual females was smaller in the
dsRNA-BdGSs group than in the control group (P = 0.015, Figure 3B). The frequency of ovarian size
differed between categories. In the control, 60% of the ovaries were >1.3 mm, while 30% were >1.3 mm
in the BdGSm-silenced group, and only 15% were >1.3 mm in the BdGSc-silenced group (Figure 3C). It
appears that both BdGSs genes are involved in the ovarian development of B. dorsalis females.
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Figure 3. The silencing efficiency for the two BdGSs (A), ovarian diameter (B), and the frequency of the
ovarian size (C) after three subsequent double-stranded RNA injections. The gene expression in the
control group was calculated and normalized to be 1. The bar represents the mean gene expression, the
mean ovarian diameter, and the frequency of ovarian size category (n = 20). The error bar represents
the positive standard error of the mean. The asterisk above the bar indicates the significant difference
compared with the control as analyzed by Student’s t-test using SPSS 19.0 (* P < 0.05; *** P < 0.001).
The bars in panel C represent the frequency of ovarian size of each category.

Females injected with dsRNA three times were mated with wild males and the eggs were counted
for five days. There was no difference in mating success between any target gene silencing treatment
and the control. The daily number of eggs in the silenced treatments was less than that in the control,
but the daily counts were similar. However, the total number of the eggs over the five days of
oviposition was significantly less in the silenced treatments than in the control group (Figure 4).
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Figure 4. Egg-laying of females when silenced by double-stranded RNA of BdGSs. The bar represents
the mean number of eggs (n = 10), and the error bar represents the positive standard error of the mean.
The asterisk above the bar indicates a significant difference compared with the control as analyzed by
Student’s t-test using SPSS 19.0 (* P < 0.05).

3.3. MSX Feeding

When females were fed a high dosage of MSX inhibitor, BdGSm and BdGSc were influenced.
The expression of BdGSm was significantly downregulated by a high dosage of MSX, showing a
dose-dependent effect (Figure 5A), while the expression of BdGSc was not affected by the MSX inhibitor
(Figure 5B). The enzyme determination results showed that the enzyme activity was significantly
inhibited at low and high dosages of the inhibitor (Figure 5C).
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Figure 5. Gene expression of BdGSm (A) BdGSc (B) and enzymatic activity of glutamine synthetase
(C) in Bactrocera dorsalis after feeding on the MSX inhibitor. Gene expression was calculated by qBase
Plus software. The bar represents the mean gene expression and the error bar represents the positive
standard error of the mean. A different letter on the bar indicates a significant difference analyzed by
one-way analysis of variance with a Tukey LSD test using SPSS 19.0 (P < 0.05).

To confirm that enzyme inhibition suppresses ovarian development, we dissected the ovaries of
females fed on a high dose of MSX and measured their sizes. The ovarian diameter size of the MSX-fed
females was significantly smaller than that of the control (P < 0.001, Figure 6A). The frequency of each
subcategory differed between treatment and control group (Figure 6B). Similar to the RNAi assay, most
of the ovaries in the control group were >1.0 mm, while in the MSX group, most of the ovaries were
<1.0 mm. The gene expression of a vitellogenin (BdVg1) and vitellogenin receptor (BdVgR) was detected,
and strong suppression of both BdGSs genes was observed in the high-dose MSX treatment group
(Figure 6C).
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Figure 6. Ovarian diameter (A) and frequency of the ovarian size (B), and the expression of a vitellogenin
and its receptor BdVgR (C) in female adults fed a high dose of 250 mM MSX. The bar represents the
mean ovarian diameter (n = 20), frequency of each ovarian size category, and the mean gene expression,
respectively. The error bar indicates the positive standard error of the mean. The expressions of two
marker genes were calculated by qBase Plus software. The asterisk on the bar indicates the significant
difference analyzed by a Student’s t-test using SPSS 19.0 (* P < 0.05, ** P < 0.01, *** P < 0.001).

4. Discussion

Glutamine synthetase converts glutamate and ammonia to glutamine. GS shows negligible
glutamine-synthesizing activity in cells at physiological glutamine levels [3], suggesting other roles
in insects. In B. dorsalis, GS is involved in the larval development, possibly by regulating ecdysone
synthesis [15]. In the present study, we determined the expression of two BdGSs genes during the
sexual maturation period of adults, and these genes were widely expressed at different ages of adults.
In A. aegypti, GS was also constitutively expressed at all stages [8]. Different isoforms of GSs are
expressed in a tissue- and/or development-specific manner which may be involved in distinct biological
activities. In A. aegypti, the expression increased after a blood meal, indicating active protein synthesis
in vitellogenesis [8]. It has been reported that the size of B. dorsalis ovary changed greatly during the
development [23]. The high expression and enzyme activity of two BdGSs genes may also indicate
high protein synthesis in female adults due to vitellogenesis, while the mitochondrial GS is mostly
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involved in energy metabolism. For example, in Drosophila embryo development, mitochondrial GS is
highly expressed in the epidermis and in muscle [5].

Isoform differences also result in different tissue-specific expression. For instance, we found
that BdGSm was highly expressed in the fat body, while BdGSc was highly expressed in the head
and midgut. Tissues of fat body and midgut efficiently incorporate ammonia into amino acids using
specific metabolic pathways in A. aegypti [24]. In the fat body, ammonia is first incorporated into the
amide side chain of glutamine (Gln) and then into the amino group of glutamic acid (Glu), alanine
(Ala), and proline (Pro) by a glutamine synthetase (GS) and glutamate synthase (GltS) pathway
(GS/GltS pathway). By contrast, ammonia in the midgut is firstly incorporated into the amino group
of Glu and Ala, and then into the amide side chain of Gln. Interestingly, the GS/GltS pathway is not
functional in the midgut. GS participates in many biological processes, such as cell growth, energy
metabolism, protein and nucleotide synthesis, and immune response [2]. All cells express GS genes
but the expression varies according to developmental stage and tissues [8,25]. Similar to BdGSs in B.
dorsalis, two GSs had different expression patterns in D. melanogaster tissues [5]. Surprisingly, BdGSc
was highly expressed in the head of B. dorsalis. A high expression of GS has also been found in the
neural tissues of A. aegypti [26]. This finding suggests a similar neural expression and function in B.
dorsalis and A. aegypti. High expression in neural tissues and the head were also observed in Schistocerca
gregaria and Apis cerana [27]. These differences between the two GS isoforms indicate their different
roles in insects.

In A. aegypti, the GS provides the glutamine that is essential for the first step of chitin synthesis in
the female A. aegypti peritrophic matrix [9]. Expression of GS in the gut can be induced by a blood
meal [8]. High expression of BdGSc in the midgut may play a similar role in chitin synthesis. In
addition to the high expression of BdGSc in larvae, high expression of both BdGSs genes was also
observed in adults, especially BdGSm [15], indicating they have critical functions in adult stage. In the
present study, we silenced target gene expression using RNAi to suppress both BdGSs genes. This
resulted in a smaller female ovary. The significantly decrease of ovarian size indicated a developmental
delay though form remained normal. Subsequent egg-laying was also significantly influenced by gene
silencing, but the most likely reason was the slowed ovary development. The effect of gene suppression
on egg-laying was repeatable in two independent experiments, and a stronger suppression of ovary
development was found in the BdGSc treatment.

We inhibited enzyme activity by feeding adults the GS-specific inhibitor MSX. The enzyme
activity was significantly inhibited by MSX, but the expression of BdGSm was only inhibited to a
low transcriptional level by a high dose of MSX. The mechanism behind the decrease is unclear.
MSX-induced glutamine starvation may induce amino-related energy metabolism in the fat body
where BdGSm is highly expressed. The limited glutamine was used for basic metabolism, such as
nutrition absorption and neurophysiological activity in the gut and head, where BdGSc is highly
expressed. Hence, the expression of BdGSc was still at a high level comparable to the control. Similar
to BdGSc, the GS expression was also not influenced by MSX injection in N. lugens [12]. The fat body
is important for reproduction, for example, in vitellogenin synthesis [28]. When we observed the
reproductive system of female flies, we found a similar delayed ovarian development. To study the
reason for this reproductive inhibition, vitellogenin was used as an index, and it was expressed at a
lower transcriptional level. The expression data showed that two BdGSs were differentially expressed
in the tested tissues. The mechanisms behind the same downstream role and phenotype may differ
in the two target gene RNAi bioassays. BdGSm can regulate vitellogenin synthesis in the fat body
directly, while BdGSc can regulate ovarian development by regulating amino acid metabolism in the
gut. The regulation of female fecundity by GS was also demonstrated in N. lugens [29], in which RNAi
experiments changed the ovarian development of N. lugens. The mechanism of GS in regulating female
fecundity appears to be complex. Functional analysis showed that a microRNA (miR-4868b) regulates
ovarian development by targeting GS in N. lugens [11]. Gene silencing by RNAi also resulted in lower
expression of the Vg gene in N. lugens [29]. A similar lower expression of BdVg1, as well as its receptor
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BdVgR, was also found in this study. Other research on GS in N. lugens showed that Gln can activate
the target of rapamycin (TOR) signal pathway by promoting the serine/threonine protein kinase AKT
and inhibiting 5′ AMP-activated protein kinase AMPK phosphorylation activity [12]. These findings
demonstrate that GS is an important biomarker in the fecundity of female insects.

5. Conclusions

Previous studies indicated that glutamine synthetase (GS) plays a critical role in insects, especially
in female fecundity. Two BdGSs are stably expressed in adult B. dorsalis in a tissue-specific manner.
RNAi and GS-specific inhibitor bioassays delayed ovarian development and lowered egg production
in adult female B. dorsalis. Both mitochondrial BdGSm and cytoplasmic BdGSc are involved in female
fecundity. Considering their important roles in larval metamorphosis, GS genes may be targets for
future insect control technologies.
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