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A B S T R A C T

The massive amount of biomedical information published online requires the development of automatic
knowledge discovery technologies to effectively make use of this available content. To foster and support this,
the research community creates linguistic resources, such as annotated corpora, and designs shared evaluation
campaigns and academic competitive challenges. This work describes an ecosystem that facilitates research and
development in knowledge discovery in the biomedical domain, specifically in Spanish language. To this end,
several resources are developed and shared with the research community, including a novel semantic annotation
model, an annotated corpus of 1045 sentences, and computational resources to build and evaluate automatic
knowledge discovery techniques. Furthermore, a research task is defined with objective evaluation criteria, and
an online evaluation environment is setup and maintained, enabling researchers interested in this task to obtain
immediate feedback and compare their results with the state-of-the-art. As a case study, we analyze the results of
a competitive challenge based on these resources and provide guidelines for future research. The constructed
ecosystem provides an effective learning and evaluation environment to encourage research in knowledge
discovery in Spanish biomedical documents.

1. Introduction

The exponential growth of the Internet in the last decades has
produced a massive surplus of textual information in all areas of human
endeavor. This scenario presents both an opportunity and a challenge
for researchers. On the one hand, a growing body of scientific literature
is readily available, where potential solutions for critical problems
could be found by linking partial results published in distinct docu-
ments. On the other hand, the extent of the information available
cannot be processed by humans alone in a reasonable time frame.
Hence, efforts have recently been directed towards designing automatic
techniques that can discover relevant pieces of information in large
corpora, make logical connections, and synthesize useful knowledge.
The first step in many of these techniques involves the collection,
processing and annotation of data that can be used to train machine
learning algorithms or build expert systems through the use of natural
language processing techniques.
The digital health sector is of great interest to the research com-

munity given the potential social benefits derived from applying

automatic knowledge discovery technologies. The research community
has produced a large number of annotated corpora in different sub-
domains of this sector, from specific (e.g., drug-disease [1] or gene-
protein interactions [2]) to broad in scope and domain (e.g., clinical
trial reports [3]). Domain-specific corpora and technologies are of cri-
tical importance in high-precision medicine. However, systems built for
very specific domains are arguably harder to generalize and extend
than systems built on general-purpose conceptualizations. As such,
there is a growing interest in designing annotation models and corpora
with general-purpose semantics that can be used in a variety of domains
or as a component in more specialized systems.
Besides domain, language is another dimension that has been the

focus of recent research. Most of the largest linguistic resources are
based on English sources, motivated in part by the abundance of
available raw material (e.g., online encyclopedias, research papers),
which is not surprising given that English is the most predominant
language in science, technology and communications. However,
English-based resources are not always directly applicable to other
languages. Even though automatic translation has reached impressive
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accuracy in open domains, it is still a challenge to create cross-language
resources, such as with Spanish, which is less predominant in technical
domains [4]. Instead of focusing on specific niche languages, one pos-
sible line of research is designing resources that are language-agnostic,
in the sense that they can be generalized to multiple languages with
little effort, by virtue of being based on underlying common char-
acteristics shared by many languages.
Designing annotation models that can generalize to multiple do-

mains requires deciding on a basic representation of language that
covers a broad range of semantics. Moreover, these representations
should be as independent of syntax and grammatical rules as possible, if
they are expected to generalize to multiple languages. Recent work [5]
suggests that Subject-Action-Target triplets can be used to detect a large
number of semantic interactions in natural language, independent of
domain and relatively independent of language, since more than 75% of
human languages employ some variation of the Subject-Verb-Object
grammatical structure [6]. Likewise, several ontological representa-
tions often agree in a number of general-purpose relations, (e.g., is-a
hyponyms, part-of holonyms) that are useful in any domain. Other
conceptualizations allow the capture of semantics closer to natural
language, such as Abstract Meaning Representation, AMR [7]. The
construction of corpora annotated with general-purpose semantic
structures like Subject-Action-Target and high-level ontological rela-
tions is the first step in the design of systems that can discover
knowledge automatically in a variety of domains and scenarios.
Research in knowledge discovery requires not only linguistic re-

sources (e.g., annotated corpora) but also computational resources and
infrastructures that enable researchers to systematically evaluate their
results and compare them objectively with alternative approaches. This
involves the formal definition of tasks and the design of objective
evaluation metrics that ensure fair comparison is possible. Even better
is a publicly available evaluation system where researchers can submit
their results, guaranteeing the same evaluation criteria is applied and
freeing researchers from reproducing the evaluation environment. Such
a system would also guarantee a more transparent and reproducible
research process, and would provide a centralized repository of existing
approaches, helping new researchers to update on the state-of-the-art.
This research focuses on the construction of an ecosystem for sup-

porting the development of eHealth Knowledge Discovery (eHealth-KD)
technologies. This ecosystem consists of linguistic resources, such as the
definition of an annotation semantic model and corpora; tools and in-
frastructure for deploying and testing systems; and, evaluation metrics
to allow fair comparisons. Concretely, the contributions of this research
are:

• The definition of a semantic model and a related annotation model
to capture broad sentence semantics in natural language text.
• The development of the eHealth-KD v2 corpus [8], a manually an-
notated corpus of Spanish language sentences in the health domain,
and an analysis of its characteristics and quality metrics.
• A formal definition of a knowledge discovery task based on this
corpus, as well as evaluation metrics for two different subtasks of
interest.
• The development of an infrastructure to support the creation of

systems for the aforementioned task, including baseline systems and
tools; and an online service for the automatic and continuous eva-
luation of new techniques.
• An in-depth analysis of several existing systems evaluated in this
ecosystem, providing insights on the most promising strategies and
outlining interesting directions for future research.

The remainder of the paper is organized as follows. Section 2 pre-
sents the most relevant related works in the scientific literature, in-
cluding annotated corpora, technologies and tools to support the de-
velopment of knowledge discovery systems, and evaluation scenarios,
campaigns and challenges in this area. Section 3 introduces the anno-
tation model used in the eHealth-KD v2 corpus, the annotation process
and the main characteristics of the corpus obtained. Section 4 defines a
computational task based on the corpus with objective evaluation me-
trics, and describes an existing infrastructure available for researchers
aiming at solving the proposed task. Section 5 analyses existing systems
for solving this task, highlighting the most promising approaches.
Section 6 discusses the most relevant aspects of the whole research,
lessons learned, and limitations. Finally, Section 7 presents the con-
clusions and recommendations for future research.

2. Related work

In this section we analyze the elements that contribute to a suc-
cessful research in knowledge discovery, specifically in health-related
domains. Section 2.1 discusses relevant linguistic resources available
for researchers in this area, including annotated corpora and related
semantic models, both in general-purpose domains and specifically for
the health domain. Section 2.2 presents a brief comparison of existing
technologies to support the construction of linguistic resources, i.e.,
annotation tools. Finally, Section 2.3 explores the role of competitive
evaluation campaigns and challenges in fostering research in this area,
and summarizes previous efforts in this respect.

2.1. Linguistic resources for knowledge discovery in eHealth

Different semantic relations have been established in the state of the
art, many of these giving rise to the construction of corpora. We focus
on two approaches: corpora or annotation models to represent knowl-
edge in many domains as well as those specifically about health. The
Table 1 presents the seven characteristics relevant to our corpus and
indicates which of them are present in a sample of corpora from the
state-of-the-art. These characteristics can be understood in the fol-
lowing terms:

1. general-purpose annotation: applicability of the underlying annota-
tion model to any domain;

2. independence of syntax: capturing semantic aspects rather than syn-
tactic relations in sentences;

3. ontological knowledge: supporting inheritance and composition be-
tween concepts;

4. composite concepts: allowing the annotation of concepts that involve
other sub-concepts;

Table 1
Comparison between the eHealth-KD v2 corpus and other corpora with respect to the characteristics that define our proposal.

Characteristics Ixa MedGS [9] DrugSemantics [10] DDI [11] Bio AMR [12] YAGO [13] ConceptNet [14] eHealth-KD v1 [15] eHealth-KD v2

1 general-purpose annotation ✓ ✓ ✓ ✓ ✓
2 independence of syntax ✓ ✓ ✓ ✓ ✓ ✓ ✓
3 ontological knowledge ✓ ✓ ✓ ✓ ✓
4 composite concepts ✓ ✓ ✓
5 attributes ✓ ✓ ✓ ✓ ✓
6 contextual relations ✓ ✓
7 causality/ entailment ✓ ✓ ✓ ✓
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5. attributes: modeling attributes for each annotated entity such as
quantifiers (e.g., number of occurrences) or qualifiers (e.g., degree
of certainty);

6. contextual relations: modeling relations that only occur when con-
ditioned by a specific context; and,

7. causality/ entailment: including relations for representing causality
and/or entailment.

General-purpose annotation. General-purpose annotation models are
often used in corpora extracted from encyclopedic sources, such as
YAGO [13] and ConceptNet [14], both of which contain facts auto-
matically extracted from Wikipedia (among other sources). In contrast,
domain-specific annotation models are usually employed when the
source is more restricted to a specific domain. Examples include Ixa
MedGS [9], which contains health related concepts for diseases, causes
and medications; DrugSemantics [10], which annotates health entities,
drugs and procedures; and, DDI [11], which annotates drug-drug in-
teractions. A middle ground is the Bio AMR [12] corpus, which applies a
general purpose annotation model (AMR) [7] to health documents. The
eHealth-KD v2 corpus is similar to the latter in this respect, since the
annotation model defined is general, but it is applied specifically to
health sentences in this research. The eHealth-KD v2 corpus constitutes
the result of the evolution of the eHealth-KD v1 [15] corpus.
Most of the aforementioned resources are focused on capturing the

semantics of sentences, in the sense that very different sentences with
the same facts are likely to be similarly annotated. We consider BioAMR
less independent of syntax because even though AMR is a semantic
annotation model—far more abstract than dependency parsing, for
example—, it still relies heavily on sentence grammatical structure.
Hence, a significant change in the sentence structure is likely to change
the annotation, even if the underlying semantic message remains un-
changed. For example, since AMR uses PropBank [16] roles, changing a
word for a semantically similar word, including a synonym, will
probably change the corresponding annotation and thereby the avail-
able roles. This also makes AMR and similar resources language-de-
pendent, not only in practice given their dependence on the existence of
word banks, but also in nature. While attempting to apply AMR in
Spanish, Migueles-Abraira et al. [17] show that even though AMR is
theoretically language-agnostic, the existing annotation guidelines are
biased towards English and must be adapted to capture linguistic
phenomena that don’t exist in English. The annotation model designed
in this research for the eHealth-KD v2 corpus, attempts to achieve a
higher level of syntactic independence, in part by using a smaller set of
entities, relations and roles than AMR. More specifically, our annotation
model does not distinguish semantic roles for each possible Action,
instead relying on general purpose roles (i.e., subject and target,
see Section 3.1).

Ontological knowledge. General-purpose annotation models often
allow ontological knowledge to be represented in the form of in-
heritance and composition between concepts. In this context, we con-
sider the ability to recognize and annotate these ontological relations in
the source text. Health-related annotation models do not usually deal

with this problem, mainly because the entities and relations to annotate
form a predefined ontology where composition and hierarchy, if any
exist, are already conceived in the annotation model itself. However,
general purpose annotations often include relations like ConceptNet’s
is-a or part-of that directly represent these ontological concepts,
and are thus able to extract ontological representations from natural
text.

Composite concepts. The model designed for the eHealth-KD v2 corpus
also includes relations specifically for this purpose, mostly inspired by
ConceptNet and YAGO. Composite concepts, in contrast, refer to the
ability to annotate concepts that are formed by a fine-grained combi-
nation of other entities, in the same sentence. For example, take the
sentence: “the doctors that work the night shift get paid extra hours”. AMR
allows for the representation of the concept that not all doctors, but
only those that work the night shift, are the ones who get paid extra
hours. Our proposal also includes several annotation patterns to deal
with this type of scenario.

Attributes. Attributes are often used to further refine the meaning of
annotated entities. Examples include quantifiers in AMR, or modifiers
that specify a degree of uncertainty, or a negation of a concept. Our
proposal includes four general-purpose attributes that model un-
certainty, negation and qualifiers for expressing emphasis.

Contextual relations. Contextual relations, as defined in the eHealth-
KD v2 corpus, allow facts that only occur under certain conditions to be
represented, for example, in a specific time frame or location or under
certain assumptions. This allows for a finer-grained semantic annota-
tion. BioAMR inherits this ability from AMR, which allows modifiers for
expressing how, when, where or why some event occurs. In our proposal,
we provide contextual relations that specify time and location, and an
additional general-purpose relation for other conditions.

Causality and entailment. Causality and entailment are general-pur-
pose relations that allow some level of inference or reasoning. The Ixa
MedGS corpus defines a causes relation, since it is relevant in the
domain the corpus is modeling. Likewise, AMR and ConceptNet include
similar relations. Our proposal includes both causality and entailment
as two different relations with well-defined semantic meanings.

2.2. Technologies for annotation and resource distribution

An important element to consider in Knowledge Discovery research
is the existence of computational resources and infrastructure that
supports the development of new approaches. The creation of linguistic
resources often stems from a process of manual annotation by human
experts, which requires computational tools for the actual annotation as
well as mechanisms for merging annotations and computing agreement,
ideally in a collaborative environment. Once the resources are created,
it is necessary to distribute the corresponding corpus, baselines, and
tools among the research community, often through online source code
sharing platforms.
An extensive analysis and comparison of several annotation tools is

provided in Neves and Ŝeva [18]. Table 2 summarizes the main char-
acteristics we considered relevant for this research and identifies the

Table 2
Qualitative comparison of popular annotation tools. Adapted from Table 3 in Neves and Ŝeva [18], Table 3. A symbol ≈ indicates that the corresponding feature is
only partially supported.

Characteristics GATE Teamware Knowtator WebAnno Brat BioQRator CATMA prodigy TextAE LightTag Djangology MyMiner WAT-SL

multi-label annotations ✓ ✓ ✓ ✓ ✓
relation annotations ✓ ✓ ✓ ✓ ✓ ✓ ≈
allows custom model ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
collaborative interface ✓ ≈ ≈ ≈ ≈ ≈ ✓ ✓ ≈
web-based interface ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
can be self-hosted ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
open source license ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
citation [21] [22] [20] [19] [23] [24] [25] [26] [27] [28] [29] [30]
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most appropriate annotation tool among a subset of popular alter-
natives. We consider as requisites web-based, open source annotation
tools that allow multi-label span annotations as well as relation anno-
tations. Support for collaborative annotation, at least partially, is also
highly desirable. Of the analyzed tools, we identified Brat [19] and
WebAnno [20], as they comply with all the aforementioned requisites.
In our research, we preferred Brat to WebAnno because, even though
WebAnno provides more features, Brat allows an easier setup. It is not
only faster to start an annotation project using this tool, but also to train
annotators to use its interface.
The public distribution of annotated corpora and related resources,

e.g., baselines, evaluation scripts, loading and formatting scripts, etc., is
often enabled via open source code sharing platforms. Arguably the
most popular options are Github1 and Gitlab,2 which provide similar
features despite minor differences in their core business models. It is
also possible to share the corresponding resources via institutional
hosting platforms or other ad-hoc solutions. This could be convenient in
the case of legal requirements, complex licenses that are incompatible
with open source idiosyncrasies or any other consideration that dis-
allows full public sharing. In our case, all resources are publicly avail-
able in a collection of Gitlab repositories.3

2.3. Evaluation campaigns

A strategy often used to encourage research on a specific task is the
organization of a shared evaluation campaign. In contrast with regular
research, evaluation campaigns often have a fixed time frame, and
evaluation resources are not fully disclosed (e.g., gold annotations for
test sets are hidden) to allow a fair comparison in a friendly competitive
environment. In this section, we analyze relevant efforts for organizing
evaluation campaigns for both the biomedical domain or for dealing
with entity and relation extraction.
Several online services allow researchers to organize machine

learning challenges and competitions, providing automatic grading,
user management, and other useful features. Kaggle4 is arguably the
most popular choice, its main limitation for our purposes being that to
host a challenge, organizers must contact the service providers. Possible
alternatives are AIcrowd5 and Codalab6 which provide free options for
challenge organizers.
The CLEF eHealth Evaluation Lab has proposed several challenges

in the biomedical domain, including named entity recognition [31] and
information extraction [32] in English, and later editions in French
documents [33,34]. In these challenges, medical reports from MED-
LINE, EMEA and similar sources are annotated with disorders, medical
terms, acronyms and abbreviations, which provide evaluation scenarios
for several NLP tasks, including entity recognition, normalization and
disambiguation. Another relevant task is proposed by May and Priya-
darshi [35] in Semeval 2017, focused on AMR parsing and generation
from biomedical sentences in English. Applying a general-purpose
conceptualization, such as AMR, to specific domains encouraged par-
ticipants to bridge the gap between developing generalizable techni-
ques and applying domain-specific heuristics. However, AMR parsing is
already a complex problem in itself, which can negatively impact on
researcher participation in these challenges if they are not specialized
in AMR. Simpler, general-purpose models can encourage a greater de-
gree of participation given the easier entry curve. An example of the
latter is the Semeval 2017 Task 10 [36], a challenge regarding key-
phrase and relation extraction from scientific documents, with a simple

model based on three entity classes and two general-purpose relations.
This task received a much larger number of submissions than the
former, even though both challenges where hosted on the same venue
and aimed at similar audiences.
As can be expected, English is the most prominently used language

in NER-related challenges, given the larger number of available corpora
and resources. However, important efforts have been devoted to fos-
tering research in less prominent languages. Relevant to our discussion
are the IberLEF campaigns that focus on Iberian languages, such as
Spanish, Portuguese, Catalan, and other regional variations. Two ex-
amples of recent NER-related tasks are the Portuguese Named Entity
[37] challenge and the MEDDOCAN [38] document anonymization
challenge. The first proposes entity recognition and relation extraction
in the general domain, in Portuguese. The second proposes the identi-
fication of privacy-sensitive entity mentions in medical documents, e.g.,
names, addresses, dates, ages, etc. Finally, related to the eHealth-KD v1
and v2 corpora, two challenges have been proposed, respectively in the
TASS 2018 Workshop [39] and IberLEF 2019 [40] editions. These
challenges introduced the task described in Section 4, which gathered
significant attention from the NLP research community focused on
processing Spanish language. Relevant results for the latest edition are
discussed and analyzed in Section 5.
Outside the frame of a competition, open, long-running evaluation

systems allow researchers to evaluate their approaches with official
evaluation metrics. This can also provide a centralized repository of the
state-of-the-art, where existing approaches are summarized and linked
to existing papers. In this regard, this research proposes an online
evaluation system that allows a comparison of new approaches with
officially published results at any time. Based on this infrastructure,
official evaluation campaigns with a more competitive design are or-
ganized in scheduled time-frames.

3. The eHealth-KD v2 corpus

This section presents the eHealth-KD v2 corpus, its main design de-
cisions, annotation process, and relevant evaluation criteria. Section 3.1
describes a novel annotation model defined for this corpus that captures
sentence-level semantics without resorting to domain-specific labels.
Section 3.2 describes the annotation process of the corpus, and Section
3.3 presents a statistical analysis and relevant quality metrics. The
corpus is available online for download7 and shared in an open access
repository [8].

3.1. Annotation model

The annotation model defined for the eHealth-KD v2 corpus draws
inspiration from several resources. The main source of inspiration is the
eHealth-KD v1 corpus [15], annotated with a more restricted version of
this model, whose main limitations in terms of expressibility are tackled
by our proposal. In terms of knowledge representation, our annotation
model draws from two different models for conceptualization of reality:
ontologies and teleologies. For reference purposes, Fig. 1 shows an
example annotation of three sentences with various degrees of com-
plexity. The annotation model is explained in-depth in Piad-Morffis
et al. [41].
The ontological part of the model provides a representation of en-

tities in the health domain in terms of hierarchical and structural re-
lations (i.e., is-a, part-of, has-property and same-as). These
relations are based on the design of upper ontologies such as
ConceptNet [14] and YAGO Suchanek et al. [13]. The teleological part
of the model provides a representation of events or processes in the
health domain that transform entities, i.e., representing the purpose of
things. This is supported by a Subject-Action-Target structure based on

1 https://github.com.
2 https://gitlab.com.
3 https://ehealthkd.gitlab.io.
4 https://kaggle.com.
5 https://www.aicrowd.com.
6 https://codalab.org. 7 https://gitlab.com/ehealthkd/corpus.
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the work of Giunchiglia and Fumagalli [42]. The exact semantic
meaning of these concepts and relations is further explained in this
section.
The core of the annotation is the structure Subject-Action-Target,

which captures the main interaction in objective sentences. Two dif-
ferent entities participate in this interaction: Concepts and Actions.
A Concept defines a relevant entity in the domain, which can either be
a single word, or multiple tokens, contiguous or not. An Action re-
presents a process or event caused by one or more Concepts (i.e., the
subjects) and which impacts on one or more Concepts (i.e., the
targets). The subject and target roles can also be Actions
themselves, which enables simple concepts to be composed into more
complex ones. The Subject-Action-Target structure defined in this
model is based on a simplified version of the teleological framework by
[42]. Objects and Actions in this framework are represented in our
model by Concept and Action respectively. The Function role in
teleologies, which expresses an instance of an object performing an
action, can be approximately equated to our use of Actions as sub-
jects or targets of other actions.
An important addition to this annotation model is the Predicate

entity. Predicates model the existence of complex concepts (i.e., the
domain) that are dependent on some preconditions (i.e., the args). For
example, in Fig. 1, Sentence 6, the concept of “people over …60 years”8

can be defined with a fine-grained annotation, by considering “peo-
ple”as the domain and “60 years” as the argument. This annotation al-
lows the capture of more detailed information rather than simply an-
notating the whole phrase as a multi-word concept. Another addition is
References, which represent unexplicitly mentioned concepts in a
sentence. The most common words labeled as References are: “esto”,

“el”, “la”, “ este”, i.e., usually pronouns and articles.
To further refine the semantic interpretation of each entity, a set of

4 attributes is defined: uncertain, emphasized, diminished and
negated. These attributes are often hinted at by adjectives or other
syntactical patterns that appear outside the surface text of a given en-
tity, but instead of annotating those phrases, the corresponding entity is
tagged with the attribute. For example, in Sentence 6 of Fig. 1, the
action “affects” is attributed with emphasized, hinted by the world
“mainly”9 and represented in the annotation with a ++ sign in the action
itself. The use of attributes allows the capture of more refined semantic
concepts (i.e., degrees of emphasis, negation, uncertainty) while
maintaining language-agnosticism, since it is irrelevant where in the
surface text that information is presented. It can either be hinted ex-
plicitly by a single word (e.g., an adjective) or implicitly by a figure of
speech, rhetorical language and other subtle linguistic cues. These at-
tributes increase the range of semantics covered by the annotation
model without increasing the number of tokens that need to be anno-
tated.
In terms of relations, the eHealth-KD v2 corpus inherits the 4 main

ontological relations present in the previous version: is-a, same-as,
part-of and has-property, with their usual semantics. Each of
these relations can link any concept, both simple or complex with an-
other. These relations allow the representation of structural knowledge,
e.g., concepts related in a hierarchical structure, and concepts that are
components of other concepts. Two additional relations are defined in
this new version, causes and entails, to capture causality and lo-
gical entailment respectively. These relations, respectively teleological
and ontological in nature, are of great importance because they enable
the construction of reasoning systems that can reach conclusions and

Fig. 1. Example annotation of three sentences. The annotation shows the most relevant entities and relations defined. Adapted from Piad-Morffis et al. [41]. On the
top, the original text in Spanish. On the bottom, for reference purposes, an English translation.

8 In Spanish: “personas mayores de 60 años”, in Sentence 3. 9 In Spanish, the corresponding word is “principalmente” in Sentence 3.
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produce new knowledge from an existing corpora.
Additionally, 3 contextual relations are defined, to collect important

knowledge that usually appears as a grammatical complement in sen-
tences: in-time, in-place and in-context. The relation in-time
is used for expressing the duration of an event. The relation in-place
is used for identifying a specific location for the Action or Concept.
The relation in-context is a more generic relation of this set, re-
presenting a general dependency on some other Concepts whose exact
nature cannot defined by the annotation. These relations are also tel-
eological in nature, as they do not define an assertion per se, but instead
are useful for specifying conditions in which some events occur. For
example, in Sentence 5 of Fig. 1, the annotation “exposure in-
context prolonged”10 does not imply that the concept “exposure”
unconditionally has the quality “prolonged”. It is only when this com-
plex concept is used as subject or target of an Action or in another
relation that the contextualization becomes meaningful.
Fig. 2 summarizes the annotation model defined in the eHealth-KD

v2 corpus. This model is designed to be as general as possible to capture
the most relevant semantic knowledge present in an arbitrary corpus.
For this reason, no domain specific relations or entities were defined
(i.e., no specific entities for diseases, patients, treatment, etc.). In con-
trast, domain specific relations can be represented via actions and their
corresponding roles.
In comparison with the previous version of the annotation model,

this new model extends its ability to annotate fine-grained concepts that
are interrelated with each other. The previous version relied solely on
Action and Concept for composition, and the 4 basic ontological
relations. The addition of the Predicate annotation allows for a se-
mantic differentiation between the main content of a sentence —what is
being done by whom to who, indicated by Actions—, and additional
descriptive content. The contextual relations provide additional fine-
grained semantic meaning to common linguistic patterns. Furthermore,
causality and entailment are completely new semantic relations that
could not be expressed in the previous annotation model. A complete
list of all new labels in this version is available in Table 3.

3.2. Annotation process

The eHealth-KD v2 corpus was built from a sample of Spanish lan-
guage sentences taken from the MedlinePlus XML dumps.11 The ori-
ginal source contains 2026 entries in Spanish language of different to-
pics related to health. Each entry was parsed, split into sentences, and
filtered to remove unwanted content such as copyright notes, sentences
ending in “?” and “!”, sentences shorter than 5 words and HTML-spe-
cific content. Finally, a pool of 9956 sentences was obtained, from
which a random sample of 1045 sentences was taken for the manual
annotation process.
Before the main annotation, a small sample of 45 sentences was

randomly selected and jointly annotated by a committee of 4 experts.
This sample became the trial collection, and was used to produce sui-
table annotation guidelines and train a team of 12 non-expert annota-
tors. The expert annotators are researchers and PhD students in the
Natural Language Processing area, while non-experts are under-grad-
uate students in Computer Science. By design, no domain-specific ex-
pertise or knowledge is required to correctly annotate the eHealth-KD v2
corpus, since all semantics stem for the use of natural language and the
source content for annotation is aimed at a general audience.
The rest of the corpus (i.e., 1000 sentences) was manually annotated

in 25 batches of 40 sentences, randomly selected from the previously
described pool of sentences. Each batch was labeled by two different
annotators independently. Each pair of annotations was subsequently
merged automatically, with a custom tool developed for this purpose

that fixes minor contradictions and highlights the remaining for a
human annotator. A third independent annotator (one that didn’t par-
ticipate in that batch) was tasked with normalizing and fixing the re-
maining contradictions.
Afterwards, a committee of 4 experts reviewed all the sentences and

for every case in which at least one of the reviewers did not agree with
the annotation, the corresponding sentence was publicly discussed until
agreement was reached. At this point, modifications to the annotation
were allowed in rare cases and only if all reviewers agreed. The entire
annotation process was performed in the Brat annotation tool [19] with
the help of ad-hoc tools specifically built for the tasks of shuffling and
filtering the sentences, merging the annotations, etc. Fig. 3 shows a
schematic representation of the complete annotation process.
The final version of the eHealth-KD v2 corpus contains a total of

1045 manually annotated and reviewed sentences. For the purpose of
using the corpus in the development of knowledge discovery technol-
ogies, the sentences are divided into four collections: (1) trial, 45 sen-
tences; (2) training, 600 sentences; (3) validation, 100 sentences; and (4)
test, 300 sentences.

3.3. Corpus statistics and quality metrics

Table 3 shows the number of entities and relations annotated in the
eHealthKD-2019 corpus. In total, 13‘46 elements were annotated into
6612 entities, 6049 relations, and 585 attributes. The entities which
appeared less were Predicate and Reference. The relations which ap-
peared less were: entails, in-time, has-property, same-as and
part-of.
For the entire corpus, the number of Actions is greater than the

number of sentences, indicating that many sentences with more than
one Action exist. In total, 222 complex concepts were annotated.
These are Action annotations whose target or subject is another
Action or Predicate. Interestingly enough, the number of targets
is considerably greater than the number of subjects because the
target role is often associated with a greater variety of grammatical
roles. Furthermore, is-a is the most frequent relation in a corpus,
appearing in 54.16% of sentences. This relation is relevant because it
enables automatic building of ontological hierarchies. Another relevant
relation, specifically in the medical domain, is causes, which appears
in a 34.12% of sentences. This relation permits inference drawing to
produce new knowledge from existing information.
To evaluate the quality of the corpus, we design an inter-annotator

agreement metric. Even though Cohen’s Kappa [43] is a common choice
when evaluating inter-annotators agreement, in this case it is not con-
venient because this metric assumes a binary decision for each anno-
tation whereas the eHealth-KD v2 corpus allows for the annotation of
text spans and partial matches. Moreover, when large segments of text
are not annotated —e.g., all the stopwords, determinants, connectors,
and similar lexical elements which are not part of a Concept or Ac-
tion—, the degree of agreement between annotation versions may be
overestimated by Kappa.
Hence, for the eHealth-KD v2 corpus we define a metric that scores

partial agreement proportional to the relative overlapping of the text
spans. For each entity type Et , relation type Rt, and attribute type At , we
define µE µR,t t, and µAt respectively as the micro average of all the
annotations corresponding to that specific entity, relation, and attribute
between a pair of annotators, adding 1 for each pair of coincident an-
notations and a value A B( , ), where <0 1 for partial annotations
between annotators A and B, equal to the relative number of coincident
characters (Eqs. (1)–(3)).

=µ E
A B

E
( )

( , )
| |t

A B E

t

, t

(1)

=
+

µ R Correct
Correct Invalid

( )t
t

t t (2)
10 In Spanish: “exposición prolongada …” in Sentence 2.
11 https://medlineplus.gov/xml.html.
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In the case of relations and attributes, the agreement score is com-
puted among the subset of entities in which both annotators agree,
otherwise the results would be unfairly skewed by disagreement among
the entities. However, the overall micro-average does consider all of the
annotations and thus provides a fair evaluation of the entire corpus.
Table 4 summarizes the quality metrics. It considers each annota-

tion type separately and combined, as well as the micro-average across
all entity types and all relation types. Agreement scores are reported at
different steps of the annotation process: between the non-expert an-
notators (stage 2), between non-expert annotators and the final revised
version by the expert committee (stage 3) and between the merged

version and the final version (stage 4). The most informative of these
metrics is at stage 3, since it compares the annotation of non-expert
humans with the final published annotations of the corpus. The stage 4
metric is provided only to illustrate that the expert revision of the
normalized annotations produced minimal changes. Overall, the an-
notation agreement in eHealth-KD v2 is relatively high.

4. The eHealth Knowledge Discovery task

In this section we propose a formal definition for a knowledge dis-
covery task based on the annotated corpus (Section 4.1), as well as
evaluation metrics to allow an objective comparison between different
approaches (Section 4.2). Additionally, a computational infrastructure
is provided that automates the evaluation process (Section 4.3).

4.1. Tasks and evaluation scenarios

Overall, the task consists of automatically identifying the annotated
elements, i.e., entities and relations, in the test collection of the corpus.
To evaluate a specific solution to this task, researchers are expected to
use only the training set for learning model parameters and the valida-
tion set for adjusting hyper-parameters. Obviously, the test set must only
be used for calculating the evaluation metrics. No model tuning or
design decisions should be based on the output of these metrics, to
avoid overfitting in the test set. Notice that we purposefully ignore the
attributes in this task since entity and relation extraction is already a
sufficiently complex challenge.
To better evaluate the strengths and weaknesses of different ap-

proaches, the annotation task is divided into two subtasks:

Subtask A: Entity recognition. The purpose of this subtask is to iden-
tify all the entities mentioned in a
sentence and their corresponding
classes (i.e., Concept, Action,
Predicate and Reference).

Subtask B: Relation extraction. The purpose of this subtask is to detect
all semantic relations between every
pair of entities already labeled in each
sentence.

This division into two subtasks does not necessarily mean that any
given solution must explicitly solve both subtasks separately. Although
this approach is the most commonly applied so far, there is evidence

Fig. 2. Conceptual schema for the annotation model. Each of the semantic roles defined in the annotation model are represented as circles. The possible relations
defined between each pair of roles are represented as rectangles. Adapted from Piad-Morffis et al. [41].

Table 3
Summary statistics for the eHealth-KD v2 corpus. Labels marked with * have
been incorporated in this version of the corpus.

Metric Total Trial Training Validation Test

Sentences 1045 45 600 100 300

Entities 6612 292 3818 604 1898
Concept 4092 181 2381 368 1162
Action 1742 82 976 167 517
Predicate* 563 27 330 45 161
Reference* 215 2 131 24 58
Relations 6049 232 3504 537 1776
target 1729 88 974 166 501
subject 894 49 511 74 260
in-context* 677 28 403 67 179
is-a 566 0 337 56 173
in-place* 400 19 251 25 105
causes* 367 0 219 27 121
domain* 364 20 201 28 115
argument* 343 16 201 28 98
entails* 167 0 89 14 64
in-time* 165 12 89 24 40
has-property 159 0 91 21 47
same-as 124 0 85 6 33
part-of 94 0 53 1 40

Attributes 585 28 311 69 177
diminished* 18 1 8 2 7
emphasized* 124 4 69 10 41
negated* 164 4 94 24 42
uncertain* 279 19 140 33 87
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that end-to-end approaches solving both entity recognition and relation
extraction can outperform approaches that solve both subtasks se-
quentially (see Section 4.2). However, since errors during entity re-
cognition will necessarily translate into missing or spurious relations,
splitting the evaluation into two subtasks allows for a more fine-grained

evaluation of a given solution. Hence, in order to evaluate both end-to-
end approaches and sequential approaches, we propose dividing the test
set into three subsets of 100 sentences each, and perform three distinct
evaluation scenarios respectively.

Scenario 1: End-to-end evaluation. In this scenario, both sub-
tasks are evaluated. The
input only consists of a
plain text file with 100
sentences. Both end-to-end
approaches and sequential
approaches can be eval-
uated.

Scenario 2: Entity recognition evaluation. In this scenario only sub-
task A is evaluated. The
input consists of plain texts
but the expected output
only requires entity anno-
tations. This scenario also
allows researchers to eval-
uate approaches that only
perform entity recognition.

Scenario 3: Relation extraction evaluation. In this scenario, only sub-
task B is evaluated. The
input consists of plain text
and all the corresponding
gold annotations for enti-
ties. The expected output
consists of all the semantic
relations occurring only
between the annotated en-
tities. This scenario allows
researchers to evaluate ap-
proaches that only perform
relation extraction and
which require entities al-
ready annotated.

Fig. 3. Schematic representation of the annotation process.

Table 4
Summary of the inter-annotator agreement score at different stages of the an-
notation process, for all entity and relation types.

Agreement Stage 2 Stage 3 Stage 4

Entities µE 0.7050 0.8159 0.9854
µEAction 0.6989 0.8011 0.9892
µEConcept 0.7810 0.8737 0.9929
µEPredicate 0.4324 0.6641 0.9569
µEReference 0.7315 0.7990 0.9390

Relations µR 0.5146 0.7162 0.9692
µRarg 0.6053 0.7782 0.9592
µRcauses 0.4006 0.6465 0.9917
µRdomain 0.6530 0.8004 0.9761
µRentails 0.1030 0.4321 0.9623
µRhas property 0.3684 0.6007 0.9737
µRin context 0.4195 0.6499 0.9584
µRin place 0.4165 0.6497 0.9407
µRin time 0.3677 0.6151 0.9346
µRis a 0.5439 0.7373 0.9750
µRpart of 0.3016 0.5000 0.8710
µRsame as 0.4662 0.6641 0.9242
µRsubject 0.5469 0.7294 0.9784
µRtarget 0.6574 0.8139 0.9821

Attributes µA 0.4663 0.6537 0.9499
µAdiminished 1.0000 1.0000 1.0000
µAemphasized 1.0000 1.0000 1.0000
µAnegated 0.9746 0.9888 1.0000
µAuncertain 0.9370 0.9742 1.0000

Global agreement µ 0.6190 0.7667 0.9765
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4.2. Evaluation metrics

We propose an extended version of the F1 metric modified to deal
with partial matches to evaluate both subtasks. The F1 metric depends
on micro-averaging correct, incorrect, partial, missing and spurious
annotations across the entire test set. Depending on the subtask(s) under
evaluation, we define the following types of outcomes:

Subtask A - Correct CA: when an annotation matches exactly with the
corresponding gold annotation.

Subtask A - Incorrect IA: when an annotation matches with a gold
annotation with respect to the text span but
defines a different entity label.

Subtask A - Partial PA: when a text span has a non-empty but inexact
intersection with a gold annotation, such as
the case of “respiractory tract” and “tract” in
Fig. 1, Sentence 5. Partial phrases are only
matched against a single correct phrase (i.e.,
the first partially matching phrase starting
from the beginning of the sentence) to pre-
vent a few large text spans that cover most of
the document from getting a very high score.

Subtask A - Missing MA: when an annotation that appears in the gold
collection is not produced.

Subtask A - Spurious SA: when an annotation is produced that does not
appear in the gold collection.

Subtask B - Correct CB: when a relation between two entities exists in
the gold collection.

Subtask B - Missing MB: when a relation in the gold collection is not
produced.

Subtask B - Spurious SB: when a relation is produced but it does not
appear in the gold collection.

We define Precision Recall, , and F1 as usual, taking into consideration
that for each evaluation scenario only the terms related to the subtask
(s) under evaluation are considered.

=
+ +

+ + + + +
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C C P
C I C P S S

A B A

A A B A A B
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Finally, we propose F1 as defined in Eq. 6 as the official metric to
compare different approaches. If approaches are compared with respect
to solving the complete task, then the first 100 sentences of the set (i.e.,
scenario 1) should be used. Otherwise, the second or third subset of 100
sentences should be used respectively to evaluate subtask A or B.

4.3. Evaluation infrastructure and baselines

To support researchers in the development of knowledge discovery
technologies, we provide a toolkit and infrastructure that enables a
faster and more objective experimentation process. These resources are
freely available for the research community in a collection of Gitlab
repositories.12

The toolkit consists of the following elements:

• Plain text files and annotations in BRAT Standoff format for the
eHealth-KD v2 corpus, divided into the 4 collections described in
Section 3.2.

• Configuration files necessary for deploying a BRAT server to explore
and extend the eHealth-KD v2 corpus, or to create other linguistic
resources based on the annotation model described in Section 3.1.
• Utility scripts in the Python programming language for loading and
manipulating the BRAT Standoff annotations in a computationally
suitable format, as well as for producing correctly formatted output.
• Scripts for setting up and running an evaluation pipeline for the task
defined in Section 4.2, including the three defined scenarios, and
computing the official evaluation metrics.
• A set of baseline implementations with different degrees of com-
plexity, including a random baseline and several classic machine
learning approaches.

Using the aforementioned tools, researchers can quickly develop
new approaches by extending the provided baselines, or developing a
solution from scratch, without having to deal with setting up the eva-
luation environment or implementing the evaluation metrics.
Furthermore, besides being able to evaluate their solutions offline, re-
searchers can also upload their solutions to a cloud evaluation en-
vironment and automatically obtain the relevant metrics as well as
compare their results with solutions already published. An official
leaderboard is maintained that serves as an up-to-date state-of-the-art
in all of the tasks. This information contains not only results, but also
structured information about the approaches used and links to the re-
levant publications.13

For reference purposes, Table 5 summarizes the results obtained by
the different baselines implemented. The Dummy baseline learns all
entities and relations that occur in the training set and builds a map
relating tokens to entity labels, and token pairs to relation labels. This
classifier uses the learned mappings to predict in the test set, hence only
the words that appear in the training set are recognized, which results
in a significantly lower recall than precision. For the relations, the
classifier uses the same strategy analyzing pairs of words. The Random
baseline simply outputs a random label for each entity and relation
pair, based on their relative frequency of appearance in the training set.
A human baseline is also provided for comparison purposes. To

compute this baseline, one of the original participants in the annotation
(a human expert) was invited to annotate the test collection, six months
after the original annotation campaign. The results show that Subtask A
is considerably easier both for humans and automatic systems than
Subtask B. However, the difference between the algorithmic and human
baselines is considerably larger in Subtask B, which indicates a larger
margin for improvement.

5. The eHealth Knowledge Discovery challenge

The eHealth-KD v2 corpus was chosen for a shared competition
presented at the IberLEF 2019 workshop, where the task was to design a
computational system that can automatically provide the right anno-
tations for a plain text input, as described in Section 4. The results of the
competition are presented in detail in Piad-Morffis et al. [40]. Table 6
summarizes the results obtained by all participant systems in the
competition.
To simplify the comparison and better understand the character-

istics of each system, we define several tags to describe the kind of
techniques used in each approach: (C) onditional (r) andom fields; (P)
retrained or (C) ustom word (e) mbeddings; (Ch) aracter-level em-
beddings; hand-crafted (R) rules; natural language processing (F) ea-
tures; dealing with the (O) verlapping of entities; (At) tention me-
chanisms; (Co) nvolutional layers; dataset (Au) gmentation techniques;
and, if they solve both subtasks in a (J) oint form rather than separated.
In terms of modeling, most approaches tackle both subtasks se-

quentially, feeding the output of subtask A to the pipeline for solving

12 https://ehealthkd.gitlab.io. 13 https://ehealthkd.gitlab.io/results.
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subtask B. The most natural representation of subtask A presented in
the challenge is as a sequence labeling problem. Several approaches
deal with the problem of overlapping entities using BIOUV tags or si-
milar encoding systems. Afterwards, the most common computational
solution for the labeling problem consisted of some variation of LSTM
or Bi-LSTM architectures, commonly followed by a final CRF layer. In
terms of features, some approaches introduced domain-specific word
embeddings trained in selected corpora, but most resort to Glove or
Word2Vec. Several approaches include also character-level embeddings
to deal with morphological phenomena and part-of-speech tags to
capture the grammatical structure of the sentence.
For subtask B, the most common modeling consists of considering

then N 2 entity pairs in each sentence as separate classification pro-
blems. Some approaches build a single model with multi-label output
while others build separate binary models for each label. In terms of
features, the same token-level linguistic and morphological features are
used, along with one-hot encoded or embedded entity classes. One
approach (UH-Maja-KD [49]) trains a recurrent network for encoding
the path between each pair of entities in the dependency tree, using
POS-tags as features. In contrast with most of the approaches, the best
performing system in all three scenarios (TALP-UPC [44]) presents a
unified architecture that solves both subtasks simultaneously.

5.1. Analysis of systems approaches

To evaluate the impact of each design component (e.g., using CRF,
embeddings, etc.) on the overall performance of each system, a linear
regression model is fitted on the challenge results. Each system is re-
presented as the set of tags corresponding to the techniques used in that
system, as described in Table 6, second column. The linear regression
model assigns a weight to each of the tags that approximates its relative
impact when considering all the systems in which that tag is present,
see Table 7. For example, tag At, which corresponds to the use of

attention-based architectures, obtains a score of 0.141 for Subtask B.
This indicates that, all other things considered equal, if a system utilizes
this type of technique we can expect an average increase in F1 score of
0.141 in Subtask B, compared with not using this technique but main-
taining all the remaining characteristics. The weights computed for
each technique are only an approximation of its relative importance,
since this analysis assumes independence between the techniques used,
which is obviously not a realistic assumption. However, the R2 score for
the main scenario is 0.773, and for the other two subtasks is 0.857 and
0.936 respectively, which indicate that these weights provide an ade-
quate estimation of the impact of each technique, especially for Sub-
tasks A and B.
As expected, one of the most significant factors for increasing per-

formance in the end-to-end scenario (Scenario 1) is solving both tasks
simultaneously. The only system that applies this strategy obtains the
best results and the linear regression weights are relatively higher.
Using NLP features in addition to word embeddings and performing
dataset augmentation also provide a significant boost to performance,
possibly given the relatively small size of the training set in comparison
with the task complexity. An additional positive effect is caused by the
use of custom rules, such as coin_flipper’s strategy for merging entities
[45]. Counter-intuitively, the use of custom word embeddings produces
a marginally negative effect, presumably given the difficulty of learning
embeddings on domain-specific text, where it is difficult to obtain a
sufficiently large corpus.
Specifically for subtask A (Scenario 2), the strategies that provide

marginal advantages are related to handling overlapping and dis-
continuous entities. This is an indication that most systems are able to
correctly deal with the “easier” instances, i.e., single-word entities or
continuous entities with no overlap, and thus it is in the remaining
cases where differences occur. In subtask B (Scenario 3) the overlapping
subproblem is also relevant, presumably because otherwise a large
number of missing relations would be reported. The use of attention
mechanisms also provides a positive boost, in contrast with previous
scenarios,presumably because it helps to capture long-range de-
pendencies between entities that are far apart in a sentence.
By far the most significant factor that influences the correct iden-

tification of each entity and relation type is the number of instances in
the training set. To illustrate this insight, Fig. 4 plots the relative
number of instances of each annotation identified by at least one system
in relation to their frequency in the training set. The most significant
deviation from the =y x line is the Reference entity type, which by
design is mostly characterized by a relatively short number of linguistic
constructions, easily recognizable by part-of-speech tags.
The previous analysis can shed light on the type of techniques that

Table 5
Results (F1 metric) of the baseline strategies in each scenario.

Score (F1)

Team End-to-end Subtask A Subtask B

Human 0.727 0.861 0.735
Dummy 0.424 0.546 0.123
Random 0.116 0.205 0.014

Table 6
Results (F1 metric) in each scenario, sorted by Scenario 1 (column Score). The
top results per scenario are highlighted in bold. Results that use the baseline
implementation are represented by #b. The dummy baseline implementation
provided in the challenge is slightly different due to variations in the order of
the training sentences with respect to Table 5. Adapted from Piad-Morffis et al.
[40].

Score (F1)

Team Techniques End-to-end Subtask A Subtask B

Human 0.727 0.861 0.735
Baseline (b) R 0.430 0.546 0.123

TALP-UPC [44] Cr-Pe-F-O-At-J-Au 0.639 0.820 0.626
coin_flipper [45] Pe-R-F 0.621 0.787 0.493
LASTUS-TALN [46] Cr-Ce-F-At 0.581 0.816 0.229
NLP_UNED [47] Pe-F-At 0.547 0.754 0.533
HULAT-TaskAB [48] Cr-Pe-Ch-Au 0.541 0.775 0.123b

UH-Maja-KD [49] Cr-Ce-Ch-R-F-O 0.518 0.815 0.433
LSI2_UNED [50] Pe-Ch-F-Co 0.493 0.731 0.123b

IxaMed [51] Cr-Ce-F-At 0.486 0.682 0.435
HULAT-TaskA [52] Cr-Pe-Ch-Au 0.430b 0.790 0.123b

VSP [53] – 0.428b 0.546b 0.493

Table 7
Relative impact of the characteristics of each system in the overall score, per
scenario, as defined by a linear regression model fitted on each system’s per-
formance. Tag labels correspond to the techniques used by each system as re-
ported in Table 6. Highlighted in bold are the most significant weights in each
scenario. Adapted from Piad-Morffis et al. [40].

Scenario

Technique End-to-end Subtask A Subtask B

Attention-based architecture (At) −0.015 −0.002 0.141
Character embeddings (Ch) −0.088 −0.006 −0.129
Convolutional networks (Co) 0.019 −0.018 −0.140
Conditional random fields (Cr) 0.010 0.011 −0.103
Custom embeddings (Ce) −0.012 −0.008 −0.087
Dataset augmentation (Au) 0.022 0.019 −0.016
Hand-crafted rules (R) 0.059 0.031 0.101
Joint solution (end-to-end) (J) 0.042 0.015 0.081
NLP features (F) 0.021 −0.004 0.021
Overlapping entities (O) −0.002 0.039 0.270
Pretrained embeddings (Pe) 0.012 0.008 0.010
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are more promising for solving the eHealth-KD task. However, these
results must be weighted with caution since the analysis is based on
simplistic assumptions, such as independence of each technique. A
simple linear model is unlikely to capture the complex interactions
between components in a knowledge-discovery system. Nevertheless,
some high-level insights can be extracted from this analysis. First, the
use of specific techniques seems to have a larger impact on Subtask B,
where weights have a higher variance, than on Subtask A. This could
indicate that Subtask A is generally solvable with a larger variety of
techniques, while Subtask B requires a more careful design. And second,
even though modern deep learning techniques are the go-to approach in
NLP, complex tasks like relation extraction still require taking into
consideration phenomena like the overlapping of entities, which in-
volve hand-crafted rules. Applying black-box deep learning archi-
tectures without considering these type of intricacies is unlikely to yield
state-of-the-art performance.

6. Overall discussion

This section presents an overall discussion of the main takeaways of
this research, the lessons learned and the limitations of the current
solutions proposed for the eHealth Knowledge Discovery Task. We also
highlight interesting ideas for further exploration and research, based
on insights obtained by analyzing the most promising approaches.

6.1. Fostering research in eHealth Knowledge Discovery

Different semantic representations for capturing knowledge ex-
pressed in natural language have been developed (e.g. AMR, FrameNet
and PropBank). The main drawback of these representations is their
complexity, since they often depend on lexicons that define the specific
semantic roles for each word. Thus, developing artificial intelligence
systems for knowledge discovery with this level of detail is a very
challenging problem. Using simpler semantic representations that do
not rely on word-specific roles or relations, even at the cost of reducing
expressibility, can simplify the development of automatic techniques
based on machine learning.
This research proposes a line of development in this direction,

whereby knowledge discovery with a high level of abstraction can be
subsequently refined for domain specific tasks. The purpose is not to

replace fine-grained semantic representations, such as AMR or
FrameNet, but rather to provide a more coarse-grained representation
that can be used as an initial step in different knowledge discovery
tasks. This type of semantic representation can potentially aid in
downstream tasks like ontology learning, in the same way that general-
purpose POS-tagging is often performed prior to more complex NLP
tasks like question answering.
The resources, tools and infrastructure developed in this research

aim to provide a foundation for the research community to build such
general-purpose semantic representation techniques. Succeeding in this
endeavor will depend not only on theoretical advancements such as
better deep learning architectures or natural language processing
techniques, but also on the availability of resources that enable an ef-
ficient experimentation. In this sense, our proposal introduces a new
knowledge discovery task together with formally defined evaluation
metrics, as well as a practical test-bed where researchers can quickly
develop new techniques and obtain immediate feedback. It is also a step
in the direction of encouraging knowledge discovery research in less
developed languages, such as Spanish, and in socially important do-
mains such as health.

6.2. Current and future challenges

The results of the eHealth-KD Challenge shed some light on the
complexity of the various steps involved in the design of automatic
knowledge discovery systems for this task. Most of the systems modeled
the task as a pipeline in which first entities are recognized and then
relations are extracted. The entity recognition part was commonly
modeled as a sequence tagging problem and solved by standard tech-
niques, e.g., Bi-LSTM networks and Conditional Random Fields. The
relation extraction part was commonly modeled as a standard classifi-
cation problem, where the input consists of some sensible representa-
tion of a pair of concepts, using context-aware embeddings and other
syntactic features. In contrast, the best performing system of the chal-
lenge consists of an end-to-end approach that outputs both entity types
and relevant relations for each pair of potential concepts detected in
each sentence. Besides marginal differences in architecture and training
methodology, we argue that this system’s strength arises from the
regularizing effect of learning a unified representation for both sub-
tasks, instead of different representations, which allows it to obtain

Fig. 4. Correlation between the number of instances identified by one or more systems, and the relative frequency of labels in the training set. Adapted from Piad-
Morffis et al. [40].
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more information from the same amount of training data. Furthermore,
using the previous version of the corpus provided it with some leverage
in terms of increasing statistical coverage.
Based on these observations, we estimate that successful approaches

to this problem should consider the following strategies: solving both
problems simultaneously rather than sequentially; using general-pur-
pose pre-trained word embeddings rather than customized ones; ap-
plying some form of dataset augmentation to increase statistical cov-
erage; and, designing problem-specific rules to deal with overlapping
and discontinuous entities.
In comparison with the human baseline, subtask B appears to be

considerably harder for machine learning systems than for humans.
Specifically, the human baseline beats the best performing system by an
absolute 8.8% in the full scenario, but only by a 4.1% in subtask A,
compared with a 10.9% in subtask B. Intuitively, subtask B should be
harder, since the number of labels to predict is larger than in subtask A.
However, this does not explain the difference in performance between
humans and machine learning systems. On average, the systems that
attempt to solve subtask B obtain an often significantly lower F1 in
subtask B compared to the full scenario (Scenario 1), while the human
baseline is slightly better at subtask B. This indicates that humans can
leverage some additional insights by seeing the correct annotations for
subtask A that machine learning systems fail to recognise. However, the
fact that subtask B is significantly harder for humans than subtask A is
an indication of the high degree of qualitative analysis involved in this
problem. As such, there is a threshold above which even human experts
will not completely agree, given the inherently subjective nature of
natural language understanding.
In the light of these considerations, we believe there is still a large

margin for improvement via a more principled approach that considers
the global information of the complete sentence rather than simplifying
the problem as a set of unconnected classification subtasks, one for each
pair of tokens. From a human perspective, the annotation of a sentence
is a global process, in which a decision to consider a specific word as an
Action or Predicate makes an annotator reconsider the whole
sentence and potentially change other annotations. Incorporating this
type of global awareness into a system requires more than just applying
context-aware embeddings or even sentence-level language models.
The system must be able to assess an incompletely annotated sentence
and potentially undo or correct previous labels as it progresses, until a
suitable convergence criteria is reached. This kind of behavior requires
a more expressive framework than that offered by pure supervised
learning architectures. A possible approach involves some sort of an-
notator agent that observes the complete sentence, and performs ac-
tions akin to how humans approach this problem. We believe that de-
pendency parsers are a good starting point in devising such an
architecture.
Another important consideration is the degree to which the suc-

cessful identification of each entity and relation label is correlated with
its frequency in the training set (see Fig. 4). This reinforces the idea that
most current approaches are basically performing pure statistical
learning and thus, are not capable of accurately capturing the semantic
nuances of each of these labels. This evidence also points to the ne-
cessity of more principled approaches that actually attempt to under-
stand the semantic meaning of the annotation model rather than simply
learning by statistical association. Given that producing human anno-
tated resources with this level of fine-grained semantics is time con-
suming, it is unlikely that pure statistical approaches will ever be suf-
ficient to learn in this context by supervised training alone.
Notwithstanding this, the emergence of Transformer architectures

and their recent success at several NLP tasks [54] opens the door to
potentially improving current results in the eHealth-KD challenge with
little additional effort. The first edition of the challenge (in 2018)
consisted mostly of hybrid systems, using a combination of rule-based
and knowledge-based NLP techniques with machine learning. However,
the 2019 edition of the challenge included almost no rule-based

approach, in favor of more complex deep learning architectures. It is
likely that future editions of the challenge will see the rise of Trans-
formers as the leading technology, potentially combined with problem-
specific architecture designs, such as the ones discussed previously.

6.3. Existing limitations

Compared to similar work and a previous version of this corpus, our
main focus in this research has been related to increasing the ex-
pressibility of composite concepts. The previous version of the corpus
allowed for composite concepts via the annotation of Actions and
their corresponding roles. This research introduces Predicates and
Contextual relations that allow for a finer semantic representa-
tion when composing complex concepts. Additionally, we introduce
causality and entailment as two specific relations with well-de-
fined semantics. These types of relations could enable the construction
of inference systems which can discover new knowledge by the suc-
cessive application of inference rules, given that causality and en-
tailment are transitive relations.
Our work has so far focused on Spanish language, given the rela-

tively lower predominance of Spanish-bashed resources compared to
English ones. However, the annotation model has been designed with
the explicit objective of being applicable across many languages. The
core elements are all language-agnostic. This is because concepts, ac-
tions, references and predicates, as well as the semantic relations de-
fined, are found in all human languages, even if their syntactic re-
presentation is different. Our model explicitly avoids syntactic rules-of-
thumb in favor of purely semantic definitions. For example, a common
mistake found in early annotators was unconsciously tagging verbs as
actions. Even though this might be correct in many sentences, we ex-
plicitly forbade such rules to avoid biasing annotators towards a syn-
tactically-based mind-set. Likewise, the definition of attributes (un-
certain, diminished, emphasized and negated) is an effort to
generalize several distinct grammatical patterns into semantic annota-
tions independent of the surface text. However, it is still an open
question as to whether our annotation model will generalize success-
fully to other languages. An early proof-of-concept is being actively
developed at the time of writing, with the successful annotation of
English research papers on the subject of the COVID-19 pandemic,
using the same annotation model proposed in this research.14

Increasing the expressibility of an annotation model also introduces
new sources for ambiguity. During the annotation process, we dis-
covered this to be a major source of inter-annotator disagreement,
especially when deciding between Predicate and in-context.
Another source of ambiguity was detected in the different semantic
roles assigned to target annotations. One of such roles is similar to
ConceptNet’s MotivatedByGoal and UsedFor, i.e., to indicate that
an Action is performed with a purpose. This usage is different to
causes and entails and might require the addition of a new se-
mantic relation. As a final remark, although entity attributes are ac-
counted for in the annotation model and included in the corpus, they
are excluded from the evaluation since they add significant complexity
to an already challenging computational task. However, in future edi-
tions of the eHealth-KD challenge they will be evaluated, possibly as
part of an additional scenario.

7. Conclusions and future work

This research presents the design and construction of an ecosystem
for the development of knowledge discovery technologies in the bio-
medical domain. This ecosystem includes linguistic resources, compu-
tational tools and a methodology for the evaluation of new approaches.
An annotation model was defined to capture the most relevant semantic

14 https://github.com/matcom/cord19-ann.
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content of natural language sentences, based on Subject-Action-Target
tuples and additional semantic relations. The model does not include
domain-specific entities or relations so as to be as general as possible.
Based on this model, a corpus of 1045 sentences in the Spanish lan-
guage was manually annotated, taken from an online source of health
information. The corpus enables the construction of fine-grained
knowledge discovery systems that can be applied in multiple domains.
With this purpose in mind, a shared evaluation campaign was orga-
nized, in which 10 teams of researchers proposed different strategies,
mostly focused on deep learning architectures that achieved significant
results.
To foster continued development in this line of research, an infra-

structure and toolkit for researchers is made available, including
baseline implementations, an ongoing evaluation environment in the
cloud, and up-to-date statistics on the state-of-the-art in the afore-
mentioned task. These results build on previous research and are part of
a continued attempt to leverage general-purpose semantics and
knowledge-based technologies together with novel deep learning ar-
chitectures for the construction of automatic knowledge discovery
technologies.
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