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Breast cancer is the second most common malignancy, worldwide. Treatment decisions

are based on tumor stage, histological subtype, and receptor expression and include

combinations of surgery, radiotherapy, and systemic treatment. These, together with

earlier diagnosis, have resulted in increased survival. However, initial treatment efficacy

cannot be guaranteed upfront, and these treatments may come with (long-term) serious

adverse effects, negatively affecting a patient’s quality of life. Gene expression-based

tests can accurately estimate the risk of recurrence in early stage breast cancers.

Disease recurrence correlates with treatment resistance, creating a major need to

resensitize tumors to treatment. Notch signaling is frequently deregulated in cancer

and is involved in treatment resistance. Preclinical research has already identified many

combinatory therapeutic options where Notch involvement enhances the effectiveness

of radiotherapy, chemotherapy or targeted therapies for breast cancer. However, the

benefit of targeting Notch has remained clinically inconclusive. In this review, we

summarize the current knowledge on targeting the Notch pathway to enhance current

treatments for breast cancer and to combat treatment resistance. Furthermore, we

propose mechanisms to further exploit Notch-based therapeutics in the treatment of

breast cancer.
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INTRODUCTION

Breast Cancer
Breast cancer is the second most common malignancy, worldwide (1). Breast cancer screening
and early detection has increased, leading to better outcome. Furthermore, a number of treatment
options, have improved survival (2). First line therapies include surgery, radiotherapy, and systemic
treatment (including: chemotherapy, endocrine therapy and targeted therapy). Treatment options
for breast cancer exist in the neo-adjuvant (prior to surgery) and adjuvant setting (after surgery).

There is strong evidence that tumors that respond to neo-adjuvant chemotherapy with a
pathological complete remission (pCR) have improved long-term prognosis (3). Conversely,
tumors that do not respond to neo-adjuvant chemotherapy have a higher chance of recurrence.
Adjuvant therapy targets remaining (micro-metastatic) cancerous cells, thereby preventing
recurrent disease.
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Clinical choices for the type of systemic treatment are
guided by expression of estrogen receptor (ER), progesterone
receptor (PR), and Human Epidermal Growth Factor Receptor
2 (HER2) in tumor biopsies, in concurrence with TNM
classification, tumor grade, and age. However, it is widely
accepted that breast cancer is a heterogeneous disease, from
primary tumor to metastatic sites (4). Gene expression profiling
(involving hierarchical clustering) has had a significant impact
on classification of breast malignancies. Molecular breast cancer
subtypes revealed different clinical behaviors and retain distinct
differences in biological mechanisms (Table 1)—associated with
tumor aggressiveness, metastasis, and response (8, 10–18, 22).
Based on gene expression profiling, the MINDACT trial has
shown that tumors with genomic “low risk” features do not
require chemotherapy. This included some node-positive tumors
irrespective of molecular subtype (23). Similarly, the TAILORx
study has recently shown that early stage, node-negative breast
cancers with low or intermediate recurrence scores do not benefit
from adjuvant chemotherapy and can be treated with endocrine
therapy alone (24). Additionally, gene expression analysis showed
a sub-classification in Triple Negative Breast Cancer (TNBC)
into at least 4 molecular subgroups (12, 19, 25) with observed
differences in response to chemotherapy (20), by providing
more detailed information inter-tumor heterogeneity (26). The
combination of histological and genetic classification of each
tumor will further guide therapy selection and disease outcome
(26, 27) and, ultimately, form the basis for personalized precision
medicine.

Intra-Tumor Heterogeneity and Tumor
Stem Cells
Regardless of clinical or molecular subtype, intra-tumor
heterogeneity is a common feature of all human solid tumors
(28), and is a major determinant of treatment outcome in breast
cancer (15, 29). Tumor growth is thought to be driven by
small populations of cancer cells with self-renewal and multi-
potential properties (30), coined cancer stem cells (CSC) (31).
These CSCs are involved in malignant behavior (invasion and
metastasis) and resistance to treatment (32). Thus, CSCs are of
high clinical importance, and targeting CSC self-renewal appears
necessary for obtaining a durable response. Furthermore, intra-
tumor heterogeneity can be driven by mutation or deregulation
of stem cell signaling pathways such as Notch, Wnt, Shh, and
others as well as through the tumormicroenvironment; including
nutrient-, oxygen levels, and paracrine interactions with other

Abbreviations: (B)CSC, Breast Cancer Stem Cell; ANK, Ankyrin Repeats;
CAF, Cancer Associated Fibroblast; DCIS, Ductal Carcinoma in situ; EGF,
Epidermal Growth Factor; EMT, Epithelial-Mesenchymal Transition; ER, Estrogen
Receptor; GSI, Y-Secretase Inhibitor; HER2, Human Epidermal Growth Factor
Receptor 2; JAG, Jagged; LF, Lunatic Fringe; LNR, Lin12-Notch Repeats; LRR,
Loco-Regional Recurrence; MAML, Mastermind-Like; MaSCs, Mammary Stem
Cells; MDSC, Myeloid-derived suppressor cell; MET, Mesenchymal-Epithelial
Transition; MF, Manic Fringe; MMTV, Mouse Mammary Tumor Virus; MRP1,
Multi Drug Resistance Protein 1; NICD,Notch Intracellular Domain; NLS, Nuclear
Localization Sequences; NRR, Negative Regulatory Region; pCR, Pathological
Complete Remission; PR, Progesteron Receptor; RAM, RBP-Jk Association
Module; RF, Radical Fringe; TAM, Tumor associate macrophage; TCGA, The
Cancer Genome Atlas; TN(BC), Triple Negative (Breast Cancer).

cell types (fibroblasts, blood vessels, and immune cells) (33).
Herein, Notch has shown interesting targeting opportunities in
cancer (34).

Notch
Notch Signaling
Notch signaling (Figure 1) is a cell-to-cell communication
system of type I single-pass transmembrane Notch receptors
(Notch 1-4) and transmembrane ligands (Delta/Jagged (JAG)).
Notch receptor maturation starts in the Golgi/Endoplasmic
reticulum. Glycosylation of Notch proteins in the Golgi and ER
is known to play a role in the regulation of Notch activity (35).
Fringe proteins can both positively and negatively regulate Notch
ligands however the full scope of their roles in breast cancer
are unclear (36). Furin-like convertases cleave the non-covalently
associated Notch heterodimer, which is transported to the plasma
membrane (Figure 2A).

The extracellular domain consists of epidermal growth factor
(EGF)-like repeats, followed by a negative regulatory region
(NRR) which includes 3 LNRs (Lin12-Notch repeats) and a
heterodimerization domain which prevents receptor activation
in the absence of ligand(37) The intracellular portion of Notch
(NICD) also contains multiple regions and domains, the RBP-
jk association module (RAM), Ankyrin repeats (ANK domain),
and the TAD domain—which consists of Nuclear Localization
Sequences (NLS) and the PEST domain (regulates receptor
degradation) (38) (Figure 2B). Notch 1-4 have relatively short
lifespans and undergo degradation through the ubiquitin-
proteasome and lysosomal pathways. The PEST domain
contained in the NICD is likely to play a role in E3 ubiquitin
mediated turnover. In fact, mutations in the PEST domain of
Notch 1-3 in TNBCs, have been shown to increase Notch half-life
and lead to increases in Notch downstream targets. Promisingly
TNBCs with these mutations have been shown to be sensitive
to GSIs (39). Similarly, alterations in the tumor suppressor and
ubiquitin ligase Fbwx7/cdc4 target the PEST domain of Notch
(40).

The E3 ligase MDM2 has been shown to contribute to the
degradation of Numb and through ubiquitination leading to
activation of Notch in breast cancer. Treatment of MCF7 cells
with drugs targeting the acidic domain of MDM2 showed a
reduction in Notch signaling (41). Furthermore, ubiquitination
of Notch1 by MDM2 has been shown to activate Notch rather
than leading to degradation (42). MDM2 has also been shown to
regulate p53 degradation through ubiquitination, which, along
with its role in Notch regulation makes it an attractive target
for drug discovery along with other E1-3 ligases and interacting
proteins. Knockdown of the E2-conjugating enzyme UBC9 and
inhibition of the E1 activating complex SAE1/UBA2 has also
been shown to impair the growth of Notch1-activated breast
epithelial cells (43). Pevonedistat (MLN4924), is an inhibitor of
NEDD8, a ubiquitin like protein that can neddylate E3 ligases.
Pevonedistat has been shown to induce apoptosis in MCF-7 &
SKBR-3 cells in combination with 2-deoxyglucose (44), and to
sensitize breast cancer cells to radiation in vivo (45). Bortezomib,
an FDA approved proteasome inhibitor has been shown to
inhibit multiple genes associated with poor prognosis in ERα
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FIGURE 1 | Notch receptor maturation, ligand dependent and independent activation pathway and targetable steps. Representation of Notch receptor maturation,

ligand dependent and independent activation and the key enzymes involved. Text in red represents steps that can be targeted. The red star in Notch extracellular

domain represents Notch activating mutations leading to ligand independent signaling. (CBF1, Su(H), Lag1), CSL; NICD, Notch intracellular domain and MAML,

Mastermind-Like.

breast cancer (46), however several clinical studies have shown
contradictory results in advanced/metastatic breast cancer (47–
49).

A number of components of post-translational modifications
pathway have been implicated in regulating Notch stability
including Fbw7, Itch, β-arrestin, Fe65 and Numb (50–53). Numb
negative breast cancers have increased Notch signaling which can
be reverted to basal levels with overexpression of Numb and visa-
versa knockdown of Numb in Numb positive breast cancers leads
to upregulation of Notch signaling (54). Further research into
the mechanisms of Notch post-translational modifications and
degradation may provide novel therapeutic targets as well as for
other malignant diseases.

Signal transduction occurs through the Notch ligand on the
“signal-sending cell” interacting with the Notch receptor on
the “signal-receiving cell.” This interaction process involves two

sequential proteolytic cleavage events – first by the ADAM10
metalloprotease which sheds the extracellular domain, leading to
the release of the NICD. The γ-secretase complex is composed
of 4 polytopic transmembrane proteins including a catalytic
subunit the aspartyl protease presenilin (55) The sequential
proteolysis activation mechanism is essentially the same for
Notch1-3 receptors (56). The activation mechanism for Notch4
-although likely similar to the other Notch family members- has
not been reported yet. The NICD then translocates to the nucleus
where it forms a protein complex with CSL (Cbf-1/RBP-jk in
mammals, Su(H) in Drosophila and Lag-1 in C. elegans) and
MAML (Mastermind-like) and induces transcription of multiple
Notch downstream target genes (38) (Figure 2B). Additionally,
a number of non-canonical pathways have been described
downstream of Notch, including transcriptional activation of
ERα-dependent genes (57), and NF-kB (58), activation of the
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FIGURE 2 | Notch receptor maturation and pathway activation, targetable options, and receptor functionality. (A) Stepwise representation of the process of Notch

receptor maturation until receptor activation, followed by transcriptional output (not shown), and possibilities in targeting the Notch receptor pathway. (B) Notch

receptor functional domains and corresponding functions ANK, Ankyrin repeats; LNR, Lin12-Notch Repeats and RAM, RBP-jk association module.

PI3K-AKT-mTOR pathway (59), and activation of mitochondrial
metabolism (60, 61). Mammalian cells express four Notch
receptors and five ligands in a highly tissue specific and content
dependent manner (38). Activation levels of specific pathways
within the global notch signaling pathway has been found to
differ within mammary epithelial cells and this can lead to
different phenotypic responses (62).

Notch can also be phosphorylated which can have
contradictory effects depending on the number of cleavage
steps it has undergone and the specific kinase involved in
phosphorylation (63). Phosphorylation of Notch by glycogen
synthase kinase 3 (GSK-3) can reduce Notch transcriptional
activity & protein levels (64, 65) and may be a target for possible
therapies. Site specific methylation of NICD1 has been shown
to make it less stable than a methylation defective mutant (66)
indicating other possible post-translational targets (67).

Targeting Notch in Cancer
In many solid tumors the Notch signaling pathway is deregulated
or mutated (68), affecting most hallmarks of cancer (69). Notch
gene expression is frequently deregulated in breast cancer (70)
and shows extensive crosstalk with several major signaling
pathways. Further, there is ample evidence for the diverse role of
Notch signaling in tumor formation, progression, and resistance
to treatment in breast cancer (71).

Due to the multi-step activation process, several Notch
pathway interventions are being explored at the level of: I.

blocking receptor maturation, II. receptor–ligand interactions,
III. receptor activation associated proteins, IV. nuclear
translocation, V. NICD nuclear complex formation, and
VI. transcriptional activation of target genes (72) (Figure 2A).
This includes, but is not limited to antibodies, small molecule
inhibitors, and inhibitors of γ-secretase (GSI) (72, 73).

Despite the increased evidence for deregulated Notch in
numerous malignancies and resensitization opportunities (34,
74–81), many clinical studies investigating Notch targeting are
on hold or have been terminated. Notably, most of these trials
were conducted in recurrent, heavily pre-treated chemo resistant
cancers and used dose-limiting non-selective pan-Notch/GSIs.
Additionally, because of a lack of biomarkers predicting outcome
to Notch therapies, potential responders were thus not effectively
selected [reviewed in (71)]. As a result, this has not led to effective
interventions using Notch inhibitors combined with standard of
care. Therefore, in this review, we have focused on the possible
role of Notch in enhancing the efficacy of breast cancer treatment.

Notch and Breast Cancer

Role of Notch in breast development.
The normal mammary gland experiences a period of rapid
growth and development at puberty. Thereafter, and until
menopause, it undergoes cycles of expansion and regression
with each estrous cycle, pregnancy, lactation, and involution
(82). This homeostasis requires stem cells and their existence
was first demonstrated using transplantation experiments to
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reconstitute a functional mammary gland in rodents (83). Dontu
et al. demonstrated the presence of early progenitor/stem cells
capable of differentiating along all three mammary epithelial
lineages (myoepithelial, ductal-, and alveolar epithelial). Gene
expression analysis revealed similarities with progenitor and stem
cell associated pathways, thereby identifying mammary stem
cells (MaSCs) in 3D culture systems (84). More recently, in
vivo imaging has identified bi-potent basal stem cells in the
mammary gland, yielding both myoepithelial and luminal cells
(85) and Notch plays a role in this process (86–89). Bouras
et al., have performed extensive research on the role of Notch
in MaSCs. In MaSCs, Notch1 is differentially expressed between
subtypes (90), and its expression is higher in the luminal type cells
(90, 91). Furthermore, Notch1/3 mark the luminal progenitor
cells in mammary gland development (89, 91). Downregulation
of Cbf-1/RBP-jk resulted in increased proliferation of MaSCs,
thereby influencing absolute stem cell numbers. However,
this proliferation resulted in increased and disorganized side
branching, with increased number of end buds and basal cells
in these end buds. Therefore, RBP-jk downregulation regulates
the formation of a more basal cell phenotype. Additionally,
overexpression of the endocytic protein NUMB, a negative
regulator of Notch, produced the same effects. This shows
that reduced Notch signaling is important in proliferation of
the basal cell population and MaSCs. Conversely, increased
levels of Notch1 in the luminal cells showed that constitutive
Notch activation is important for commitment to the luminal
cell lineage (High Keratin8/18, Stat5, and p63 downregulation)
(90). Moreover, it has been reported that Notch4 is involved
in promoting stem cell renewal of mammary epithelial cells
(mammospheres) in vitro (92, 93), and is involved in stem cell
activity (94)–possibly through JAG1 signaling (95) and PKCa-
Notch4 interaction (96). Furthermore, Notch and p63 signaling
guide the establishment of basal and luminal epithelial cells (97)
and PTEN/JAG1 play an important role in mammary epithelial
stem cells (98).

Role of Notch in breast cancer development and metastasis.
The role of different Notch pathway components in breast
cancer development has been extensively researched. Stylianou
et al. showed that in many breast cancer cell lines Notch
ligands, receptors, and target genes are aberrantly expressed
(99). Charafe-Jauffret et al. identified a 413-gene CSC profile
(including Notch2) using normal and malignant mammary
tissue (100), identifying breast cancer stem cells (BCSCs)
through ALDH+ (101). ALDH+ cells were capable of self-
renewal, differentiation, tumor formation in mice, and showed
increased metastatic potential. ALDH− cells hardly generated
tumors. Results from a Meta–analysis involving 3867 patients
showed that Notch1 expression positively correlates with breast
cancer progression and that higher expression is associated
with a transition from ductal carcinoma in situ to invasive
cancer. Furthermore notch1 overexpression was correlated with
significantly worse overall and recurrence-free survival. The data
further suggested that Notch inhibitors may be useful in blocking
early progression of ductal carcinoma in situ (5).

Aberrant activation of the Notch signaling pathway has been
shown to promote an aggressive phenotype partially through
NF-κB, whereas de-activation of Notch signaling abrogates this
aggressive phenotype (58). Furthermore, in TNBC, tumor cells
activated NF-κB upregulates Jagged-1, which stimulates Notch
signaling in CSCs (102).Tumor derived Jagged1 has been shown
to be an important mediator of bone metastasis in breast
cancer. Jagged1 activates stromal Notch signaling which in
turn induces IL-6 secretion from osteoblasts stimulating tumor
growth. Notch signaling also directly stimulates maturation of
osteoclasts exacerbating bone metastasis. Destruction of bone
matrices releases TGF-β upregulating Jagged1 in the tumor
giving a positive feedback loop. GSIs treatment in turn reduces
bone metastasis by targeting stromal Notch signaling (103).

In vivo studies using TNBC and ERα+ cell lines showed an
association between Notch3 expression and distant metastases
which was diminished in Notch3 null cells. This finding was
corroborated using TNBC cells from a patient-derived brain
metastasis (104). An in vivo study using a more metastatic
variant of the HER2+ MDA-MB435 isolated from in vivo brain
metastasis showed activation of the Notch signaling pathway.
Inhibition of Notch using the γ-secretase inhibitor DAPT or
knockdown using RNAi against Notch and Jagged2 resulted
in inhibition of the migratory and invasive phenotype (105).
Furthermore fewer brain micrometastases were found when
Notch1 was silenced in an MDA-MB-231 model (106). Breast
tumor cells in the brain highly express IL-1β which leads
to surrounding astrocytes expressing Jagged1 which stimulates
Notch signaling in CSCs (107). Oskarsson et al. showed that
breast cancer cells that metastasize to the lungs enhance
their ability to survive through expression of the extracellular
matrix protein tenascin C. Tenascin C is associated with
aggressiveness and pulmonary metastasis and enhances stem
signaling components including Notch (108).

Notch1. Notch1 is aberrantly expressed in breast cancer (99)
and high Notch1/4 mRNA expression and activity are associated
with worse prognosis (30). In Ductal Carcinoma in situ (DCIS),
Notch1 signaling is active and associated with the development
of breast cancer (109). Both Notch1 and Notch4 are identified
as common sites of proviral integration in mammary mouse
tumors (110, 111), and induce mammary (MMTV)-tumors when
overexpressed in transgenic mice (112–114). Larger studies have
shown that expression of Notch1/4 and JAG1 is associated
with poor prognosis in breast cancer (115). Moreover, JAG1
expression is an independent predictor of poor outcome in node-
negative disease (116) and higher NICD1 expression correlated
with sentinel lymph-node positive patients (117). Notch1 levels
were progressively associated with the transition from DCIS to
invasive basal cancer (5).

In human breast cancer, a meta-analysis including
approximately 4000 cases showed that elevated Notch signaling is
associated with increased disease recurrence (118). Pathway and
network analysis revealed that altered Notch1 signaling occurred
in ER+/PR+/HER2+/− breast cancers (119), whereby Notch1
mutations are more prevalent in HER2− than HER2+ tumors
(120). JAG1-Notch signaling leads to Cyclin-D1 induction (121),
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a gene that is essential for normal breast development in mice
(122) and frequently deregulated or amplified in human breast
cancer (123, 124). k Notch1 activatingmutations/rearrangements
have also been observed in TNBC (in EGF repeats and NRR)
(125) and in the basal-like phenotype (116). Additionally, Notch1
promotes stem cell maintenance through c-Jun signaling (126).
Further, Reedijk et al. revealed that JAG1 is an independent
predictor of poor outcome in multivariate-analysis (115) with
other well-known outcome predictors (nodal metastases, patient
age, tumor size, node status, ER positivity, and tumor grade)
(5, 115, 127). Higher NICD1 expression correlated with sentinel
lymph-node positive patients—strengthening Notch1’s role in
the metastatic process (117).

Leong et al. provided data that JAG1 and Notch1 are
involved in epithelial-mesenchymal transition (EMT) through
SLUG and E-cadherin. They showed that SLUG facilitated E-
cadherin repression (through Notch1 inhibition) and inhibition
of HEYL blocked tumor growth and metastasis, showing
JAG1-Notch1-SLUG dependency (128). Furthermore, NICD1
expression negatively correlated with E-cadherin and showed
increased invasive capacity of Notch1, (129). This was also the
case under hypoxia with differences observed in high/low Notch
signaling cell lines (130). Mechanistically, hypoxia-induced EMT
is mediated through SLUG and SNAIL (131). A JAG2-EMT
relationship has been shown too (through Notch1), revealing
a broader spectrum of Notch1 activation and involvement in
hypoxia and metastatic potential of CSCs (132). Additionally,
high Notch1 and HIF predict a worse prognosis (133). These
results show that Notch1 signaling is important for EMT
and downregulation of E-cadherin, ultimately creating a more
invasive phenotype. Furthermore, as described above, the
invasiveness of the tumor and hypoxia induced EMT requires
Notch1 signaling, demonstrating a hypoxia/Notch1/EMT axis.
Thus, inhibition of Notch1 can be tumor suppressive by
removing the inhibition on E-cadherin expression, regardless of
hypoxia.

Downregulation of JAG1 or blocking Notch with
GSI in a metastatic breast cancer model (MDA-231)
attenuates bone metastasis by reducing osteolysis in the
bone microenvironment. Conversely, overexpression of
JAG1 is sufficient to induce bone metastasis in this model
(103). Others have demonstrated a role for Notch1 of tumor
dormancy in the bone marrow microenvironment, instigating
metastases, through a Notch1/STAT3/LIFR signaling axis
(134). Furthermore, circulating tumor cells “primed” for
breast cancer brain metastases have a specific gene signature
(HER2+/EGFR+/HPSE+/Notch1+) (135, 136). These CTCs
could either be derived from the primary tumor or from
metastatic lesions. Importantly, these CTCs were EPCAM−.
This would make them undetectable by the only FDA approved
clinical test for CTCs, which is based on an EPCAM+ profile
(136).

Notch2. Notch2 can act as a transcriptional and functional
regulator of Notch1 and Notch3 (137) and has been shown to
be involved in specific mammary epithelial lineages affecting
luminal cellular hierarchy (138). Mutations in Notch2 show

increased incidence in breast cancer, and in addition to the
TCGA database new mutations have been found (139). Notch2
is positively correlated with HER2 (140), low-grade tumors and
improved outcome (141), and increased apoptosis (142). In the
basal subtype, JAG1 and DLL4-induced Notch2 activation under
the influence of FYN/STAT5 maintained the mesenchymal-
phenotype. Notch2 siRNA decreased the EMT markers VIM,
SNAI1, SNAI2 (SLUG), TWIST, and ZEB1 (143). Notch2/3
inhibition (Tarextumab) decreased CSC numbers in the UM-
PE13 breast cancer cells (144). Furthermore, mutations in
Notch2 could facilitate development of liver metastasis (145).
However, other studies showed that, Notch2 mutations do
not unequivocally associate with better prognosis and therapy
efficacy (144, 146).

Notch3. Expression of oncogenic Notch3 in mice leads to
mammary cancer (111), and is involved in: hormone-receptor
positive breast cancer (120), the proliferation of HER2− breast
cancer (147) and HER2+ DCIS (148), and TNBC (149). Notch3
is involved in HER2+ DCIS through transcriptional upregulation
of the Notch pathway by HER2–whereby Notch3 upregulates the
formation of luminal cells and increases proliferation through
Cyclin-D1, c-MYC, and AKT (148). Furthermore, Notch3
signaling has been proposed to be an important regulator of
the process whereby bipotent progenitors commit to the luminal
lineage (93). Additionally, evidence from nonsense and missense
mutations in multiple cancers, including breast cancer, showed
tumor suppressor capabilities of Notch3 through controlling
of the cellular senescence pathway (150). Interestingly, no
significant change in Notch1, Notch2, or Notch4 expression was
observed in these studies.

In TNBC, ectopic NICD3 (over)expression facilitated the
inhibition of EMT through upregulation of the HIPPO pathway
and E-cadherin in a RBP-jk dependent manner, whereby
knockdown of Notch3 abrogated this effect (151). Furthermore,
a correlation was shown between Notch3 and p21, a well-known
senescence-involved protein. A significant decrease in Notch3
was observed in primary breast cancer, compared with normal
tissue, suggesting a protective mechanism against Notch3-
initiated cellular senescence. Re-introduction of Notch3 resulted
in growth inhibition and activation of cellular senescence,
suggesting that loss of Notch3 expression facilitates senescence
induction and could play a critical role in tumor progression.
Notch3 silencing has recently been shown to sensitize TNBC
cells to the EGFR inhibitor gefitinib by promoting EGFR tyrosine
dephosphorylation and internalization (152). Notch3/4 were
shown to have increased expression in low-burden metastatic
cells relative to the primary tumor (153).

Notch4. The oncogenic function of Notch4 was first
demonstrated by retroviral insertion in MMTV-induced
mammary tumors (110). Additionally, Notch4 is highly
expressed, and gain of function mutations have been identified,
in mouse mammary cancer models [reviewed in (154)].
Expression of activated Notch4 in mammary epithelial cells
lead to transformation (155) and rapid development of poorly
differentiated adenocarcinoma in transgenic mice (110, 156).
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Additionally, truncated human Notch4/Int3 (activated Notch4)
instigated mammary tumors (112), through transcription of
RBP-jk (157) and ANK repeats (158). Interestingly, transgenic
expression of Notch4 NICD caused mammary tumors in the
absence of RBP-jk in mice harboring conditional knockout of
RBP-jk (157). This suggests that non-canonical pathways may
participate in the oncogenic activity of Notch4.

PEST domain. The PEST domain is a degradation domain that
regulates the stability of all NICDs through ubiquitination and
proteasomal degradation (39). Nonsense mutations are common
in T-ALL (159, 160) and have been observed in Notch1/2/3
receptors in TNBC (39). Furthermore, Notch pathway and target
genes, including Notch1/3, HES1, HEY2, HES4, MYC, Cyclin-
D1, and NRARP, were highly overexpressed in TNBC (39, 125).
Notch mutation-activated dependency was shown using GSI, as
wild type tumors showed little to no response (39).

Notch pathway-associated proteins
Fringe. Fringe is an important regulator of the Notch receptor-
ligand interaction (161) through modification (glycosylation) of
EGF repeats in the extracellular domains of Notch receptors
(162). Fringe enzymes add N-acetyl glucosamine to fructose
residues in the extracellular domains of Notch receptors. More
glycosylated receptors retain high affinity for Delta ligands but
have reduced affinity for Serrate/JAG ligands. Hence, loss of
Fringe glycosylation enhances Notch affinity for Serrate/JAG
ligands. There are three Fringe genes in mammals: Lunatic
Fringe (LF), Manic Fringe (MF), and Radical Fringe (RF). In
breast stem or progenitor cells, and especially the terminal
end bud cap cells termed “leader cells” (163), LF is highly
expressed (93). Conversely, the majority of basal tumors and
a subset of claudin-low tumors show reduced LF expression
(164). In MMTV-driven tumors, absence of LF exclusively
caused triple negative tumors. Furthermore, deletion of LF was
enough to cause Notch-driven (Notch1-4) basal-like tumors via
enhanced stem/progenitor cell proliferation (163). These tumors
resembled “claudin-low” (mesenchymal) subtype of TNBC. p53
loss of function in these tumors resulted in a clear EMT
profile (Vimentin, TWIST, E-cadherin) (165). Cells showed
increased levels of Vimentin and E-cadherin and decreased
expression of cytokeratin 8/14–this coincided with decreased
differentiation, increased levels of proliferation, and stem cells.
Co-deletion of LF and p53 resulted in upregulated NICD3
and HES5, and downregulation of HES1. These data connect
expression of LF, Notch (signaling), and p53 to impaired luminal
differentiation.

In contrast to LF, MF is highly expressed in the claudin-low
subtype of breast cancer and is associated with Notch4 (166).
Deletion of MF shifted the tumor resemblance to a less claudin-
low like, more luminal subtype—through increased levels of the
luminal marker CK8 and basal marker CK14, and decreased
levels of stem cell marker ALDH1. Furthermore, MF was shown
to be able to regulate cancer stem cells and their migration in a
spheroid model by increasing NICD1 expression and PIK3CG
(encoding the g catalytic subunit of PIK3-γ) (166). These data
show that Fringe is involved in a Notch-dependent manner in

breast cancer with different roles observed for different Fringes
(no data has been reported yet on RF)—causing a Fringe-
dependent subtype switch (basal-luminal).

NUMB. NUMB is a cell fate determinant and endocytic
protein that acts as a negative regulator of the Notch
signaling pathway (54, 167, 168). NUMB is frequently down-
regulated in breast cancer and suppresses the growth of
breast cancer cells in vitro (169, 170) often involving the
attenuation of the p53 tumor suppressor pathway (168). NUMB
can drive Notch toward endocytic degradation. Additionally,
NUMB inhibits ubiquitin ligase MDM2, which targets p53
for degradation. Hence Loss of NUMB results in a high-
Notch, low p53 phenotype. Mechanistically, NUMB forms
a ternary complex with MDM2 and TP53 and inhibits
the activity of MDM2 (168, 171). In a cohort of breast
cancer patients receiving adjuvant chemotherapy, NUMB,
and indirectly Notch activation, were inversely correlated
with clinical and pathological parameters indicative aggressive
disease progression (168). In NUMB-deficient cells, p53 is
ubiquitinated and degraded, resulting in chemoresistance
and high Notch activity. MDM2 also ubiquitinates NUMB,
which results in nuclear translocation and degradation (172).
Thus, NUMB connects the MDM2/p53 pathway, the most
frequent mutated pathway in human cancers, with Notch
signaling.

MAST. In many breast cancers, gene translocations and fusions
have been described. Recurrent gene arrangements involve
MAST and Notch family members (Notch1/2), both showing
phenotypic effects in breast cancer (e.g., greater proliferation).
Notch fusions were found, almost exclusively, in ER− breast
carcinomas. All the fusion transcripts retained the exons that
encode for the NICD. Furthermore, higher Notch responsive
transcriptional activity was seen in breast cancer cell lines
carrying MAST-Notch fusions, and showed dependence on
Notch signaling for proliferation and survival (173). The
discovery of these Notch fusions warrants further investigation
and may identify a biomarker for Notch based therapeutics.

Nicastrin. Nicastrin is an essential component of the γ-secretase
complex; it encodes an integral membrane protein which
associates with the catalytic subunit of γ-secretase, Presenilin
(174). Nicastrin is crucial for maturation of Presenilin and
cells that lack Presenilin are γ-secretase and Notch-deficient
(175, 176). In breast cancer, high Nicastrin is mainly observed
in the ER+ subtypes. Nicastrin expression correlates with age
and tumor grade–and predicts worse tumor survival (177).
Additionally, a set of 22 genes (located on chromosome 1) has
been co-identified with Nicastrin amplification and breast cancer
(178), however, these genes showed no clear Notch signature.
Furthermore, Nicastrin seems to play a role in EMT (177, 179).
Targeting of Nicastrin affects breast cancer stem cells and inhibits
tumor formation in vivo (179). Inhibiting Nicastrin in TNBC,
using monoclonal antibodies, showed anti-tumor activity (180).
Thus, aiming at Nicastrin provides another opportunity to target
the involvement of Notch in breast cancer.
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These data suggest that (deregulated) Notch receptor/ligand
signaling influences cell renewal in the mammary gland and
reaches far beyond mammary development, as it possesses the
ability to influence the pre-malignant lesions, primary tumors,
the metastatic potential of tumors, and therapy resistance.

Notch Signaling in the Tumor Microenvironment
The breast microenvironment consists of a number of cell types
including fibroblasts, adipocytes, endothelial and immune cells as
well as extracellular matrix.

Cancer associated fibroblasts (CAFs) have been shown to
induce Notch activation in breast cancer cell lines through
secretion of IL-6 (181). There is also evidence supporting a role
for fibroblast-derived microvesicles in endocrine resistance.
Cancer-Associated-Fibroblast (CAF)-derived microvesicles,
containing oncomiR-221 promoted de novo endocrine
resistance—as overexpression of oncomiR-221/222 in luminal
breast cancer cells reduces ER expression (182) Furthermore
CAFs can promote the cancer stem cell phenotype by secreting
CCL2, inducing Notch1 (183). Stromal cells including fibroblasts
have also been shown to promote therapy resistance in breast
cancer cells through expression of Jagged1 and exosomal transfer
leading to Notch3 and STAT1 signaling in cancer cells (184).
GPER signaling from both CAFs and cancer cells has been
shown to upregulate Notch signaling. 17β-estradiol and GPER
ligand G-1 induces γ-secretase-dependent activation of Notch1.
Furthermore, the 17β-estradiol and GPER induced migration of
breast cancer cells and CAFs is attenuated with GSI treatment
(185).

17β-estradiol also promoted increased Jagged1 as well as
Notch1 expression in MCF7 cells and was similarly found
in endothelial cells. The endothelial cells formed cord-like
structures in matrigel in contrast to cells expressing a dominant
negative form of Notch1. 17β-estradiol treatment was also
able to increase tumor microvessels in vivo, which correlated
with Notch1 expression (186). Clinical data has shown higher
Notch1 activation in tumor endothelial cells compared to non-
malignant tissue. A correlation between the rate of NICD1-
positve vs negative tumor endothelial cells was higher in
patients with positive sentinel lymph nodes (117) Co-culture
in vitro and in vivo has demonstrated upregulation of notch
ligands in endothelial cells after contact with breast cancer cells.
Proliferation and survival was significantly reduced along with
a reduction in the stem-cell population when co-cultures were
treated with GSI. Knockdown of Jagged1 in endothelial cells
reduced the survival ability of breast cancer cells under starvation
conditions. Knockdown also reduced tumor cell proliferation but
did not reduce survival of knockdown epithelial cells (187). Wnt
signaling is known to be up-regulated in breast cancer. Aberrant
wnt signaling has been shown to give a tumorigenic phenotype
to primary epithelial cells. This conversion is in part caused by
up-regulation of the Notch ligands Dll1, Dll3 & Dll4 which are
required for the tumorigenic phenotype (188).

Mammospheres enriched with stem/progenitor cells from
node invasive breast carcinoma tissue expressed more IL-6
than matched non-neoplastic mammary glands. Il-6 was only
detected in basal-like breast carcinoma tissue which contained

stem cell features. Il-6 upregulated Jagged1 and lead to growth
and a hypoxia-resistant/invasive phenotype through Notch3
dependent expression of CAIX (189).

Adipocytes within the tumormicroenvironment secrete leptin
and IL-6. Leptin and IL-6 signaling in breast cancer cells
adjacent to adipocytes upregulate multiple pathways including
Notch promoting a stem-like phenotype as well as epithelial-
mesenchymal transition (190). Leptin is able to induce Notch 1,3
& 4 however Notch3 appears to be cell dependent. The leptin-
Notch signaling axis is involved in proliferation and migration
and leads to higher incidence and aggressiveness in obese
patients. Leptin inhibitors were able to reduce Notch receptor,
ligand and target expression (191).

Dll4 and Jag1 have opposite effects on regulating angiogenesis.
Jag1 induces maturation of blood vessels, while Dll4/Notch
regulates sprouting angiogenesis (192). Thus targeting Dll4 or
Jag1 will have different effects. Targeting Dll4 using antibodies
promotes non-productive angiogenesis (193). GSI treatment
however targets both and leads to a decrease in angiogenesis
(194). These differences in targeting may explain the contrasting
in angiogenesis seen in pre-clinical models treated with GSI or
Dll4 antibodies. In a phase I clinical trial, enoticumab, a Dll4
monoclonal antibody targeting the tumor vasculature, showed
stable disease as best response in 2 of the 6 breast cancer patients
enrolled. The antibody also gave a number of side effects, seen
with previous Notch targeting therapeutics, as well as ventricular
dysfunction and pulmonary hypertension (195).

Notch and the immune response
The role of Notch signaling in the immune response to
tumors is complex and is dependent on the tumor type and
microenvironment factors. Notch signaling is a key regulator
of hematopoietic development and controls self-renewal, lineage
commitment and terminal differentiation of the innate and
adaptive immune system including B cells, T cells, myeloid cells,
dendritic cells and natural killer cells (196, 197) Notch signaling,
both canonical and non-canonical, also plays a role in tumor
induced immuno-suppression.

It has been established that most stages of the tumor
development from initiation to malignant conversion,
invasion, metastasis, therapy resistance and relapse involve
the inflammatory response (198). The interaction between tumor
cells and immune cells in the tumor microenvironment controls
the overall immune surveillance and response to therapies and
patient outcome. The role of Notch signaling in the immune
response to tumors is complex and is dependent on the tumor
type and microenvironment factors Notch as well as regulating
many aspects of the immune system regulates many components
of the tumor microenvironment (199, 200).

There is a strong causal relationship between endocrine
resistance and Jagged NOTCH signaling in breast cancer which
promotes macrophage differentiation toward tumor-associated
macrophages (TAMs), the most common immune cell found in
the breast tumor microenvironment (200). TAMs can be pro or
anti-inflammatory depending on micro environmental factors,
which in most breast cancers develop the anti-inflammatory
phenotype (200, 201). The anti-inflammatory phenotype in
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breast cancer plays a role in suppressing immune surveillance
as well as promoting proliferation, angiogenesis and tissue
remodeling (198). In a model of basal-like breast cancer, tumor
cells secrete the CCL2 & IL-1β cytokines in a Notch dependent
manner, which work to recruit monocytes (202). Within the
tumor microenvironment monocytes differentiate into TAMs
with a pro tumor phenotype supporting tumor growth and
metastasis (203). TAMs also interact with cancer cells via TGFβ,
promoting Jagged 1 expression, causing a feedback loop that
amplifies cytokine/chemokine secretion.

Myeloid-derived suppressor cells (MDSCs) promote tumor
progression through a variety of mechanisms including immune
suppression and enhancing angiogenesis and metastasis. MDSCs
have been shown to have lower Notch activity in conditioned
media from breast cancer cell lines through an inhibitory
phosphorylation of NICD by casein kinase 2, disrupting NICD/
CSL interaction (204). MDSCs in breast cancer have also been
shown to induce Notch signaling in cancer cells and promote
CSC capacity through IL6/STAT3 & Nitric Oxide/Notch cross
talk signaling (205, 206). Cancer cells also increase Jagged-1 &
Jagged-2 expression inMDSCs leading to a positive feedback loop
between cancer cells, immune cells and CSCs.

Notch has been shown to be important in the regulation of
Tregs, a subtype of T cells, which is important in peripheral self-
tolerance and plays a role in tumor immunosuppression (207).
Tregs promote evasion of immune surveillance and are linked
to tumor invasiveness and poor prognosis. Notch-1-TGF-β
signaling directly induces peripheral Tregs through upregulation
of Foxp3 (208). Both Jagged-1 and Jagged-2 increase the
generation of Tregs (209) and are highly expressed in TNBC,
CSCs and treatment resistant populations (95, 132).

On the other hand CD8+ cytotoxic T cells, which have
been shown to have anti-tumor function, require Notch to
become activated (210), and Notch2 has been shown to be
required for the anti-tumor effect of cytotoxic T lymphocytes
(211). Furthermore, selective activation of the Notch pathway
in hematopoietic environments enhances T-cell activation and
infiltration, inhibiting tumor growth in mouse models.

Research into targeting the immune response and the tumor
microenvironment is ongoing and detailed reviews strategies and
treatments can be found here (212, 213). GSI treatment has been
shown to reduce the numbers of TAMs, MDSCs and TRegs,
however it can’t be excluded that this was in part due to inhibiting
tumor growth (214). More research is needed to fully elucidate
the complex interplay between Notch, tumor microenvironment
and the immune system in breast cancer and to develop strategies
that enhance the anti-tumorigenic effect but do not suppress the
anti-tumor immune response.

NOTCH IN BREAST CANCER THERAPIES

Radiotherapy
For breast cancer, radiotherapy is mainly implemented in the
adjuvant setting and involves the targeting of remaining tumor
cells, with the aim to prevent recurrence of residual disease.
Gene signatures (IGKC, RGS1, ADH1B, DNALI1) in primary
breast cancers predict low and high risk groups for local

regional recurrence after Radiotherapy (215, 216). Generally,
cancer stem cells are often radiation resistant (217, 218).
Radiotherapy resistance could be intrinsic or acquired through
changes in gene expression profiles and radiotherapy-resistant
CSCs have been observed in breast cancer (219, 220). More
specifically, BCSCs (CD44+/CD24−/low) were shown to be
resistant to radiation (compared to non- CD44+/CD24−/low

mono-layer cultures), and contributed to tumor recurrence
after fractionated radiation. In a clinically more relevant
culture system (mammospheres) higher radiation resistance
was observed correlating with lower levels of ROS compared
to monolayer cultures. Consistently, mammosphere cultures
showed higher radiation resistance than irradiated single cell
suspensions. Thus, during fractionated radiation, repopulation
derives from themore resistant subpopulation of CSCs. Increased
levels of Notch1/JAG1 signaling could stimulate the more
resistant phenotype of CD44+/CD24−/low CSCs (219). Lagadec
et al. showed that radiotherapy-exposed cancer cells have
increased mammosphere formation, increased tumorigenicity,
and (re)expressed stemness-related genes (transcription factors
Oct4, Y-box 2, Nanog, and Klf4). Interestingly, both NICD1
and JAG1 expression were upregulated only in response to
fractionated radiation (5 × 3Gy) and not after a single dose
(10Gy) (221). Additionally, other research showed that a singular
dose of 3Gy did upregulate NICD1 and JAG1 (222). Thus,
induction of Notch pathway genes is radiation (multi)dose-
dependent (222). Furthermore, targeting of Notch using siRNA
(221) or GSI (222) decreased the induced BCSCs population
after irradiation of non-tumorigenic cells. These data indicate
that Notch is involved in the induction of radiation-induced
CSCs from partially differentiated tumor cells. Recently it has
been shown that, that Notch1 directly regulates the DNA damage
response, through physical interaction and suppression of
phosphorylation of ATM kinase (223). A plausible hypothesis is
that after repeated irradiation, Notch1 could suppress apoptosis-
inducing signals from the activated DNA damage response.

Chemotherapy
Chemotherapy is an important component of standard cancer
treatment and includes anthracyclines, cyclophosphamide, and
taxanes. Resistance to chemotherapy is the main cause of
treatment failure in 90% of the patients with metastatic cancers
(224). Importantly, chemo-resistance accompanies endocrine
resistance, so that ER-positive recurrent tumors that are resistant
to endocrine therapy are also almost invariably chemo-resistant.
One of the main underlying causes for treatment failure is intra-
tumor heterogeneity, a process affected by the presence of CSCs
(168, 225).

Anthracycline/Cyclophosphamide
A role of Notch in doxorubicin sensitivity and resistance
has been reported by Zang et al. (226). They showed that
Notch1 inhibition (RNAi) and doxorubicin treatment led to
a 50 and 70% growth inhibition, and increased apoptosis,
compared to chemotherapy alone–in the MCF7 and MDA-MB-
231 cell lines respectively. Li et al. showed that the efficacy
of doxorubicin could be increased when used in combination

Frontiers in Oncology | www.frontiersin.org 11 November 2018 | Volume 8 | Article 518

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Mollen et al. Moving Therapy Up a Notch

with a GSI (227). Additionally, chemotherapy increases the
percentage of treatment resistant CD44+/CD24low breast cancer
cells in patients. In tumor xenografts combination treatment with
GSI and doxorubicin led to better tumor control–by reducing
CD44+/CD24low population (168).

Interestingly, ALDH expression has been shown to inactivate
chemotherapeutics such as doxorubicin and cyclophosphamide
(228–230). In addition, Suman et al. (231) showed that Notch
inhibition was effective in both ALDH− and ALDH+ cells,
though ALDH− cells were more sensitive. Additionally, they
showed that Notch1 downregulation (using Psoralidin) and
silencing resulted in inhibition of cell viability and proliferation,
and a downregulation of EMT factors SLUG and TWIST.

In ER+ cell lines (MCF7 and T47D) Notch target genes
HES1 and HEY1 were induced by doxorubicin, and could be
inhibited using a GSI–suggesting a Notch signaling dependent
effect. Furthermore, expression of Notch was associated with
expression of multi drug resistance protein 1 (MRP1), a potential
predictor of chemotherapy response and clinical outcome, in a
dose-dependent manner (232). Importantly, in patients treated
with neoadjuvant chemotherapy (anthracyclines± taxanes), pre-
treatment NICD1 levels were very low or absent, while post-
therapy NICD1 was significantly upregulated (232).

In a doxorubicin resistant engineered-cell line, MCF7-AMD,
Notch3 was shown to be downregulated in chemo-resistant cells,
and EMT was activated. Furthermore, in ER+ patients, low
Notch3 predicted distant relapse-free survival, with Fos-related
antigen 1 (Fra1) being negatively regulated by Notch3 (233).

Taxanes
The two most common used taxanes for breast cancer treatment
are docetaxel and paclitaxel (234, 235). Qiu et al. showed that
docetaxel treatment resulted in increased primarymammosphere
formation. Notch1 inhibition increased chemotherapy efficacy
in TNBC BCSCs (CD44+/CD24−/low population) in vitro and
in a patient-derived xenograft breast cancer model (236). In
line with this, Zhang et al. reported similar findings, using a
GSI in multiple xenograft models (237). “Tumor debulking”
by docetaxel resulted in an increased BCSC population,
quantified using ALDH+/CD133+/CD44+. Interestingly, the
CD44+/CD24−/low population was not altered, however, this
might be due to differential targeting methods (Qiu et al. (236):
mAb vs. Zhang et al. (237): GSI). Docetaxel-treated tumors
showed increased NICD1. Combination of GSI with docetaxel
showed significant improved effect compared to docetaxel alone.
Mechanistically, treatment with docetaxel caused an increase in
survivin (inhibitor of apoptosis) and drug transporters, which
could be inhibited by GSI. Furthermore, decreased expression
of NUMB was observed in docetaxel treated tumors but not
after dual treatment with GSI. Docetaxel treatment increased
EMT markers SNAIL, SLUG and N-cadherin, which could be
blocked by Notch inhibition. These findings indicate that Notch1
is involved in the resistance mechanisms of docetaxel treated
tumors and that dual treatment could block enrichment of the
BCSC population and increase therapy efficacy.

Schott et al. showed a residual BCSC subpopulation to be
insensitive to docetaxel alone (238). However, in tumor-derived

xenografts treatment with GSI (MK-0752) reduced the BCSC
population; this resulted in reduced mammosphere formation
and decreased NICD and HES1 expression. A concurrent
clinical study, including 30 patients with recurrent disease after
anthracycline treatment, showed that repeated cycles of GSI
resulted in partial response in 11 patients and evidence for a
reduction in CD44+/CD24−/low and ALDH+ cells. Repeated
biopsies showed an initial increase in BCSC populations until
after the 1st treatment cycle, after which it declined—this is
consistent with the ability of GSIs to decrease BCSCs. However,
additional treatment cycles where needed to additionally reduce
BCSCs and tumor burden. An additive effect of Notch inhibitors
and docetaxel has been recently observed in a phase 1b trial
in TNBC, whereby docetaxel and GSI (PF-03084014) showed
4 partial responses and 9 had stable disease out of 25 patients,
with a manageable safety profile (by dose reduction) (239). All in
all, the combination of docetaxel and Notch1 targeting showed
synergy, with a manageable toxicity profile (238, 239).

In TNBC cells treated with the microtubule stabilizing agent
paclitaxel, surviving breast cancers cells expressed Notch1, Sox2,
Oct3/4, c-Myc, c-SRC, c-MET, Nanog, and E-cadherin, and
were highly tumorigenic. Surviving cells also became resistant
to the BCR-Abl/Src family kinase inhibitor dasatinib (240). In
parental MDA-231 cells, dasatinib reduced NICD1 and Cyclin-
D1 levels, but in paclitaxel resistant clones NICD1 levels were
not affected. Dasatinib resistant MDA-231 clones were not cross-
resistant to doxorubicin or docetaxel. Targeting Notch1 signaling
in TNBC (using GSI) was additive to paclitaxel treatment, as
Notch wildtype tumors showed no additive effect (125). These
results support a protective mechanism whereby Notch1 is
upregulated to protect the survival of paclitaxel-treated TNBC
cells. In the TNBC UM-PE13 xenograft, blockage of DLL-4,
decreasing Notch1 signaling, resulted in delayed tumor regrowth
after paclitaxel treatment, with additionally decreasing the CSC
frequency (241). Paclitaxel is capable of preventing breast cancer
bone metastases. However, resistance emerges over time through
induction of osteoblast JAG1 expression. Hence, metastatic
seeding could be prevented using a JAG1 antibody (15D11).
Synergistic effects (100x, compared to IgG) were observed when
used in combination with paclitaxel (242).

All together, these data indicate that Notch inhibition may
sensitize breast cancer to chemotherapeutics and that this
involves a treatment-resistant BCSC population characterized
by CD44+/CD24−/low cells. Further, chemotherapy resistant cell
lines may be resensitized after treatment with Notch inhibitors.

Endocrine Therapy
In ER+ breast cancers, estrogen receptor signaling plays a pivotal
role in tumor development and progression (243). Treatments
that target the ER include blocking of receptor with an antagonist
(e.g., selective estrogen receptor modulators such as tamoxifen
or selective estrogen receptor disruptors such as fulvestrant),
or depriving the tumor of estrogen (aromatase inhibitors). This
mainly targets the tumor bulk, however, important implications
have been made for hormone receptor-positive stem cells (244,
245). Despite similar expression of hormone receptors, some
tumors are more sensitive to endocrine therapy than others,
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resulting in inter- and intra-patient differences. Additionally,
differences in clinical outcome are observed based on breast
cancer subtype (Table 1). Notably, expression of ER/PR is not
universal in both tumor andmetastases (246), and this does affect
tumor prognosis (247). Receptor conversion and intra-tumor
heterogeneity of ER expression in primary and metastatic tumors
are therefore still a barrier to effective endocrine therapy. Point
mutations in the ESR1 gene, encoding ERα, have been shown to
arise during endocrine therapy and lead to endocrine resistance
(248, 249).

Notch, Estrogen Receptor Interactions, and Therapy

Sensitivity/Resistance
It has been suggested that in endocrine-resistant tumors, the
ER is not the main survival pathway of breast cancer cells.
Additionally, ER-targeting treatment resistance mechanisms are
already in place (250, 251), and these resistance mechanisms
show potential activating crosstalk with Notch (57). Endocrine
resistant breast cancers show increased BCSCs numbers (9, 252)
with Notch3/4 expression (94, 252, 253). Interestingly, in BCSCs
paracrine EGFR and Notch signaling (under the influence of
estrogen), is capable of activating estrogen signaling in ER−

BCSCs (253).
Estradiol inhibits the activation of Notch1/4, causing

membrane accumulation of uncleaved receptors (254), and
upon estrogen deprivation or anti-estrogen drugs increased
Notch signaling was observed (254). Luminal breast cancers
with Notch1 remain hormone responsive (9). Hence, decreasing
Notch signaling using GSI in cell lines and xenografts resulted
in G2 growth arrest (254). Additionally, estrogen deprivation of
luminal ER+ cells (MCF-7) inhibits tumor growth. Conversely,
in the engineered HER2+ MCF-7 cell line, tamoxifen stimulated
growth, even in combination with estrogen deprivation. This
was accompanied by molecular crosstalk between ER and
HER2 (255). Furthermore, involvement of the Akt and MAPK
pathways were observed, with possible roles for Notch in
this resistance (59, 256, 257). These experiments indicate that
HER2 expression plays an important role in endocrine therapy
resistance mechanism; however luminal cells are still dependent
on estrogen receptor activation.

Interestingly, when grown orthotopically, original
ER+/PR+/CK5− tumors showed an increased population
of ER−/PR−/CK5+ “luminobasal cells,” this population further
increased when estrogen was withdrawn, revealing receptor
conversion when exposed to a new environmental niche
(9). However, others have stated that this ER−/PR−/CK5+

population doesn’t increase over time, is under the influence
of progesterone signaling, and is capable of surviving extensive
ER-targeting (258). Many Notch1 pathway genes were included
in this new so-called luminobasal gene signature—involving
TWIST1 and SLUG upregulation. These luminobasal cells
resemble a more TNBC basal-like phenotype (CK5+) while
retaining their luminal origin, expand (at higher rates) within
luminal tumors when deprived of estrogen signaling due to their
independence of the estrogen receptor, and showed sensitivity to
Notch1 silencing. These data suggest an important link between
ovarian endocrine sensitivity (both progesterone and estrogen)

and Notch1, and support a luminal origin of basal-like cells
(9, 258).

Elevated Notch1/3 signaling upregulates IL6 and activates
the JAK/STAT pathway, however, dependent on p53/IKKa/IKKb
status, and through a non-canonical mechanism. Furthermore,
Notch signaling upregulation resulted in different Notch target
genes in different molecular subtypes of breast cancer (basal
vs. luminal B) (259). This growth promoting effect can also be
instigated by fibroblasts secreting IL6, in relation with Notch3
and JAG1 (181). Pioneering research by Sansone et al. showed
that Notch3-IL6 signaling is under indirect control of hypoxia
and that it promotes self-renewal and survival in mammary
gland stem cells (260, 261). CD133high cells express low levels
of ER, but high levels of Notch3 (252), are endocrine resistant
and promote metastases. This process is regulated through IL6-
Notch3 signaling (261). IL6 expression could be induced either
by Tamoxifen or HER2. CD133high expressing cells could be
resensitized to endocrine therapy through IL6R blockade, which
reduced Notch3, STAT3, and CD133. Knockdown of STAT3
resulted in reduced Notch3 mRNA levels and re-expression
of ERα, without changes in CD133 expression. Notch3 thus,
indirectly, plays an important role in endocrine resistance
observed in metastatic breast cancer by influencing stem cell
behavior (260, 261).

As described earlier fibroblast-derived microvesicles
containing oncomiR-221 promoted de novo endocrine
resistance—as overexpression of oncomiR-221/222 in luminal
breast cancer cells reduces ER expression (182). These
microvesicles were capable of blocking endocrine therapy
Notch3 down regulation and causing an estrogen-independent
phenotype in breast cancer cells (96, 262). This was also observed
in endocrine resistant luminal breast cancers whereby blockage
of Notch3 abrogated the growth of these ER-resistant cells (262).

Moreover, Notch4 is a crucial mediator of endocrine
therapy resistance in models of luminal breast cancers
(95, 261–263). BCSC induced by endocrine treatment are
characterized by upregulation of Notch target genes [and
additionally induces an EMT phenotype (263)], and endocrine
resistance in BCSC is driven through JAG1/Notch4 signaling
(95). This could be inhibited through targeting of Notch4
using GSI RO4929097. Notch4 inhibition reduced HES1 and
HEY1 expression, reversed EMT, decreased CSC populations,
thereby attenuating proliferation and invasion. Notch4 thus
promotes estrogen-independent, endocrine therapy resistant
growth of breast cancer cell lines (95, 263) possibly through a
Notch4/STAT3/EMT regulated axis (264). Very recent evidence
shows that mutations in the ligand binding domain of ERα,
which occur in patients and are associated with endocrine
therapy resistance, promote a stem-cell-like phenotype through
activation of Notch4 (265).

Targeted Therapy (HER2)
HER2, a family member of the ERBB transmembrane receptor
tyrosine kinases (ERBB1-4 or also known as EGFR and HER2-
4) is a well-known target in HER2-amplified breast cancer
therapy for both primary tumors (266, 267) and metastases
(268–270). However, it is still unclear whether HER2+ cells
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are truly addicted to oncogenic HER2 signaling as other
EGFR members can compensate after HER2 blockade (266).
Moreover, a single copy of HER2 (in the absence of genomic
amplification) can elicit an expression signature associated with
HER2 dependence. Thus, HER2-non-amplified tumors may in
some cases benefit from HER2 targeted therapy. Yet, such
tumors are currently not being selected for treatment (267,
271). HER2+ breast cancer is mainly treated with combinations
including taxane-based chemotherapy plus trastuzumab (272),
pertuzumab (273), the tyrosine kinase inhibitor lapatinib (274,
275), or combinations thereof (266, 276). Many trials have shown
remarkable response rates (277–281), and therefore HER2-
targeted therapy is standard of care. However, intrinsic and
acquired resistance may still result in relapse and progression
of HER2+ disease. This resistance can occur on many levels,
including activation of the downstream signaling pathways,
constitutively activated HER2, and crosstalk of HER2 with other
growth factor receptors such as other EGFR-members and IGF
(282–285).

HER2 is a direct Notch target gene and bidirectional crosstalk
between Notch and HER2 has been extensively reviewed (286).
Under trastuzumab treatment, Notch activation occurs and
contributes to trastuzumab resistance (284, 287). Trastuzumab-
resistant cells (treated with trastuzumab for 6 months) expressed
higher levels of Notch pathway genes, and this could be reversed
by Notch inhibition (siRNA). GSIs decreased proliferation
(288). In HER2+ xenograft experiments, GSI MK0752 alone
did not affect tumor volume, while trastuzumab alone caused
complete regression of tumors. However, trastuzumab-treated
tumors recurred in approximately 50% of the cases. When
trastuzumab was combined with GSI MK0752, complete cures
were obtained with no observed recurrences. This suggests
that the combination trastuzumab/GSI targeted stem-like cells
responsible for recurrent disease. Notch inhibition resulted in
HER2 down regulation (under the influence of Notch/RBP-
jk binding sites in HER2 promotor sequences), followed by
decreased mammosphere formation (286, 289).

Furthermore, Notch signaling is upregulated after treatment
with lapatinib, a clinically active small molecule EGFR/HER2
inhibitor. Blockade of HER2 signaling in HER2-dependent
primary tumor cells led to upregulation of Notch signaling
[NICD1, HEY1, and HEY2 (266)]. The feedback signaling
between these pathways was confirmed by the ability of HER2
to represses Notch signaling through HES1 and NRARP.
In a HER2-inducible mouse model, Notch1 gain-of-function
constructs identified Notch dependency in tumors recurring
after suppression of HER2 expression in an HER2 inducible
mouse model. After HER2 removal, the rate of recurrence was
much higher in primary tumors that overexpressed NICD1, and
this could be blocked using GSIs (118). The GSI sensitivity
of these tumors suggests that other wild-type Notch paralogs
(e.g., Notch3) induced by NICD1, may play a role. Moreover,
a meta-analysis (17 studies, including 4,463 patients) revealed
increased Notch activity in a subset of breast cancers associated
with poor clinical outcomes (including basal-like tumors). These
data suggest that Notch is positively associated with tumor
recurrence in breast cancer patients and implicate that Notch

targeting might prevent recurrent disease by targeting the
dormant residual tumor cells.

Interestingly, HER2 expression can be heterogeneous both
in bulk tumor cells (290) and BCSCs (291), and shows plasticity
(291). ER+/HER2− and TNBC acquire a HER2+ subpopulation
following therapy exposure (267, 291). Cultured BCSCs from
ER+/HER2− patients retained HER2+/− subpopulations
and switching between these HER2 states is dependent on
environmental stimuli (291). Notch was inversely correlated
with HER2 expression and HER2− cells were sensitive to Notch
inhibition. HER2+ cells showed higher proliferation but were
not addicted to HER2 oncogenic signaling. Following these
sub-profiles, a proliferative state/niche favored the HER2+

phenotype, whereas oxidative stress or chemotherapy selected
for, or initiated transition to, HER2− BCSCs. Thus, Notch
might mediate a protective mechanism by functioning in the
switch between proliferative and survival-prone phenotypes of
HER2+/− BCSCs.

Besides a direct link between Notch and HER2, Notch
also interacts with downstream or parallel HER2 signaling
pathways. Co-suppressing the activation of these pathways upon
resistance (267) might bypass these resistance mechanisms.
Alternative mechanisms to activate signaling pathways such
as PI3K/AKT and/or MAPK can be triggered in response to
trastuzumab or through constitutive activation of HER2. These
pathways may mediate treatment resistance in selected clones.
The communication between Notch and PI3k/AKT has been
shown extensively in hematological cancers (59, 292) and to
lesser extent in breast cancer (293). Bidirectional MAPK-Notch
interactions have been described (256, 257). Additionally, when
the HER2 receptor is inhibited, signaling might still occur due
to dimerization with IGF1-R (285) and Notch interaction (294),
possibly resulting in therapy resistance.

DISCUSSION, CONCLUSION, AND
FUTURE PERSPECTIVES

There is overwhelming evidence for a role of the Notch
signaling pathway in breast cancer development and progression
through upregulation of Notch receptors, ligands, and regulators.
Overall, high Notch pathway activity is associated with
more aggressive disease and poor outcomes. Only a limited
number of breast cancers harbor Notch gain of function
mutations, but in many breast cancers Notch is expressed,
active, and crosstalks with other oncogenic pathways. Further,
many studies support an important role for Notch in the
response to radiation, chemotherapy, hormonal therapy, and
targeted therapies. Importantly, there is compelling evidence that
treatment-resistant breast cancer and other malignancies can
be resensitized by Notch inhibition (77, 78, 295–297). Taken
together, this provides a strong rationale for studies combining
Notch inhibitors with current breast cancer treatment modalities.

However, an important and complicating feature of Notch
signaling is its receptor-ligand specific and context dependent
signaling in different cancer subtypes. Furthermore, the optimal
timing to initiate treatment to achieve therapeutic efficacy
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must be carefully considered. In treatment-naïve tumors, Notch
activation might not become clinically evident until treatment
initiation, as a resistance mechanism triggered by treatment, or
after occurrence of metastases with different mutational profiles
compared to primary tumors (4). Selecting patients most likely
to benefit from Notch inhibition will require molecular profiling
and screening to show possible co-targeting options (298).
The identification of predictive biomarkers is of paramount
importance.

In this review, we have highlighted several opportunities
for Notch targeting in the context of first line breast cancer
treatment and resistance. Additionally, we have discussed its
extensive communication with many other pathways (59, 256,
257, 292, 293), its role in recurrent disease and involvement in the
metastatic process (103, 134, 136, 145), and its association with
clinically relevant hallmarks in breast cancer (69).

Research in the past decade has focused on preventing or
treating tumor recurrence by targeting CSCs. Multiple different

stem-like cell populations have been proposed within tumors,
based on the expression of CD44high/CD24−, ALDH+, CD133,
CD29high/CD61+, CD49f+, and CD90 (299–302). These cells
showed increased levels of therapy resistance and distinctive
gene expression patterns, irrespective of their potential origin
(e.g., from transformation of mammary stem cells or from
de-differentiation of non-stem-like tumor cells)—as stem cell
plasticity occurs within tumors (32, 303). Notch signaling plays
an important role in mammary stem cells as well as breast
cancer stem cells (BCSCs) (84, 92, 304)—well documented
for triple-negative breast cancer (94, 109, 153, 244, 253,
304–307). Furthermore, Notch4 has been shown to maintain
the BCSC population (94, 307). Notch-PTEN signaling is
important in the expansion of these stem-like cells (98, 308).
PTEN/PIK3CA mutations are often observed in breast cancer
and loss of PTEN decreases radiation sensitivity (309). In the
future, combining radiotherapy and small molecule targeting
in BCSC may improve the efficacy of radiation therapy

FIGURE 3 | Overview of the role and opportunities for Notch in breast cancer therapy. Summary of the 4 fields of breast cancer therapy [radiotherapy, chemotherapy,

endocrine therapy, and targeted therapy (HER2)] in which Notch targeting can play a significant role.
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and forestall radiation resistance. However, the timing and
sequencing of treatments should be carefully optimized in order
to achieve maximum efficacy. Radiotherapy dose scheduling
might be easily adapted from the current schedule standards
(310–312).

The effects of chemo-, radio- and targeted therapy on
Notch signaling require further investigation. Observations have
been made for Notch and tumor vascularization under the
influence of both anthracycline and taxane-based chemotherapy
(313). Taxane (paclitaxel) therapy resistance coincides with the
development of metastatic bone lesions, preventable by targeting
JAG1 in osteoblasts (242).

BCSCs in ER+ tumors show responsiveness to hormone
signaling/targeting despite often lacking ER and PR (244, 245).
This may be mediated by paracrine crosstalk with ER+/PR+ bulk
tumor cells.Many endocrine therapy resistancemechanisms have
been revealed (314–317). This has guided research toward the
development of new therapeutic regimens (318), such as CDK4/6
inhibitors (319)—which have been clinically implemented. Notch
inhibition could play a significant role in combinations targeting
these resistance mechanisms. For instance, Notch inhibition
could reverse ER-targeted-treatment resistance and improve the
efficacy of CDK4/6 inhibitors through decreasing Cyclin-D1
(121).

Notch has been shown to crosstalk with the HER2 receptor
(289) and development of breast cancer metastases is affected
by HER2 (268–270, 320) and progesterone (268). Interestingly,
plasticity of HER2 expression has been observed in circulating
tumor cells—with a distinctive role for Notch1 (291). Thus,
Notch is involved in the heterogeneity and plasticity observed
in HER2−/+ breast cancer, and the development of distant
metastases. Combining CDK4/6 inhibitors (321, 322) and Notch
inhibitors, it may be possible to simultaneously attenuate two
main drivers in breast cancer, HER2 and Cyclin-D, promoting
local control and preventing distant relapse.

A step forward, for individualized patient care, could be the
use of patient-representative culture models, such as organoids,
to capture information on individual tumor drug sensitivity ex-
vivo (323). In general, organoids can provide rapid insight into
individual treatment combinations and relationships between
Notch signaling and breast cancer treatment (resistance), before

the start of treatment. These models more closely represent
individual tumors, and may enable us to rationally investigate
the context-dependence of Notch signaling in each tumor. Breast
cancer organoids have recently been developed, but to what
extent they will be strong predictors of treatment response and
their use as prospective platforms for individualized precision
treatment remains to be established (324).

This review summarizes the evidence supporting the
hypothesis that targeting Notch could a promising option
in re-sensitizing breast cancer to current standard of care
treatments (Figure 3). When biomarker quantification and
patient stratification allow Notch targeting to live up to its
potential, this strategy may be applicable to other cancers as
well, targeted with concurrent chemo-radiation or targeted
inactivation of other growth promoting pathways. However,
clinical evidence in solid tumors showed that therapy timing
is highly important to reach maximum effectivity (325). Thus,
additional clinical and translational research will be required
to determine the exact role of Notch in each disease- and
treatment-specific context and fine-tune the use of Notch
targeting agents to prevent or treat or acquired resistance. With
the benefit of sufficient mechanistic knowledge, we propose that
in some cancer patients targeting Notch can be a major part of
an effective strategy to address therapy resistance.
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