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Pancreatic cancer shows malignancy around the world standing in 4th position for causing death glob-
ally. This cancer is majorly divided into exocrine and neuroendocrine where exocrine pancreatic ductal
adenocarcinoma is observed to be nearly 85% of cases. The lack of diagnosis of pancreatic cancer is con-
sidered to be one of the major drawbacks to the prognosis and treatment of pancreatic cancer patients.
The survival rate after diagnosis is very low, due to the higher incidence of drug resistance to cancer
which leads to an increase in the mortality rate. The transcriptome analysis for pancreatic cancer involves
dataset collection from the ENA database, incorporating them into quality control analysis to the quan-
tification process to get the summarized read counts present in collected samples and used for further
differential gene expression analysis using the DESeq2 package. Additionally, explore the enriched path-
ways using GSEA software and represented them by utilizing the enrichment map finally, the gene net-
work has been constructed by Cytoscape software. Furthermore, explored the hub genes that are present
in the particular pathways and how they are interconnected from one pathway to another has been ana-
lyzed. Finally, we identified the CDKN1A, IL6, and MYC genes and their associated pathways can be better
biomarker for the clinical processes to increase the survival rate of of pancreatic cancer.
� 2023 Published by Elsevier B.V. on behalf of King Saud University. This is anopen access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Pancreatic cancer is the fourth most common cause of cancer
death. This cancer occurs when a cell in the pancreas is damaged,
causing the malignant (cancer) cell to start growing out of control
(Kirby et al., 2016). GLOBOCAN 2018 estimates of pancreatic can-
cer incidence and mortality trends show a substantial increase in
both incidence 77.7% (3,56,358 new cases) and mortality 79.9%
(3,45,181 deaths) from 2018 to 2040. This is due to the inability
to enhance preventative and treatment methods, and minor influ-
ence of preclinical and clinical research on patient outcomes over
the last 50 years. There is a need to reduce both pancreatic cancer
incidence and mortality through therapy development and adop-
tion of primary and secondary preventative studies (Casolino
et al., 2021). Pancreatic cancer has two subgroups i.e., exocrine
and neuroendocrine. Exocrine pancreatic ductal adenocarcinoma
is the most observed kind of pancreatic cancer in around 85% of
cases (Lu et al., 2017). The risk of developing pancreatic cancer
increases with age 65 or older (Kirby et al., 2016) . Pancreatic can-
cer is caused by a series of inherited and acquired genetic events. It
is heavily influenced by inherited genetic alterations, both high
and low penetrance. Patients with hereditary mutations in the
pancreas may be more responsive to specifically targeted medici-
nes, allowing for individual treatment (Chen et al., 2017). Patients
with this type of cancer locally advanced have a median survival
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time between 8 and 12 months, those with distant metastases on
the other hand have a worse prognosis with a median survival time
of 3 to 6 months (Lu et al., 2017). The accumulation of these
genetic changes disrupts important signaling networks, resulting
in the development of a malignant phenotype. The average number
of non-synonymous somatic mutations in pancreatic ductal cancer
patients ranges from 26 to 101, affecting important signaling path-
ways and contributing to pancreatic ductal adenocarcinoma cells
malignant activity. Cell growth regulators, cell interaction with
the extracellular environment, and DNA repair mechanisms are
among the cellular pathways affected by somatic mutations in
pancreatic ductal adenocarcinoma. Structural changes have been
detected by single nucleotide variants which are rearranged, scat-
tered, stable and unstable. In over 100 pancreatic ductal adenocar-
cinomas four distinct mutational changes were discovered Age,
APOBEC cytidine deaminases, BRCA1 and BRCA2 alterations, and
mismatch repair deficiencies are linked (Felsenstein et al., 2018).
The early detection of malignancies is critical for developing ther-
apeutic methods that could cure the disease, enhance disease-free
survival and improve patient’s quality of life. When needed sys-
temic chemotherapy will be used to precede definitive, often cura-
tive therapy, such as surgery, ablation procedures, or three-
dimensional intensity-modulated radiation. RNA-seq (high-
throughput RNA sequencing) promises a complete view of the
transcriptome, allowing for complete annotation and quantifica-
tion of all genes and their isoforms across datasets. RNA-seq allows
for the analysis of novel transcripts and has higher resolution, a
wider detection range, and lower technical variability than
microarrays (Corchete et al., 2020). DNA, RNA, and protein mea-
surement in biological materials is increasingly commonplace.
The generated data is rapidly accumulating and analyzing it allows
researchers to find new biological functions, genotype-phenotype
correlations, and disease causes (Reimand et al., 2019). RNA
expression analysis has become a standard tool in biomedical
research, obtaining biological information from data. Gene Set
Enrichment Analysis (GSEA) is a strong analytical tool for evaluat-
ing gene expression data. This method is used for focusing on gene
sets, which are collections of genes with similar biological func-
tions, GSEA reveals a lot of biological pathways that are in common
(Zhang and Zhong, 2018).

In conclusion, the combination of RNA-seq, GSEA, and network
biology represents a powerful translational approach to combat
pancreatic cancer. Using several methods like Precision Medicine
through RNA-seq, Early Detection and Biomarker Discovery,
Uncovering Biological Pathways with GSEA, Network Biology and
Personalized Treatment and Improved Outcomes. By leveraging
these advanced technologies, we can advance our understanding
of the disease, identify novel therapeutic targets, and develop tai-
lored treatment strategies that have the potential to reduce both
the incidence and mortality of pancreatic cancer. This interdisci-
plinary approach offers hope to patients and researchers alike in
the ongoing fight against this devastating disease.
2. Material and methods

2.1. Data collection and preprocessing analysis

Pancreatic cancer samples were collected from the ENA data-
base with project ID PRJNA316672 which consists of 14 samples
which have two conditions Sensitive and Resistant (Rastrojo
et al., 2019). which were sequenced using Illumina HiSeq 2000
platform (Pan and Ma, 2020). The raw data obtained from the
ENA database are further assessed to evaluate the quality of the
data. Here we use FASTQC tool to check the quality of each dataset
where we observed. (Albrecht et al., 2021)(de Sena Brandine and
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Smith, 2019). We also generated a summarized report of the read
quality of all the samples using MultiQC software (Ewels et al.,
2016).

2.2. Mapping and quantification

After aligning each of the datasets to the reference genome
where we get the alignment data in the Sequence Alignment
Map (SAM) format which is basically a text-based file used for stor-
ing an alignment (Srivastava et al., 2020). Further, it is converted
from SAM to BAM format which provides binary versions of most
of the same data by using SAM tools. The BAM alignment files
are sorted to reduce memory usage and are designed to compress
reasonably for downstream analysis(Oliva et al., 2021) (Danecek
et al., 2021). The mapped reads were subjected to transcript quan-
tification using the FeatureCounts program implemented by the
Subread package (Li and Dewey, 2011). FeatureCounts program is
used to assign mapped reads to genomic features such as genes,
and exons which are specified in the reference file. FeatureCounts
takes two input files: one or more sorted bam files and a GTF ref-
erence file(hg38.gtf) which is downloaded from the ENSEMBLE
database (Fraser et al., 2021). A count file is generated where the
number of reads is mapped to individual transcripts in the form
of read counts where genes are present. This file is used to identify
DEGs in the group of samples for further analysis (Liao et al., 2014).

2.3. Differential expression analysis

Differential expression analysis shows the genes with signifi-
cant changes used in the experimental conditions. DESeq2 is a Bio-
conductor package used in R studio software for analyzing RNA-
Seq data for Differential Expression analysis which uses negative
binomial generalized linear models to identify statistically signifi-
cant DEGs (Stupnikov et al., 2021)(Michael et al., 2013). Initially,
genes were filtered based on the false discovery rate adjusted p-
value < 0.05. Finally, upregulated and downregulated genes were
obtained based on log2-fold change values (Love et al., 2014). Var-
ious plots such as PCA plot, Heatmap, and Volcano plot were gen-
erated the depict the gene expression results.

2.4. GSEA software

Gene Set Enrichment Analysis (GSEA) is one of the most popular
bioinformatics tools which can determine the gene sets within
given biological groups (Croken et al., 2014). For building GSEA
Enrichment Map three different files that include hallmark geneset
(gmt), expression profile (gct), and class file (cls) were prepared
(Suárez-Fariñas et al., 2010)(Joly et al., 2020). The hallmark geneset
file (h.all.v7.5.1.symbols.gmt was downloaded from MSig data-
base) which has all human genes that are expressed in cancer,
expression matrix contains the particular cancer expression pro-
file, such as pancreatic cancer and class file.

2.5. Enrichment map and network analysis

Enrichment Map is an open-source and freely available plugin
for Cytoscape which is used for network visualization of enriched
pathways. An enrichment map can be generated based on the files
obtained from GSEA results by using expression profile, hallmark
geneset, enrichment sets, and setting parameters like p-value and
overlap coefficient (Reimand et al., 2019). Enrichment map by
showing pathway as a network in the form of nodes that are inter-
connected with edges that shares the common genes in respective
pathways. Furthermore, analyzing the individual gene interactions
associated with the different pathways are selected and a network



Table 1
Overall Alignment results for all samples obtained by mapping to reference genome.

M. Rambabu, N. Konageni, K. Vasudevan et al. Saudi Journal of Biological Sciences 30 (2023) 103819
is built by annotating the genes with the string database using
Cytoscape software (Merico et al., 2011).
Samples Total reads Mapped reads Alignment rate

SRR3308934 145,813,311 140,620,181 79.08%
SRR3308935 170,374,408 164,692,812 79.04%
SRR3308936 122,307,806 117,412,308 78.47%
SRR3308937 192,629,201 184,442,211 77.25%
SRR3308938 122,490,233 117,240,881 78.38%
SRR3308939 109,014,852 105,112,686 79.41%
SRR3308940 106,132,174 99,617,792 78.61%
SRR3308941 110,530,413 105,502,365 78.23%
SRR3308942 120,991,201 115,929,512 78.18%
SRR3308943 121,794,062 115,813,634 79.84%
SRR3308944 123,407,950 117,153,721 77.68%
SRR3308945 119,691,024 114,309,916 80.00%
SRR3308946 114,785,394 110,731,575 80.42%
SRR3308947 124,070,713 118,840,038 77.57%
3. Results

3.1. Quality control and alignment

Raw reads from the ENA database were first analyzed using the
FASTQC tool to assess the quality of each individual sample. This
analysis generated two output files: an HTML file and a zip file.
Subsequently, we employed the multiqc tool to visualize all the
samples collectively, taking a comparative approach to evaluate
the overall quality of the samples in a single multiqc report
(Brown et al., 2017). The results, which indicate the overall quality
of all the samples, can be found in Table 1.

To determine the alignment rate for all the samples, we mapped
the reads to a reference genome, and the resulting alignment rates
are presented in Table 1.
3.2. Identification of differentially expressed genes (DEGs) in response
to pancreatic cancer

3.2.1. PCA Plot and Heatmap
Principal Component Analysis (PCA) is a statistical technique

harnessed for the purpose of highlighting variation and revealing
prominent patterns within a provided dataset. In our analysis, we
employed the DESeq2 package to conduct PCA. The PCA plot visu-
ally represents the clustering patterns between two conditions,
specifically the ‘‘Resistant” and ‘‘Sensitive” conditions, based on a
dataset containing a total of 14 samples. Each condition comprises
seven samples. Notably, for this analysis, we focused on the top
700 most variable genes (Son et al., 2018), as detailed in Fig. 1. A
heatmap is a valuable visualization tool used to depict differen-
tially expressed genes within distinct sample groups. It enables
the identification of statistically significant alterations in gene
expression across hundreds to thousands of genes, each of which
is associated with various treatment conditions. In this heatmap,
colors are employed to represent diverse sets of values using a con-
tinuous color map (Carroll et al., 2020). On the X-axis of the heat-
map, you will find the treatment conditions labeled by sample IDs,
while on the Y-axis, you will see the gene names. The colors in the
heatmap correspond to the level of gene expression, ranging from
high to low, and are determined by the values within a defined
range, typically between �2 to 2, as depicted in Fig. 2.
3.2.2. MA Plot
MA plots are used to visualize the log fold-change values (on

the y-axis) plotted against the mean expression values (on the x-
axis) for comparisons between two conditions. Each data point in
the plot corresponds to a specific gene. In this particular plot
(Fig. 3), genes that exhibit a significantly adjusted p-value
of<0.05 (Love et al., 2014).
3.2.3. Dispersion plot and Volcano Plot
A mean dispersion plot was constructed to visualize the disper-

sion values on the y-axis and the mean of normalized counts on the
x-axis for an RNA-seq experiment, as demonstrated in Fig. 4. A vol-
cano plot, on the other hand, is a type of scatterplot that illustrates
the relationship between statistical significance (p-value) and the
magnitude of change (fold change) (Fig. 5). Another commonly
used comparison between two treatment conditions involves plot-
ting the adjusted P-value against the log fold change. In our analy-
sis, we have identified and presented the top five upregulated
genes in Table 2 and the top five downregulated genes in Table 3.
3

3.2.4. GSEA and Enrichment Map
An enrichment map serves as a visual representation tool that

organizes similar gene sets into a network structure. In this visual-
ization (Supplementary Fig. 1), each gene set is represented as a
node, and the shared genes between these sets are depicted as
edges connecting the nodes. The grouping of substantially similar
gene sets naturally arranges the nodes. The coloration within the
map corresponds to the expression levels of genes in different
pathways. Specifically, nodes colored in red represent upregulated
pathways, while those in blue represent downregulated pathways.
These color assignments are based on the enrichment scores pro-
vided in Supplementary Table 2. Moreover, we have highlighted
the most frequently recurring genes and their associated pathways
in Table 4.
3.3. Identification of gene network analysis for the enriched genes
using Cytoscape

3.3.1. String Network
The String App is a valuable Cytoscape plugin designed to facil-

itate the visualization of gene associations. It aids in the retrieval of
functionally enriched genes that participate in various pathways
(Fitts et al., 2016). To delve into this network, we focused on the
top three genes CDKN1A, IL6, and MYC that are expressed in at
least 10 different pathways. These genes were incorporated into
a String network. In this String network, we included the top 50
most highly expressed genes within the pathways identified in
the enrichment map. Among these genes, CDKN1A, MYC, and IL6
emerged as hub genes, being expressed in at least 10 pathways.
Furthermore, we constructed a combined String network specifi-
cally highlighting the most commonly recurring genes: CDKN1A,
MYC, and IL6, which is depicted in Fig. 6 (Dey et al., 2023). Addi-
tionally, a separate String network was created for CDKN1A, IL6,
and MYC, shedding light on their unique gene-gene interactions
with other genes, as shown in Supplementary Fig. 2. In essence,
the comprehensive gene network was established to encompass
all the pathways, associated genes, and their intricate gene-gene
interactions (Mishra et al., 2020).
4. Discussion

Pancreatic cancer samples were collected from the ENA data-
base which consists of 14 samples with two conditions Sensitive
and Resistant. The quality assessment of each sample was per-
formed using FASTQC, and a comprehensive overview of the sam-
ple quality can be found in Supplementary Table 1. In Table 1, you
can see the results of the overall alignment to the reference gen-
ome for each sample. To identify Differentially Expressed Genes,



Fig. 1. The PCA plot illustrates the clustering of 14 samples, categorizing them into two conditions: ‘‘Sensitive” and ‘‘Resistant,” with each condition comprising seven
samples. This clustering is based on the expression levels of the top 700 most variable genes. In the plot, the grouping of conditions is visually represented by color coding,
where ‘‘light blue” signifies the ‘‘Sensitive” condition, and ‘‘dark orange” signifies the ‘‘Resistant” condition.

Fig. 2. The heatmap visually presents the differential expression of genes (DEGs) within the dataset. It effectively distinguishes between upregulated genes (with a log2 fold
change of� 2 and a significance level of P < 0.05), represented by a dark brown color, and downregulated genes (with a log2 fold change of� -2 and P < 0.05), represented by a
light orange color. To enhance the interpretation of the data, genes that share similar expression patterns have been clustered together using hierarchical clustering
techniques.
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we utilized the DESeq2 program for transcriptome analysis.
DESeq2 generates various plots that enable us to visualize the gene
expression patterns across different samples. Notably, the PCA plot
serves as a visualization tool to capture the complexity of high-
dimensional data (Lever et al., 2017). The PCA plot effectively
demonstrates the clustering patterns among the samples, distin-
guished by distinct colors. Importantly, this plot reaffirmed the
clear separation between normal and pancreatic cancer samples,
validating the formation of distinct clusters (Son et al., 2018).

The normalized differences in expression patterns are used to
compute a distance matrix with the help of PCA. In a PCA plot,
4

the X-axis and Y-axis represent a mathematical modification of
these distances that allows data to be shown in two dimensions
that is PC1 versus PC2 with variances of 93% and 2% respectively
as shown in Fig. 1. If log2fc>=2 and P < 0.05 indicates the upregu-
lated genes and log2FC<=2 and P < 0.05 indicates downregulated
genes represented by dark brown and light orange colour respec-
tively in the heatmap as shown in (Fig. 2). The expression heatmap
can be useful for determining how different all relevant genes
expression in between sample groups, while the expression plot
can be used to explore the expression levels between sample
groups by looking at the top significant genes or selecting individ-



Fig. 3. MA plot describes the scattering of differentially expressed genes where blue data points falling above and below zero value indicates upregulation and down
regulation of genes respectively, whereas grey data points show non-significant genes.

Fig. 4. Dispersion plot describes genes which are expressed based on p-value.
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Fig. 5. Volcano Plot generated using a DESeq2 dataset, with base-10 log and base 2-fold change and P-value threshold of 0.05. In the plot the genes are colored if they pass
thresholds for FDR and log fold change green indicates the upregulated genes and red colour indicates the downregulated genes, below the central line white colour indicates
non-significant genes.

Table 2
Top 5 Upregulated genes as shown below table, identified the significantly differentially expressed genes using the parameters: FDR corrected P-value < 0.05 and fold change > 0
which shows the top five upregulated genes.

Genes baseMean log2FoldChange lfcSE stat pvalue Padj

LINC01128 1128.416 0.876969 0.361293 2.427307 0.015211 0.047632
SLC35E2B 16416.02 1.728116 0.555628 3.110204 0.00187 0.00746
CALML6 259.8582 1.926081 0.675873 2.84977 0.004375 0.015879
MEGF6 38658.97 2.175747 0.690112 3.152747 0.001617 0.006551
RPL22 5114.045 1.294715 0.400175 3.235368 0.001215 0.005069

Table 3
Top 5 Downregulated genes as shown below the table, Identified the significantly differentially expressed genes using the parameters: FDR corrected P-value < 0.05 and fold
change < 0 which shows the top five downregulated genes.

Genes baseMean log2FoldChange lfcSE stat pvalue padj

SAMD11 200.163 �2.47936 0.910586 �2.72282 0.006473 0.022532
LOC100288175 310.4647 �1.77218 0.600263 �2.95234 0.003154 0.011855
RNF223 1387.049 �2.57033 1.030341 �2.49464 0.012609 0.040478
TTLL10-AS1 29.76435 �1.61312 0.638882 �2.52491 0.011573 0.037545
TTLL10 106.5688 �1.91649 0.611598 �3.13357 0.001727 0.006946
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ual genes of interest. MA plots represent log fold-change value
along the y-axis versus the mean expression value on the x-axis
between the two conditions in the form of data points which
was applied on a significantly adjusted P-value < 0.05 considered
in (Fig. 3). The data points with above the zero thresholds indicate
significant genes are upregulated and below zero indicates a high
6

level of downregulated genes. Dispersion plot describes the
expressed genes based on P-value; the plot indicates the data
points shows variation of dispersion along with mean of normal-
ized counts (Yoon and Nam, 2017) as shown in (Fig. 4). The disper-
sion smoothly decreases for genes with higher expression and
eventually reaches an asymptote, which can be considered as the



Table 4
Most common repeated genes and its pathways.

Sl
No

Genes Number of
occurences

Pathways

1 CDKN1A 10 E2F_TARGETS, P53_PATHWAY,
PI3K_AKT_MTOR_SIGNALING,
INTERFERON_GAMMA_RESPONSE,
MTORC1_SIGNALING, APOPTOSIS,
INFLAMMATORY_RESPONSE,
TNFA_SIGNALING_VIA_NFKB, MYOGENESIS,
HYPOXIA

2 IL6 10 EPITHELIAL_MESENCHYMAL_TRANSITION,
IL6_JAK_STAT3_SIGNALING,
ALLOGRAFT_REJECTION, APOPTOSIS,
UV_RESPONSE_UP,
INFLAMMATORY_RESPONSE,
TNFA_SIGNALING_VIA_NFKB,
COMPLEMENT,
INTERFERON_GAMMA_RESPONSE, HYPOXIA

3 MYC 10 MYC_TARGETS_V2,
WNT_BETA_CATENIN_SIGNALING,
MYC_TARGETS_V1, UV_RESPONSE_DN,
IL2_STAT5_SIGNALING, E2F_TARGETS,
G2M_CHECKPOINT,
ESTROGEN_RESPONSE_EARLY,
TNFA_SIGNALING_VIA_NFKB,
INFLAMMATORY_RESPONSE
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biological variability that is present in the dataset (Love et al.,
2014). We create a volcano plot at the conclusion of the DESeq2
programme to identify the genes that are up and down-regulated
based on P-value and log fold-change. This pot shows the compar-
ison between two distinct circumstances with a cluster of data-
points (Yoon and Nam, 2017) Commonly using the negative base
-10 log and base2 log fold change. The extreme values of the log
fold-change along the x-axis show more significant differences,
Fig. 6. A string network of the hub genes CDKN1A, MYC, I

7

with data points closer to 0 denoting genes with equal or identical
mean expression levels. A larger dispersion suggests that there is a
greater difference in gene expression between the two group con-
ditions as shown in (Fig. 5). Top 5 Upregulated significantly differ-
entially expressed genes were identified using parameters: FDR
corrected P-value < 0.05 and fold change > 0 and Top 5 Downreg-
ulated significantly expressed genes were identified using param-
eters: FDR corrected P-value < 0.05 and fold change < 0 using
DESeq2 as shown in (Table 2 & 3) respectively.

Further we predict the pathways for the dataset using GSEA
software with the help of hallmark symbols. Where we can get dif-
ferent pathways for the given dataset when we annotate the genes
with condition to hallmark symbols. Next, we visualize the path-
ways using Enrichment Map software, In the enrichment map
out of all 50 nodes, only 4 nodes are shared the common genes
which are represented by edges in between them. Where gene
set are represented as nodes and overlapped genes between them
are represented by edges and colour indicates the expression level
of genes in different pathways as shown in (Supplementary Fig. 1).
Top 50 pathways were identified for the given data set based on
the enrichment score with False Discovery Rate q-value <= 1 as
shown in the (Table 4), then we observed the greatest number of
occurrences of genes and its associated pathways as shown in
(Supplementary Table 2). Next in our study is Gene network anal-
ysis based on the gene network that has generated from the data.
Using StringApp, Cytoscape plugin for visualization and analysis of
string network (Rambabu et al., 2017). The imported genes in this
plugin start searching the STRING database and annotating the tar-
geted gene network by representing the nodes as genes, and edges
give the similar functional activity present between the genes
(Otasek et al., 2019). The top three genes (CDNK1A, IL6, MYC) that
are expressed in 10 different pathways were selected and incorpo-
rated into string network as shown in the (Fig. 6). A String network
L6 that are associated with maximum (10) pathways.
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was constructed using the top 50 highest expressed genes from the
enriched pathways in the enrichment map analysis. Among these,
CDKN1A, MYC, and IL6 stood out as hub genes, as they were found
to be expressed in at least 10 different pathways. A combined
String network was then established specifically for the most fre-
quently recurring genes, namely CDKN1A, MYC, and IL6, and this
network is visualized in Fig. 6. Additionally, a separate String net-
work was created to focus exclusively on the interactions among
CDKN1A, IL6, and MYC, showcasing the unique gene-gene interac-
tions between these key genes. This separate network is presented
in Supplementary Fig. 2. While these genes were identified as hub
genes, it’s worth noting that previous research has indeed associ-
ated CDKN1A, IL6, and MYC with the development and progression
of pancreatic cancer. For instance, CDKN1A has been found to play
a tumor-suppressive role in pancreatic cancer by inhibiting cell
cycle progression and promoting cellular senescence(Xiao et al.,
2020).

Loss of CDKN1A function has been associated with increased
tumor growth and poorer patient outcomes. IL6 has also been
implicated in pancreatic cancer, with studies suggesting that it
promotes tumor growth and invasion through its pro-
inflammatory and pro-angiogenic effects. Its oncogenic impact
partly involves the significant role it plays in the tumor growth,
particularly through its epigenetic silencing of CDKN1A (Lian
et al., 2018). IL6 has also been shown to contribute to the develop-
ment of chemoresistance in pancreatic cancer cells. MYC is often
overexpressed in pancreatic cancer cells and has been associated
with tumor progression and poor prognosis (Hessmann et al.,
2016) Research has demonstrated that MYC plays a role in promot-
ing tumor growth, invasion, and resistance to chemotherapy in
pancreatic cancer cells. Overall, these three genes have important
roles in pancreatic cancer development and progression, and tar-
geting themmay be a promising approach for the treatment of this
disease.
5. Conclusion

In this current research study, we analyzed the differential
expressed genes in pancreatic cancer samples of Sensitive and
Resistant conditions. When compared with control tissues, our
results showed significant differences in the expression of genes
in pancreatic cancer samples. Creating a gene interaction network
alongside its linked pathways can be a valuable approach for pre-
dicting novel disease biomarkers. This can potentially provide
insights into the underlying molecular mechanisms involved in
the transition from early-stage to metastatic pancreatic cancer.
Such insights could be highly relevant and contribute to the iden-
tification of therapeutic targets, ultimately aiding in the develop-
ment of effective treatments for this disease by comprehending
its associated pathways. Based on our report the most common
genes are i.e., CDKN1A, IL6, and MYC, and have a significant role
in pancreatic cancer, which are expressed in ten pathways. TNFA_-
SIGNALING_VIA_NFKB is the most common pathway of expressed
genes such as CDKN1A, IL6, and MYC. These genes can be used for
further clinical processes to overcome better treatment methods
and drug resistance.
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