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Abstract

Germany has been officially free of bovine tuberculosis since 1996. However, in the last

years there has been an increase of bovine tuberculosis cases, particularly in the southern

part of Germany, in the Allgäu region. As a consequence a one-time tuberculosis surveil-

lance program was revisited with different premortal and postmortal tests. The aim of this

paper was to estimate diagnostic sensitivities and specificities of the different tests used

within this surveillance program. In the absence of a perfect test with 100% sensitivity and

100% specificity, thus in the absence of a gold standard, a Bayesian latent class approach

with two different datasets was performed. The first dataset included 389 animals, tested

with single intra-dermal comparative cervical tuberculin (SICCT) test, PCR and pathology;

the second dataset contained 175 animals, tested with single intra-dermal cervical tubercu-

lin (SICT) test, Bovigam® assay, pathology and culture. Two-way conditional dependencies

were considered within the models. Additionally, inter-laboratory agreement (five officially

approved laboratories) of the Bovigam® assay was assessed with Cohen’s kappa test (21

blood samples). The results are given in posterior means and 95% credibility intervals. The

specificities of the SICT test, SICCT test, PCR and pathology ranged between 75.8% [68.8–

82.2%] and 99.0% [96.8–100%]. The Bovigam® assay stood out with a very low specificity

(6.9% [3.6–11.1%]), though it had the highest sensitivity (95.7% [91.3–99.2%]). The sensi-

tivities of the SICCT test, PCR, SICT test, pathology and culture varied from 57.8% [48.0–

67.6%] to 88.9% [65.5–99.7%]. The prevalences were 19.8% [14.6–26.5%] (three-test data-

set) and 7.7% [4.2–12.3%] (four-test dataset). Among all pairwise comparisons the highest

agreement was 0.62 [0.15–1]). In conclusion, the specificity of the Bovigam® assay and the

inter-laboratory agreement were lower than expected.
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Introduction

Bovine tuberculosis (bTB) which is caused by Mycobacterium caprae and Mycobacterium bovis
is an important public and animal health problem and an international trade issue in Europe

and worldwide [1–6]. Therefore, using reliable, fast and cost-effective diagnostic methods is

essential for the control of bTB.

National control programs rely on testing of cattle and removal of animals which are diag-

nosed as positive [7]. Infected animals are detected with tuberculin skin tests or the Bovigam1

gamma-interferon (IFN-γ) assay. The tuberculin skin test, the prescribed test for international

trade, is used as a single intradermal cervical tuberculin (SICT) test or single intra-dermal

comparative cervical tuberculin (SICCT) test in Europe and as caudal fold tuberculin (CFT)

test in North America, Australia and New Zealand [7, 8]. Accuracy of the skin tests varies

widely due to different factors, affecting the host and the test itself. The exact estimation of the

test characteristics in the field is therefore difficult [8–10]. However, the intradermal skin tests

normally have a high specificity although sensitivity can be somewhat lower [9]. The low test

sensitivity and the logistics of holding cattle for 3 days to read the test has led to the develop-

ment of the Bovigam1 assay, in 1985 [11]. Australia was the first country to officially accept

this test for the diagnosis of bovine tuberculosis in 1991 [11]. In comparison to the skin test

the Bovigam1 assay almost always showed a better sensitivity but an equal or inferior specific-

ity. The Bovigam1 assay is supposed to have the ability to detect bTB earlier in the course of

infection [11, 12]. In many countries it is used for serial or parallel testing together with the

intradermal skin tests [7, 13]. For post-mortem diagnosis of previously positive-tested animals,

bacteriological culture and PCR can be used following necropsy [1, 14, 15].

In many countries the test-and-cull regime led to the status Officially Bovine Tuberculosis

free (OTF) [9, 16, 17]. Germany reached this status in 1997 [18]. Owing to the OTF status

nationwide periodic surveillance using intradermal skin testing was replaced with surveillance

by official meat inspection at the abattoir [19, 20]. Remarkably, there is an apparent increase of

bTB cases since 2007, many of them detected during routine meat inspections and with a par-

ticular high prevalence in the southern part of Germany. These unexpected bTB cases led to a

revision of the tuberculosis regulations in 2009, 2012 and 2013 with commencement of the act

in 2009, 2013 and 2014. Within this revision the Bovigam1 assay and the PCR were added as

new diagnostic methods. Furthermore, the increase of bTB cases lead to the implementation

of a one-time tuberculosis surveillance program in Germany in 2012 to verify the nation’s

OTF status [21]. At the beginning of this surveillance program the SICCT test or a serial testing

with the SICT test and the Bovigam1 assay were used for ante-mortem diagnosis [22]. This

was the first time that the Bovigam1 assay was used as a field test in Germany. However, as a

consequence of irregular test results, the testing regime was changed in March 2013 with the

SICCT test as the only ante-mortem test. Moreover, the PCR analysis as described in the

national Official Collection of Methods was used since then as additional post-mortem method

[1, 22–24].

As described in the literature the sensitivities and specificities of bTB diagnostic tests vary

widely [12, 13, 25, 26]. This leads to difficulties in identifying truly infected animals as well as

in identifying risk factors for bTB [27]. Diagnostic accuracies of bTB diagnostic tests are often

estimated using bacteriological culture as the so-called gold standard for confirmation of bTB

[26, 28–30]. A gold standard is considered as a test that has known properties with a high sen-

sitivity and specificity. Because bacteriological culture has limitations in sensitivity this may

lead to a misclassification of data [13, 31]. By using a latent class approach the test characteris-

tics can be assessed in the absence of a gold standard [32–34]. This latent class approach can be

used within a Bayesian model and is based on multiple tests performed on the same animals.

Diagnostic tests of bovine tuberculosis and estimating test characteristics
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"Latent class" refers to the fact that the true disease state is always hidden [35]. In the Standard
Operating Procedure for OIE Registration of Diagnostic Kits the Bayesian inference and latent

class models are described to use for estimation of diagnostic sensitivities and specificities [36].

The aim of this study was to assess the diagnostic accuracies of the tests used within the

bTB surveillance program in Germany between 2010 and 2014. To the best of our knowledge a

latent class analysis for the diagnostic tests of bTB has never been applied in Germany.

Material and methods

With the aim to obtain robust diagnostic test accuracy estimates for different pre- and post-

mortem tests diagnosing bovine tuberculosis, a Bayesian latent class approach was performed.

Regarding the Bovigam1 assay agreement between blood samples tested by five different lab-

oratories and between blood samples taken from two different anatomical locations was

assessed with Cohen’s kappa coefficient.

Ethics statement

The test results which were used for the Bayesian latent class approach were collected within

the context of the officially ordered tuberculosis-surveillance program ("Untersuchungspro-

gramm: Rindertuberkulose in den Landkreisen der Alpenkette; AZ: 42a-G8755-2013/2-450)

prior to this study and were not specifically taken for the purpose of this study. The program

was conducted according to Directive 64/432/EEC on animal health problems affecting intra-

EU trade in bovine animals and swine, Council Directive 80/219/EEC of 22 January 1980

amending Directive 64/432/EEC as regards tuberculosis and brucellosis and Council Directive

97/12/EC of 17 March 1997 amending and updating Directive 64/432/EEC on health problems

affecting intra-Community trade in bovine animals and swine [37–39] to verify the OTF

status.

The data used for the Bovigam1 assay agreement existed prior to our research. The blood

samples were taken in the context of the study "Optimierung der Methode Bovigam1—Test

beim Rind—vergleichende Untersuchungen an 21 Tieren des Betriebs Spitalhof, Kempten"

which was carried out by the Institute for Infectious Diseases and Zoonoses, Department of

Veterinary Science, LMU Munich under the direction of Prof. Dr. med. vet. Reinhard K.

Straubinger, Ph.D and were approved by the government of Upper Bavaria (approving author-

ity for animal research). According to the approval no. 5.2-1-54-2532.3-26-13 there is no con-

flict with animal protection law.

Bayesian latent class models

Animal samples. Out of 5736 animals tested between 2012 and 2014 in the districts Ober-

and Ostallgäu (Bavaria), two data subsets with test results from multiple tests run in parallel

were chosen. The first dataset comprised test results from 175 animals which had been tested

from December 2012 to March 2013 by the SICT test, the Bovigam1 assay, culture and patho-

logical examination. The second dataset comprised test results from 389 animals which had

been tested from April 2013 to February 2014 by the SICCT test, the PCR and which have

been examined pathologically. The data was collected as binary data and to some extent, for

the SICT test, the SICCT test and the Bovigam1 assay, also as metric data.

Diagnostic tests. The SICT test and the SICCT test were performed by field or official

veterinarians. Examination of the test results were carried out in accordance to Commission

Regulation (EC) No 1226/2002 of 8 July 2002 amending Annex B to Council Directive 64/

432/EEC [15]. For the skin tests 0.1 ml of bovine respectively bovine and avian Purified Pro-

tein Derivate (PPD) (Wirtschaftsgenossenschaft Deutscher Tierärzte eG) was injected

Diagnostic tests of bovine tuberculosis and estimating test characteristics
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intradermally in the neck or shoulder of the cattle. For the latent class analysis the inconclusive

reactors were assigned twice, once as negative reactors (standard interpretation) and once as

positive reactors (severe interpretation). An inconclusive reactor means an increase of skin

thickness between 2 and 4 mm (SICT test) respectively 1 and 4 mm (SICCT test) and no occur-

rence of clinical signs.

For the Bovigam1 assay heparinized blood was taken two to 28 days (mean of 8.45 days)

after the SICT test by field practitioners. The blood was sent within 6 to 7 hours at room tem-

perature to the laboratory of the Bavarian Health and Food Safety Authority. The Bovigam1

assay was carried out according to the manufacturer’s instructions. In brief, the blood samples

were stimulated overnight with avian and bovine PPD. IFN-γ production of the lymphocytes

was then determined by using a sandwich ELISA. Identification of infected animals based on

the prescription in the manufacturer’s user manual for Germany. This means that the mean

optical density (OD) of a sample being stimulated with bovine PPD minus the OD of the same

sample stimulated with avian PPD, was greater or equal 0.1.

The pathological examinations were performed at different places (pathology of the Bavar-

ian Health and Food Safety Authority, carcass disposal plants) by veterinarians. Attention was

given to the retropharyngeal lymph nodes, lung, gut, spleen, kidneys, liver and the associated

lymph nodes as well as organs or lymph nodes with pathological-anatomical changes.

For polymerase chain reaction (PCR) samples were collected during necropsy from the ret-

ropharyngeal lymph nodes, lung, gut, spleen, kidneys, liver and the associated lymph nodes.

Furthermore, pieces of organs or lymph nodes with pathological-anatomical changes were

taken [23]. All samples were investigated in the laboratory of the Bavarian Health and Food

Safety Authority. To increase the detection of mycobacteria samples with pathological findings

were homogenized. From inconspicuous samples approximately 25 mg were used for DNA

extraction. PCR aiming at detecting Mycobacterium tuberculosis complex-pathogens was per-

formed for each sample separately according to the Official Collection of Methods [1]. The tar-

geted sequences for PCR amplification are a hypothetical helicase and the insertion element

(IS) 1081 [40, 41]. According to the official guidelines, results were interpreted as positive if

both target sequences were found, as inconclusive if only one target sequence or only weak

PCR signals were detected and as negative if no signals were observed. In agreement with the

Friedrich-Loeffler-Institute (FLI) single runs were performed for each organ / lymph node.

Bacteriological culture was performed according to the Official Collection of Methods [1].

Organs were cultured as aggregate samples, except for organs with macroscopic lesions, which

were cultured separately. As liquid media BD BACTEC™ MGIT™ was used. Löwenstein-Jensen

and Stonebrink agar slants were used as solid culture media.

Statistical analysis. A Bayesian latent class approach assuming no gold standard, i.e. a

perfect diagnostic test without any misclassification, was performed for the three-test dataset

(SICCT test, PCR, necropsy) and the four-test dataset (SICT test, Bovigam1 assay, necropsy,

culture). The skin tests were considered with both their standard and severe interpretation,

separately. In total, for the four-test dataset, there were four sensitivities, four specificities, one

prevalence and twelve two-way covariances to be estimated, leading in total to 21 unknown

parameters [42]. For the three-test dataset there were three sensitivities, three specificities, one

prevalence and six two-way covariances to be estimated, leading in total to 13 unknown

parameters. Due to the principle of parsimony, higher order terms of covariances were not

considered. The specificity of culture was fixed to “1”, assuming that no false positive test result

exists. This reduces the number of parameters to be estimated for the four-test dataset. For all

other estimable parameters, first uninformative beta priors (1,1) were utilized. Second, infor-

mative priors basing on expert opinion and published test accuracies [9, 10] were utilized for

the sensitivities and specificities of the SICT and the SICCT test. This was done for sensitivity

Diagnostic tests of bovine tuberculosis and estimating test characteristics
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analysis, respectively, for setting constraints to have still an identifiable model for the three-test

dataset with taking the covariances into account [42]. To incorporate the prior information

beta distributions (a,b), modeled by beta buster (http://252s-weblive.vet.unimelb.edu.au:3838/

users/epi/beta.buster/), were used. For the SICT test we assumed—being 95% sure—that the

sensitivity is greater than 50% with a mode at 70% (a = 13,3221; b = 6,2809) and that the speci-

ficity is greater than 70% with a mode at 85% (a = 23.903, b = 5.042). Similarly, for the SICCT

test we assumed that the sensitivity is greater than 45% with a mode at 65% (a = 12.1979, b =

7.0296) and the specificity is greater than 80% with a mode at 90% (a = 42.5732, b = 5.6192).

The presence of conditional dependencies between tests was checked by assessing separately

the impact of each covariance term compared to a covariance term set to 0 on the other esti-

mates. Presence of conditional dependencies was assessed graphically (histograms). Addition-

ally, to assess if higher-level conditional dependencies potentially affect the results, random

effect models based on the model from Qu et al. 1996 were also explored using the R package

randomLCA [43, 44].

Model selection was based on DIC (Deviance Information Criterion) with lower values

indicating a better model fit. For a sensitivity analysis of the three-test dataset considering the

covariances uninformative priors were used. The best fitting model of the four-test dataset was

additionally run with a higher cut off of the Bovigam1 assay (OD difference 0.2 instead of

0.1). Due to missing values for continuous Bovigam1 assay results, only 171 animals could be

included. The models were implemented in JAGS (Just Another Gibbs Sampler) version 3.4.0

for Markov Chain Monte Carlo Simulation (http://mcmc-jags.sourceforge.net/), the software

R version 3.0.3 (https://www.r-project.org/) and the package coda [45]. The model code is

given in the supplementary online material (S1 Text). For all models the first 20,000 iterations

were discarded as burn-in and based on the next 200,000 iterations the posterior distributions

of the unknown parameters were derived. Three chains were run from different starting

points. Convergence was checked visually by inspecting the density plots of the three chains.

The positive and negative predictive values of the skin tests (standard and severe interpreta-

tion), Bovigam1 assay (OD difference 0.1 and 0.2), PCR, necropsy and culture were derived

based on the estimated prevalence and posteriors obtained from the different models.

Kappa test of agreement

Animal samples and testing. Blood was taken from 21 cows (Braunvieh breed) at six dif-

ferent time points from the V. jugularis. All animals belonged to one farm and were tested pre-

viously as positive or inconclusive with the SICT test. On two time points the blood was

additionally taken from the V. caudalis mediana resp. V. subcutanea abdominis. Immediately

after collection, the blood was sent to five laboratories, all over Germany. After arriving at the

laboratories the blood was directly examined with the Bovigam1 assay. Due to the fact that

the laboratories were distributed all over Germany the time between blood collection and fur-

ther examination was between 4 to 29 h with a median of 8.0 h. The samples were not blinded.

Statistical analysis. To determine if the laboratories were classifying approximately the

same proportion of individuals as positive, first McNemar’s test was applied for each given

time point between all possible pairwise laboratory comparisons [46]. McNemar’s test was

performed with the software R version 3.0.3 (https://www.r-project.org/) with the package

exact2x2 [47]. For the inter-laboratory agreement the time point with the best accordance of

the proportion of positive test results was chosen to determine Cohen’s kappa. Also the agree-

ment between the test results of the Bovigam1 assay from the differing localizations was esti-

mated using McNemar’s test and Cohen’s kappa. Cohen’s kappa was calculated online with

Graphpad software (http://graphpad.com/quickcalcs/kappa2/).

Diagnostic tests of bovine tuberculosis and estimating test characteristics
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Results

Bayesian latent class models

The raw data, comprising the dichotomized test results of the four-test and the three-test data-

set, are presented in S1 and S2 Tables.

Four-test dataset. Posterior means and corresponding 95% credibility intervals resulting

from Bayesian latent class models are shown in Table 1.

There was no evidence, based on DIC and visual inspection of covariance histograms that

including any covariance term led to a better model fit (S3 Table and S1 Fig). Including covari-

ance terms did also not alter the posterior means. Adding random effects to model higher level

conditional dependencies did not improve model fit.

If informative instead of flat priors were used for SICT test the DIC decreased slightly

(392.6 instead of 393.7) and the posterior means were only marginally affected. If a higher cut-

off of 0.2 instead of 0.1 for the Bovigam1 assay was applied, then the sensitivity of the Bovi-

gam1 assay decreased from 95.7% (91.3–99.2%) to 83.3% (74.2–93.5%) and the specificity

increased from 6.9% (3.6–11.1%) to 23.5% (17.4–30.3%). The estimated posteriors of the other

tests and the prevalence differed maximally around 0.4%. The dichotomized test results are

presented in S4 Table. When interpreting the inconclusive test results of the SICT test as posi-

tive the specificity of the SICT test was extremely low with 4.1% (1.7–7.5%).

The positive and negative predictive values for the SICT test (standard and severe interpre-

tation), Bovigam1 assay (cut-off 0.1 and 0.2), necropsy and culture are presented in S5 Table.

Three-test dataset. The posterior sensitivities and specificities for the three-test dataset

resulting from the Bayesian latent class models are presented in Table 2. With the incorporated

informative priors the sensitivity of the SICCT test increased by 2%. The estimated test character-

istics of the other tests were only marginally affected. With regard to the histograms (S2 Fig), the

posteriors and the DIC (S6 Table) dependence between the sensitivity of the PCR and necropsy

seemed to be the most likely. Within this model the sensitivities of the PCR and the necropsy

decreased and the prevalence increased. The remaining posteriors range around the same values.

By running this model with flat priors the DIC increased to 754.8 instead of 750.7 and the

sensitivities of PCR and necropsy decreased around 5.4% and 6.0%. The other estimated

Table 1. Prevalence and diagnostic test accuracies of different models considered from the dataset with 175 animals tested with SICT test, Bovi-

gam® assay, culture [sp = 100%] and necropsy.

Model Prevalence (95%

CI)

SICT test (95% CI) Bovigam® assay (95% CI) Culture (95% CI) Necropsy (95% CI)

se sp se sp se sp Se sp

1 7.7 (4.2–12.3) 70.3 (44.9–

90.5)

75.8 (68.8–

82.2)

95.7 (91.3–

99.2)

6.9 (3.6–11.1) 88.9 (65.5–

99.7)

fixed at

100

76.8 (51.6–

94.4)

99.0 (96.8–

100)

2 7.7 (4.2–12.3) 70.1 (53.5–

84.7)

77.1 (70.9–

82.8)

95.8 (91.3–

99.2)

6.9 (3.6–11.1) 88.9 (65.0–

99.7)

fixed at

100

76.9 (51.7–

94.4)

98.9 (96.8–

99.9)

3 7.9 (4.3–12.6) 70.2 (45.1–

90.4)

76.4 (69.7–

82.6)

83.3 (74.2–

93.5)

23.5 (17.4–

30.3)

88.9 (64.8–

99.7)

fixed at

100

77.0 (51.2–

94.6)

98.9 (96.7–

99.9)

4 7.9 (4.3–12.5) 98.2 (94.9–

99.9)

4.1 (1.7–7.5) 95.7 (91.2–

99.2)

6.9 (3.7–11.2) 87.5(62.8–

99.5)

fixed at

100

77.1 (51.4–

94.6)

99.1 (97.0–

100)

Model 1: SICT test [standard interpretation, uninformative priors], Bovigam® assay [cut-off = 0.1], culture [sp = 100%], no covariances

Model 2: SICT test [standard interpretation, informative priors], Bovigam® assay [cut-off = 0.1], culture [sp = 100%], no covariances

Model 3: SICT test [standard interpretation, uninformative priors], Bovigam® assay [cut-off = 0.2], culture [sp = 100%], no covariances

Model 4: SICT test [severe interpretation, uninformative priors], Bovigam® assay [cut-off = 0.1], culture [sp = 100%] no covariances

se, sensitivity

sp, specificity

https://doi.org/10.1371/journal.pone.0179847.t001
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parameters differed maximal around 2%. The density plots of the estimated probability distri-

butions showed better convergence for the model with the SICCT test as standard interpreta-

tion. The specificity for the SICCT test was extremely low with 12.0% (8.7–15.8%) for the

severe interpretation.

The positive and negative predictive values for the SICCT test (standard and severe inter-

pretation), PCR and necropsy based on the estimated posteriors and prevalence of the three

test data set can be found in S7 Table.

Inter- and intra-laboratory agreement

The raw data utilized for assessing agreement between the different laboratories and the differ-

ent localizations are presented in S8 and S9 Tables. Based on McNemar’s test to assess if the

proportions of samples classified as positive differed significantly between the laboratories or

the anatomical location, the time point with most non-significant tests was chosen (Table 3)

[46]. Estimated p-values for McNemar’s test ranged from 0.03 to 1.00. The inter-laboratory

agreement between Laboratory 2 and 3 reached a Cohen’s kappa value of 0.62 (95% confidence

interval from 0.15 to 1.00). The other agreements constituted between -0.16 (95% confidence

interval from -0.32 to -0.01) and 0.38 (95% confidence interval from 0.01 to 0.76).

For the agreement between the varying localizations nearly all McNemar’s tests are non-sig-

nificant (Table 4), thus indicating the proportion of positive test results did not significantly

differ between the laboratories. One estimated p-value based on McNemar’s test was 0.03, giv-

ing evidence that there is a disagreement between the two proportions of Bovigam1 test

results [46]. The best agreement was seen for Laboratory 3 by comparing the Bovigam1 assay

results between the blood of the V. jugularis and V. subcutanea abdominis (1.00). Also the

agreement between the results of the V. jugularis and the V. caudalis mediana of this laboratory

reached at least a Cohen’s kappa value of 0.62 (95% confidence interval from 0.00 to 1.00). Lab-

oratory 5 had a substantial agreement by the comparison between V. jugularis and V. caudalis
mediana. All other agreements were below 0.54 indicating a poor to moderate agreement.

Discussion

Due to the detection of bovine tuberculosis at several occasions during regular abattoir meat

inspections in the Allgäu region, a new tuberculosis control program was implemented in

Table 2. Prevalence and diagnostic test accuracies of different models considered from the dataset with 389 animals tested with SICCT test [stan-

dard interpretation], PCR and necropsy.

Model Prevalence (95% CI) SICCT test (95% CI) PCR (95% CI) Necropsy (95% CI)

se sp se sp se sp

1 17.3 (13.5–21.5) 55.5 (43.3–67.7) 91.7 (88.3–94.6) 80.6 (69.1–90.6) 99.2 (97.6–100) 90.6 (80.6–98.0) 99.1 (97.2–100)

2 17.2 (13.4–21.4) 57.5 (46.5–68.1) 91.5 (88.4–94.2) 80.6 (69.1–90.6) 99.1 (97.5–100) 90.7 (80.7–98.0) 99.1 (97.2–100)

3 19.8 (14.6–26.5) 57.8 (48.0–67.6) 92.8 (89.2–96.3) 70.6 (52.0–86.0) 99.0 (97.4–99.9) 78.4 (58.6–93.7) 98.9 (96.8–100)

4 21.8 (15.1–30.9) 56.1 (46.3–66.2) 94.5 (89.7–99.5) 65.2 (44.6–84.5) 99.0 (97.4–99.9) 72.4 (49.8–92.5) 99.0 (96.9–100)

5 15.6 (11.4–20.2) 94.9 (89.5–98.8) 12.0 (8.7–15.8) 87.9 (73.0–99.4) 98.8 (96.9–100.0) 92.2 (81.3–99.6) 97.6 (94.6–99.9)

Model 1: SICCT test [standard interpretation, uninformative priors], no covariances

Model 2: SICCT test [standard interpretation, prior information of se and sp], no covariances

Model 3: SICCT test [standard interpretation, prior information of se and sp], covariance between sensitivity PCR and necropsy

Model 4: SICCT test [standard interpretation, uninformative priors], covariance between sensitivity PCR and necropsy

Model 5: SICCT test [severe interpretation, uninformative priors], no covariances

se, sensitivity

sp, specificity

https://doi.org/10.1371/journal.pone.0179847.t002
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November 2012 in Germany. Within this testing regime the Bovigam1 assay was performed

for the first time as a field test in Germany. The test results gained from this control program

were utilized to estimate the sensitivities and specificities of the different tests with a latent

class analysis. This was especially of interest as the persons involved in this testing program

recognized contradictory test outcomes for the Bovigam1 assay which led to distrust and ter-

mination of the testing with the Bovigam1 assay. These contradictory test outcomes seem to

be corroborated by the raw data presented in S1 Table, where out of 175 tested animals 115

were diagnosed positive only with the Bovigam1 assay.

The estimated test characteristics of the SICT and the SICCT test, the PCR, necropsy and

culture are in line with already published data [9, 10, 13, 28, 31, 48, 49]. For the Bovigam1

assay an extremely low specificity was estimated. In this population with an estimated true

prevalence of 7.7 the positive predictive values of the Bovigam1 assay would be 7.9% (OD dif-

ference of 0.1) respectively 8.54% (OD difference of 0.2).

This finding could be corroborated with additional intra- and inter-laboratory testing of

agreement.

In this study no-gold-standard-models, relying on Bayesian latent class approaches, which

are increasingly used in medical and veterinary sciences, were used [50, 51]. The specificity of

the culture was set at 100%, as a positive result is assumed to be truly positive [7]. The best

Table 3. Comparison of the Bovigam® assay test results from five different laboratories by the calculated p-value based on McNemar’s test,

Cohen’s kappa values with the 95% confidence interval and the proportions of the test results of one given time point.

Comparison between: p-value Kappa CI Proportions of test resultsa

pos/pos neg/neg disconcordant

Lab 1 / Lab 2 0.69 0.31 -0.12 to 0.74 57% 14% 29%

Lab 1 / Lab 3 0.38 0.30 -0.15 to 0.74 63% 11% 26%

Lab 1 / Lab 4 1.00 0.26 -0.23 to 0.75 61% 11% 28%

Lab 1 / Lab 5 0.75 0.00 -0.42 to 0.42 38% 14% 48%

Lab 2 / Lab 3 1.00 0.83 0.50 to 1.00 79% 16% 5%

Lab 2 / Lab 4 1.00 0.26 -0.23 to 0.75 61% 11% 28%

Lab 2 / Lab 5 0.22 0.38 0.01 to 0.76 52% 19% 29%

Lab 3 / Lab 4 1.00 0.09 -0.42 to 0.61 63% 6% 31%

Lab 3 / Lab 5 0.06 0.41 0.05 to 0.77 58% 16% 26%

Lab 4 / Lab 5 0.45 0.11 -0.33 to 0.55 50% 11% 39%

Lab, Laboratory; neg, negative; pos, positive; CI, 95% confidence interval
aThe number of analyzable test results ranged from 16–21 animals

https://doi.org/10.1371/journal.pone.0179847.t003

Table 4. Comparison of the Bovigam® assay test results between differing localizations by calculating p-values based on McNemar’s test and

Cohen’s kappa values.

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5

V.j. / V.s.a. p-value 1.00 0.13 1.00 0.38 0.03

kappa 0.29 0.41 1.00 0.46 0.37

CI -0.12–0.72 0.00–0.86 1.00–1.00 0.03–0.83 0.08–0.74

V.j. / V.c.m. p-value 0.45 0.63 0.50 1.00 0.25

kappa 0.16 0.54 0.62 -0.03 0.70

CI -0.22–0.59 0.03–0.90 0.00–1.00 -0.37–0.43 0.36–1.00

V.j.: V. jugularis; V.s.a.: V. subcutanea abdominis; V.c.m.: V. caudalis mediana; CI: 95% confidence interval

https://doi.org/10.1371/journal.pone.0179847.t004
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fitting model was chosen by DIC. Additionally, as the DIC has its limitations, histograms and

posteriors were evaluated [52–54]. In order to comply with good statistical practice all possible

two way covariances were taken into account [55]. A conditional dependency could only be

seen between the sensitivity of PCR and necropsy. These two examination methods do not rely

on similar biological basics, but were related as sample selection and sample size for the PCR

were associated with pathological examination. Due to the fact that both datasets were quite

small, conditional dependence between other tests could not be excluded. Inclusion of prior

information of the SICT test, for a sensitivity analysis of the four-test dataset, did not influence

the posteriors. For the three-test dataset the DIC increases by running a sensitivity analysis

with flat priors, indicating a worse model fit. As already shown by Álvarez et al. [10] the test

characteristics of the skin tests alter with a severe interpretation insofar that the sensitivity

increases and the specificity decreases. Within our data a strong shift to lower specificities

could be seen for the severe interpretation of the skin tests. This outcome seems to be data

driven, as in both datasets most of the animals had an inconclusive skin test result. Therefore

and because of the poorer convergence for the models with severe interpretation, which could

be due to the small amount of true positive test results, the focus was set on the skin tests stan-

dard interpretation.

For the skin tests, PCR, necropsy and culture, the estimated sensitivities and specificities

are in accordance of test characteristics from other publications [9, 10, 13, 28, 31, 48, 49]. The

wide credibility intervals for the sensitivities (19.6 to 45.6) could be explained by the small data

pool of true positive animals. With regard to the estimated test characteristics of the skin tests

it has to be considered that these could have been affected by the performance of the skin tests

[56]. The test characteristics of the pathological examination were within both datasets 76.8%

(51.6–94.4%) and 78.4% (58.6–93.7%), respectively, for the sensitivity and around 99.0%

(96.8–100%) for the specificity. The fact that the pathological examination was done in differ-

ent localizations from different persons as well as the small data pool of true positive animals

explains the wide credibility interval for the sensitivity. This spectrum bias appears to be pres-

ent in both subpopulations. Within our estimated test characteristics the SICCT test is less sen-

sitive although more specific than the SICT test. PCR and necropsy are less sensitive than

culture. Therefore, culture is still an essential diagnostic tool.

In the literature the test characteristics of the Bovigam1 assay are stated as between 66.9–

100% for sensitivity and 70–99.6% for specificity [9, 12, 49]. We estimated a quite high sensi-

tivity of 95.7% (91.3–99.2%), but an extremely low specificity of 6.9% (3.6–11.1%). This stands

in line with the experience of the persons involved in the bovine TB testing. With setting the

cut-off higher an increase in the specificity was expected, as already reported by others [57,

58]. Indeed, the specificity raised to 23.5% (17.4–30.3%) thereby the sensitivity decreased to

83.3% (74.2–93.5%), This shows again that the model itself is robust. To our knowledge such

low specificities were never recognized before for the Bovigam1 assay. Although it was

already stated that the Bovigam1 assay is more sensitive, but less specific than the SICCT test

[59]. And it was shown that fewer than 20% of the animals tested positive in the Bovigam1

assay were also positive in culture or pathology [60]. Van Dijk [61] showed that the Bovigam1

assay is likely to have false positive results and this in a higher amount than the SICCT test.

With a decrease of the prevalence the amount of false positive test results even increases [61].

Among the influential factors discussed in literature a previously performed skin test is dis-

cussed to have an effect on the specificity of the Bovigam1 assay. Within our study the SICT

test was performed two to 28 (mean of 8.45 days) days prior to the Bovigam1 assay. Several

studies discuss the effect of a previous skin test (either CFT test or SICCT test) towards the

IFN-γ production in natural or experimental infected cattle. Whereas the CFT test leads to a

clear increase of IFN-γ production, this influence is not obvious after the SICCT test [62]. The
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previously performed skin test in this study may have had an impact on the estimated specific-

ity within the examined subpopulation. A genetic influence and an association between the

breed and the outcome of the SICCT test were reported by Amos et al. [63]. This was not seen

for the Bovigam1 assay [64]. An influence of breed and genetics might be present in the All-

gäu region, but further investigations have to be made to confirm this. The Bovigam1 assay

was only carried out within the regions Ober- and Ostallgäu during November 2012 until

March 2013. This regional and seasonal limitation could have had an impact on the high

amount of false positive test results [64, 65]. The correlation between season and occurrence of

saprophytic mycobacteria might be associated with this [66, 67]. Moreover, infections with

Mycobacterium avium subspecies paratuberculosis (MAP) may lead to false positive results for

the Bovigam1 assay [68]. Since the tested animals have not been examined for a concurrent

MAP infection this impact could not be excluded. Furthermore, an infection with Fasciola
hepatica is also reported to influence the IFN-γ response. Although this is until now only stated

for the skin test and in context of false negative test results [69]. The specificity of the Bovi-

gam1 assay tests varies also with the concentration and potency of PPDs [70], which can dif-

fer remarkably [71, 72]. These influences might explain to some extend the estimated low

specificities of the Bovigam1 assay. Besides, the fact that bovine tuberculosis, in the regions

Ober- and Ostallgäu was caused by Mycobacterium caprae may have influenced the Bovigam1

assay results, too, as bovine tuberculosis in other regions worldwide is predominantly caused

by Mycobacterium bovis. However, the low inter- and intralaboratory agreements between the

Bovigam1 assay outcomes could not be fully explained by this. The transportation time as

well as the experience seems to influence the Bovigam1 assay test outcomes, as between the

laboratories with the shortest transportation time (Laboratory 3, data not shown) and the most

experience (Laboratory 2 and 3, data not shown) the best, but still only substantial agreement

was estimated. By comparing the intralaboratory agreement between the different laboratories

again the laboratory with the most experience and the shortest transportation time (Laboratory

3) had the best agreement between the results of the blood taken from the V. jugularis and the

V. subcutanea abdominis. A longer storage or transportation of the blood samples might lead

to a decrease in the mean OD or the IFN-γ production [73–75]. With regard to the sensitivity

and specificity of the Bovigam1 assay several studies state that blood could also be processed

24 h later without statistical significant changes [76, 77]. However, Laboratory 3 reached also

only a substantial agreement of 0.62 between the Bovigam1 assay test results of the V. jugu-
laris and the V. caudalis mediana. As for the intralaboratory agreement only the localization of

the blood collection altered, much better accordance between the Bovigam1 assay test results

were expected, as blood taken from differing localizations should not differ [78, 79]. But the

smaller diameter of the tail vain could lead to more damage and therefore micro-clotting,

resulting in captured lymphocytes and therefore lower IFN-γ release [80]. Despite, there are

conflicting views if an equal distribution of all lymphocyte subpopulations all over the body

can be assumed in general. Regarding this, it must be taken into account that a blood sample

can only give a snapshot. Although all five laboratories were officially approved none of them

reported good concordance for the Bovigam1 assay test results. It seems that the Bovigam1

assay is a diagnostic tool with some disadvantages. Many influences including external factors

(MAP, saprophytic mycobacteria, previous skin test and genetic components) and factors

directly connected with the test performance, as the concentration of the PPDs, transportation

time of the blood, localization of blood collection and also the experience of the laboratories

might lead to differing test results. A higher specificity of the Bovigam1 assay, especially in

low prevalence herds and animals having a co-infection with MAP, can be achieved by using

the proteins ESAT6 and CFP10 instead of PPDa and PPDb [68, 81]. Also working out and

evaluating an individual test performance (proteins, protein concentration, cut-off etc.) for
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each Bovigam1 assay application as a field test might lead to better test characteristics [64,

70]. This could be demonstrated in this study in so far as the specificity increased by setting

the cut-off to 0.2.

To our knowledge the use of a latent class analysis for the estimation of test characteristics

for bTB diagnostic tests was never done before in Germany. An important strength of this

study is that the data were gained from surveillance and therefore originates from a special epi-

demiologic situation. But this means also that only a subpopulation was tested and the animals

were not chosen randomly. According to this background information our findings cannot be

generalized. Additionally a new version of the Bovigam1 assay has been developed since 2013

to which our findings cannot be transferred [82].

Conclusion

With this latent class analysis the test characteristics of different diagnostic tests used in the

current bovine TB outbreak in Southern Germany could be estimated. Within this study an

extremely low specificity and a low inter- and intralaboratory agreement were estimated for

the Bovigam1 assay. These findings might be due to influences affecting the environment or

the immune system of the cow. Also factors that are associated with the testing procedure and

the laboratories chosen might have had an effect. Therefore, the change during the testing

regime towards SICCT test as only ante-mortem test was correct and founded. Despite the fact

that the Bovigam1 assay has been further advanced, a previous test evaluation prior to future

surveillance programs is highly recommended. The estimated test characteristics for the other

tests were in an acceptable range.
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sent? Tierärztliche Praxis Großtiere. 2014; 42(4):240–9.

22. Heigl F. Rinder-und Rotwild-Tuberkulose im Oberallgäu, Eine aktuelle Übersicht. 2013.
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