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Abstract: In the study the influence of different dental technical tools on the surface temperature
and phase composition of fixed dental prostheses (FDPs) made of yttria-partially stabilized zirconia
polycrystals (3Y-/4Y-/5Y-PSZ) was investigated. FDPs were fabricated by using computer-aided
manufacturing (CAM). The FDPs were treated with a contra-angle handpiece equipped with different
burs and polishers. The resulting surface temperatures were measured with a thermographic camera,
and the resulting phase transformations were investigated by X-ray diffraction and quantified by
Rietveld refinement. Processing with burs resulted in no phase transformation, but a preferred
orientation shift. Using coarse polisher induced a phase transformation to the rhombohedral phase,
while fine polishers produced no relevant phase transformations and no preferred orientation shift.
Compared to the monoclinic phase (ca. 9% theoretical volume increase), which is associated with
low-temperature degradation (LTD), the rhombohedral phase is much more voluminous (ca. 15%
theoretical volume increase) and distorted and, therefore, has a greater degradation potential.

Keywords: dental zirconia; X-ray diffraction; fixed dental prosthesis; computer-aided manufacturing;
phase composition

1. Introduction

In recent years, tooth-coloured materials such as ceramics and resin composites have
become very popular for application in monolithic aesthetic dental restorations [1–5].
As yttria-partly stabilized zirconia (Y-PSZ), compared to other dental materials, features
outstanding mechanical performance [6] (flexural strength between 750 and 1300 MPa [7,8])
and its optical properties such as translucency [9] are almost similar to enamel. The material
is biologically inert [8], has a high X-ray opacity, AND can be used for a broad variety of
dental restorations, including fixed dental prostheses (FDPs), primary telescopic crowns,
dental implants, and implant superstructures [4,5]. The survival rates are very high and
similar to metal alloys [10]. They ranged for zirconia implants from about 76% (first
generation [11]) to 95% after one to seven years [12], for fixed complete dentures (FCDs)
100% after one to seven years [5]), and for frameworks 100% after ten years [13].

The translucency of Y-PSZ increases with a reduction in the grain size of the pressed
powder, the porosity, and the aluminium content, and with an increase in the yttria con-
tent [14]. For the question of indication, the yttrium oxide content in particular has proven
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to be a decisive material parameter, as it can be used to control the phase composition and
thus, above all the optical and mechanical properties.

In general, Y-PSZ consists of a mixture of cubic (C; spacegroup Fm3m) and tetragonal
(T, T′, and T′ ′; spacegroup P42/nmc) high-temperature phases, which are metastable at
room temperature [15–17]. There are also several tetragonal phases T, T, and T′ ′ [16,17], two
orthorhombic high-pressure phases (O and O’; Pbca and Pnam), and a monoclinic phase
(M; spacegroup P21/c), which is the only stable phase under standard conditions [15–17].

When subjected to thermal [18–20] or mechanical [21–23] stress, Y-PSZ may undergo
a slow tetragonal (T) to monoclinic (M) transformation [24–27] under certain conditions,
which is fostered by humidity [18,21].

Because of the resulting local volume expansion and the optical biaxiality, this ag-
ing phenomena (low temperature degradation; LTD) degrades the physical and optical
properties of zirconia severely [15,18,19,21,28,29].

During cooling after sintering, the initially present tetragonal phase T′ separates
into yttria-rich (C, T′ ′) and yttria-lean (M, T) phases [16,17,30]. Because of the low yttria
solubility of the monoclinic phase, only the yttria-lean tetragonal phase T transforms in the
monoclinic phase M, while the yttria-rich tetragonal phase T′ ′ and the cubic phase C are
not transformable and, therefore, not subjected to low-temperature degradation [18,29].

Under mechanical loading (alumina particle blasting and grinding in the lab), the
formation of a rhombohedral/trigonal phase (R; R3) was observed [31–34]. This phase is
a hettotype of the cubic phase (spacegroup Fm3m→ spacegroup R3). It retains only the
trigonal symmetry element 3 and features–compared to the cubic phase–a highly distorted
elementary cell [33,35,36].

Prosthetic treatments include the examination of aesthetic and functional parameters
such as the marginal fit between crown and tooth, proximal contact, and static and dynamic
occlusion [37]. In many cases, occlusal adjustments are necessary, as interferences in the
occlusion may cause problems with teeth and the temporomandibular joint, which may
ultimately impair quality of life [38]. Occlusal adjustments are commonly performed with
fine diamond burs, which are followed by a polishing regime. Adequate polishing is
particularly relevant in restorations fabricated from zirconia, as insufficiently polished
zirconia surfaces may cause increased abrasion in antagonistic natural tooth tissues [39,40].

It is well known that mechanical loading [8,32,41–45] of zirconia, e.g., as induced by
polishing or grinding, may—under certain conditions—lead to a phase transformation.
Song et al. [46] defined four different types of stresses that are applied on Y-PSZs during
abrasion with a diamond bur and quantified them using finite element analysis (FEA). The
various stress types include tensile (max. 904 MPa), shear (max. 588 MPa), compressive
(max. 878 MPa), and theoretical von Mises (max. 885 MPa to 1974 MPa) stress [46]. Some
of these stresses exceed the flexural strength of zirconia (cf. Table 1).

The study examined the influence of commonly used diamond burs and polishing
equipment on the phase composition of fixed dental prostheses (FDPs) fabricated from
3Y-, 4Y-, and 5Y-PSZs. The boundary conditions necessary for the phase transformation
(temperature distribution, mechanical effects) were determined experimentally. The results
were compared to know phase transformation driven phenomena such as LTD.

2. Materials and Methods
2.1. Materials and Sample Preparation

Six FDPs fabricated from Y-PSZs with different yttria contents supplied either by
Dental Direkt (Dental Direkt GmbH, DE-32139 Sprenge; DD) or VITA Zahnfabrik (Vita
Zahnfabrik H. Rauter GmbH & Co. KG, DE-79704 Bad Säckingen; VT) were used (Table 1).
The FDPs were produced using computer-aided manufacturing (CAM) techniques in
accordance with the instructions issued by manufacturers employing an inLab MC X5
(Dentsply Sitrona Deutschland GmbH, DE-64625 Bensheim) 5-axis milling machine and the
CAD software Ceramill Mind 2.4 7437 (Amann Girrbach AG, AT-6842 Koblach) (cf. [47]).



Materials 2022, 15, 4471 3 of 14

Table 1. Overview of the Y-PSZs from two manufacturers used for producing FDPs.

Abbreviation Product LOT Yttria Content
mol % 1

Flexural Strength
MPa 1

3Y_VT VITA YZ HT 83,290 3 1100
3Y_DD DD Bio ZX2 5,032,106,002 3 1250
4Y_VT VITA YZ ST 65,890 4 >850
4Y_DD DD cube ONE 7,162,042,001 4 >1250
5Y_VT VITA YZ XT 61,962 5 >600
5Y_DD DD cubeX2 8,032,028,002 5 800

1 According to the manufacturer.

The FDPs were processed from pre-sintered round discs (Ø 98.5 mm). For investiga-
tions, a premolar crown from the upper jaw (wall thickness: buccal/palatinal: 2.45 mm;
mesial: 0.66 mm; distal: 0.69 mm) was manufactured. To simplify the X-ray diffraction
(XRD) measurements, the FDPs featured flat occlusal surfaces without cusps. Sintering was
conducted according to the instructions of the manufacturers at 1450 ◦C (3Y- and 5Y-PSZ)
and 1530 ◦C (4Y-PSZ) using a zirconia sintering furnace (VITA Zyrcomat 6000 MS, Vita
Zahnfabrik H. Rauter GmbH & Co. KG, Germany) (cf. [47]). For glace firing, glaze paste
was prepared from VITA Akzent plus Glaze LT and VITA plus powder fluid. Heating was
performed according to the instructions of the manufacturer with a vacuum furnace (VITA
Vacumat 6000 M, Vita Zahnfabrik H. Rauter GmbH & Co. KG, DE-79704 Bad Säckingen,
Germany) (cf. [47] Table 2).

Table 2. Every different step of processing of FDPs. Each technical tool was applied individually to
one sintered FDP.

Treatment Number Processing Step

1 Sintered (glazed) FDP
2 Sintered (glazed) FDP processed with a coarse diamond bur
3 Sintered (glazed) FDP processed with a fine diamond bur
4 Sintered (glazed) FDP processed with a coarse polisher
5 Sintered (glazed) FDP processed with a fine polisher

To simulate dental adjustments in occlusion, coarse (842KR) and fine (8837KR) dia-
mond burs (both from Komet Dental, Lemgo, Germany) were used with an EXPERTtorque
Mini LUX E677 L contra-angle handpiece (KaVo, Biberach an der Riß, Deutschland). Subse-
quently, polishing was simulated using typical coarse (Cera Glaze P3032A) and fine (Cera
Glaze P30032A) polishers (both by NTI, Khala, Germany) (Table 3).

Table 3. Overview of the dental technical tool used for processing FDPs.

Dental Technical Tool Revolutions
rpm

Vertical Load
N

Time of Processing
min

Coarse diamond bur 400,000 5–15 4
Fine diamond bur 400,000 5–15 4

Coarse polisher 10,000 5–15 4
Fine polisher 5000 5–15 4

2.2. Methods
2.2.1. Mechanical Loading

The manual mechanical vertical load, which was applied to the bur/polisher while
processing was analysed using a universal testing machine (Retro line, ZwickRoell, Ulm,
Germany). The force was applied directly on the measurement spot (Table 3).



Materials 2022, 15, 4471 4 of 14

2.2.2. Thermographic Analysis

Processing with the burs and polishers was filmed using an MWIR A6700-InSb thermal
imaging camera (Teledyne FLIR LLC, Wilsonville, Oregon, USA) with a thermal sensitivity
of <18 mK. The dataset was analysed using ResearchIR 4.40.11 software (Teledyne FLIR
LLC, Wilsonville, Oregon). The temperatures on the crowns were measured directly
after removing the bur from the surface. For each measurement, two temperature ranges
(77.4–216 and 146.6–323.6 ◦C for the burs and 20–98.1 ◦C and 146.6–216 ◦C for the polishers)
were applied.

2.2.3. X-ray Diffraction (XRD)

The phase composition (Figure 1) was analysed using a D8 Discover (Bruker AXS Ad-
vanced X-ray Solutions GmbH, Karlsruhe, Germany) X-ray diffractometer with a VÅNTEC-
500 (Vantec Thermal Technologies, Fremont, CA, USA) area detector. CuKα radiation
(λ = 1.5418 Å) and X-ray settings of 40 kV and 40 mA were used. For gathering data, the
measurement setup described by Wertz et al. [47] was applied. The integration was carried
out with the software DIFFRAC.EVA (Version 3.1; Bruker AXS Advanced X-ray Solutions
GmbH, Karlsruhe, Germany).
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Figure 1. Depiction of the reference FDPs fabricated from 3Y-VT_1, 4Y-VT_1, and 5Y-VT_1.

2.2.4. Rietveld Refinement

TOPAS 4.2 software (Bruker AXS Advanced X-ray Solutions GmbH, Karlsruhe, Ger-
many) was used for Rietveld refinement. Structural data were derived from the litera-
ture [31,48,49] and adapted with data from various publications [15–17,41,50]. The XRD
curve calculated includes structural models for the monoclinic (M), tetragonal (T, T′ ′),
cubic (C), and rhombohedral/trigonal (R) [47].

Important reflections at ~35◦, ~60◦, and ~74◦ in 2Θ (Figure 2a–c) were used for
differentiating the tetragonal phase T from the tetragonal phase T′ ′ and the cubic phase C.
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Figure 2. Comparison of the observed curves of the reference FDPs fabricated from 3Y_VT_1 (red)
and 5Y_VT_1 (black) around 35◦ (a), 60◦ (b), and 74◦ (c) in 2Θ (from Figure 1) with their phase
composition (T, T′ ′, C).

With increasing Yttria content, the tetragonal phase fraction T′ ′ increases at the expense
of the tetragonal phase T. The corresponding reflections are a) 0 0 2T/T′ ′ , 1 1 0 T/T′ ′ and
0 0 2C; b) 0 1 3T/T′ ′ , 2 1 1 T/T′ ′ & 3 1 1C, and c) 0 0 4T/T′ ′ , 2 2 0 T/T′ ′ , and 0 0 4C.

The increasing surface roughness induced by treatment with dental technical tools
was compensated with a surface roughness correction [51]. Texture effects were refined
using a preferred orientation approach according to March—Dollase [52,53]. The resulting
refinement was improved using optical and numerical parameters in an iterative process.
Diamond 4 software (Version 4.6.5, Crystal Impact GbR, Bonn, Germany) was used to
display the phases and to determine parameters such as the number of atoms per unit cell.

3. Results

In general, identical phase compositions were found between the manufacturers for
the processing steps and the different yttria contents. Therefore, only changes which
were detected for both manufactures are presented in detail in the sections. The phase
composition of all measurements after Rietveld refinement are deposited in the Appendix A
(Tables A1–A6).

3.1. Coarse and Fine Diamond Burs

The usage of all coarse and fine diamond burs induced no phase transformation, but a
preferred orientation shift from 1 1 0T/T′ ′ to 0 0 1T/T′ ′ .

Figure 3 displays the diffractograms prior (a) and after (b) treatment with a coarse
diamond bur. The main phases are the tetragonal phases T and T′ ′.

The reflections at 35◦, 60◦, and 74◦ in 2Θ show a strengthening of 0 0 2T/T′ ′ (36◦; left
reflection), 0 1 3T/T′ ′ (60◦; left reflection), and 0 0 4T/T′ ′ (60◦; left reflection) for 1 1 0T/T′ ′

(34◦; right reflection), 2 1 1T/T′ ′ (58◦; right reflection), and 2 2 0T/T′ ′ (60◦; right reflection).
A detailed look on certain areas (Figure 4) shows no substantial phase transformation

(c.f. Tables A1–A6), so the scattering intensity shifts suggest a 0 0 1T/T′ ′ texture (preferred
orientation in the grain) induced by the treatment with all coarse and fine burs.
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Figure 4. Comparison of the observed curves of the FDPs fabricated from 3Y_DD_1 (sintered, black)
and 3Y_DD_2 (coarse diamond bur, red) around 35◦ (a), 60◦ (b), and 74◦ (c) in 2Θ (highlighted parts
of Figure 3) with their phase composition (T, T′ ′, C).

Processing with a coarse bur changes the ratio between 0 0 1 (left) and 1 1 0 (right)
(preferred orientation change). The corresponding reflections are (a) 0 0 2T/T′ ′ (left), 1 1 0
T/T′ ′ (right), and 0 0 2C; (b) 0 1 3T/T′ ′ (left), 2 1 1 T/T′ ′ (right), and 3 1 1C; (c) 0 0 4T/T′ ′ (left),
2 2 0 T/T′ ′ (right), and 0 0 4C.

Figure 5 depicts the temperature distribution of the coarse and fine burs during
application. Both treatments produced very similar temperatures in the area of the surface
contact point.
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Figure 5. Thermograms of FDP surfaces processed with coarse (left, middle-left) and fine (right,
middle-right) diamond burs. For each measurement two temperature ranges (77.4–216 and
146.6–323.6 ◦C) were applied.

Comparing the temperature profile induced by treatment with the coarse and fine
(Table 4) diamond burs, it is obvious that both treatments produced similarly high temper-
atures on the surfaces.

Table 4. Maximum temperatures measured on the diamond bur and FDP surfaces.

Max. Temperatures on the
Diamond Burs in ◦C

Max. Temperatures on the
FDPs in ◦C

Coarse diamond bur >320 ~190
Fine diamond bur >320 ~190

3.2. Coarse and Fine Polisher

When coarse polishers (Figure 6) were applied on all samples listed in Table 1, sub-
stantial formation of a rhombohedral (trigonal R) phase was induced. The fine polisher
induced no relevant phase transformation (c.f. Tables A1–A6).
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Figure 7 shows the detailed indication of some rhombohedral reflections (R) exemplarily.
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Figure 7. Comparison of the observed curves of the FDPs fabricated from 3Y_DD_4 (sintered,
fine polisher; red) and 3Y_DD_5 (sintered, fine polisher; black) around 30◦ (a) and 50◦ (b) in 2Θ
(highlighted parts of Figure 6).

The thermograms (Figure 8) gathered during treatments with coarse and fine polishers
showed large temperature differences between the two treatments.
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Figure 8. Thermograms of FDP surfaces processed with coarse (left, middle-left) and fine (right,
middle-right) diamond burs. For each measurement two temperature ranges (20–98.1 and 146.6–216 ◦C)
were applied.

The temperatures observed on the surface of the FDPs and polishers were much higher
during treatment with the coarse polisher than with the fine polisher (Table 5).

Table 5. Maximum temperatures measured on the polisher and FDP surfaces.

Max. Temperatures on the
Polisher in ◦C

Max. Temperatures on the
FDP in ◦C

Coarse polisher ~175 ~90
Fine polisher ~115 ~65
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4. Discussion

Following the arguments of Wertz et al. [47], we have used a phase model for Ri-
etveld refinement, which includes the two tetragonal phases T and T′ ′ as well as cu-
bic phase C, monoclinic phase M, and trigonal/rhombohedral phase R. In regard to the
tetragonal phases, the authors showed that including both phases substantially improves
the refinement.

4.1. Coarse and Fine Diamond Burs

The usage of diamond burs leads to a preferred orientation shift, but no phase trans-
formation. In the current study, the fine polisher induced no such preferred orientation
shift, probably because of its finer surface structure.

Since one stability mechanism in tetragonal zirconia includes a layered structure with
strong (2.09–2.10 Å) Zr-O1 bonds within and weak (2.33–2.35 Å) Zr-O2 bonds between the
layers [26,54], a preferred orientation shift (Figures 3 and 4) through coarse or fine diamond
burs may change this layered structure (Figure 9).
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Figure 9. Schematic idealized illustration of grains with a preferred orientation of crystal structure
and their impact on a diffractogram. The initially randomly oriented grains (left) are oriented towards
0 0 1T/T′ ′ (right). Since parts of the grains still have a preferred orientation towards 1 1 0T/T′ ′ , a 1 1
0T/T′ ′ reflection remains. It should be noted that reflections 1 1 0T/T′ ′ and 0 0 1T/T′ ′ are located in two
different spatial planes, and therefore, cannot be represented in a 2D drawing.

4.2. Coarse and Fine Polisher

The coarse polisher induced the formation of a rhombohedral phase (R). Because
of its metastability, the rhombohedral phase of zirconia has only rarely been reported.
While it has been discussed [31,32,47,55] in other studies [20,56], typical reflections for the
rhombohedral phase (R) were measured but not discussed.

The elementary cell (Table 6 and Figure 10) of the rhombohedral phase (R) features
a 15% higher volume per atom ratio than the cubic (C) and tetragonal phases (T, T′ ′) and
a shear of 30◦ (cf. monoclinic elementary cell: 4–5% [15] to 9% higher; 9◦ shear [15]).
Additionally, in the rhombohedral phase, every zirconium atom is bonded with only six
oxygen atoms instead of eight atoms, as in the cubic and tetragonal phases (monoclinic
phase: seven O- bondings per Zr- atom).

Table 6. Properties of the different elementary cells of the refined phases.

Crystal System O- Bonds
per Zr- Atom

Atoms per
Elementary Cell Volume in Å3 Volume per

Atom in Å3

Cubic 8 12 133 11
Tetragonal 8 6 67 11
Monoclinic 7 12 144 12

Rhombohedral 6 57 748 13
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Figure 10. Schematic and idealized illustration of the formation of the rhombohedral phase and
its consequences at the grain and unit cell levels. Polishing with coarse polishers induced a phase
transformation to the rhombohedral phase (above). In comparison to the transformation to the
monoclinic phase, a higher volume expansion (values based on atoms per volume ratio; cf. Table 6)
and shear occur (below).

When the FDP is heated after polishing in dental practice (e.g., for glace firing), a
retransformation from the rhombohedral to the tetragonal phase would be possible, which
may cause shrinkage and microstrain formation.

These effects may be stronger than the effects of the LTD-related monoclinic phase
transformation because of the stronger distortion (Table 6), the higher volume expansion,
and the larger shear of the rhombohedral phase.

Kitano et al. [31] indicated that a rhombohedral to monoclinic phase transformation
may also be operative. Therefore, the rhombohedral phase may also be subjected to
processes such as low-temperature degradation (LTD) and potentially promote them.

Only treatment with the coarse polisher resulted in the formation of the rhombohedral
phase. Subsequent firing (e.g., glace firing or regeneration firing) could retransform the
rhombohedral phase into a tetragonal or cubic phase, which may cause additional stresses
by shrinkage phenomena. The different results can be explained by the higher temperatures
induced by treatment with the coarse polisher (Table 5) and the entry of shear forces [46,57].

The current study is limited by the low thickness of the surface, which can be analysed
by X-ray diffraction (XRD), the harsh loading conditions, and the limited number of
dental technical tools (Table 3) we used. Therefore, the practical consequences on this the
laboratory study must determine in further investigations.

5. Conclusions

Our experiments within the limitations of the study show some conditions of the
formation of a rhombohedral phase fraction (15–30%) of 3/4/5Y-PSZ through polishing
with dental handpieces.

1. Polishing with coarse polishers can induce a partial rhombohedral phase transformation.
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2. All diamond burs used induce a break up of the layer structure of Y-PSZ and a
subsequent preferred orientation shift to 0 0 1 T/T′ ′ at the expense of 1 1 0 T/T′ ′ , but no
phase transformation.

3. Treatment with fine polishers did not induce any relevant phase transformation.

Similar to the tetragonal to monoclinic phase transformation, the rhombohedral phase
transformation induced a volume expansion (15% higher volume per atom ratio than the
cubic or tetragonal phases) and shear (30◦). Since only the coarse polisher induced this
phase transformation, this indicates a metastable phase stability field, in which this phase
transformation occurs.

Further studies should address the conditions and prevention of the formation of the
rhombohedral phase, especially the combination of different polishers in practically used
polishing sets. It is necessary to clarify the practical impact of the above observations on the
material properties (mechanical and optical) and clinical performance of FDPs fabricated
from Y-PSZs. Additionally, the stability of the rhombohedral phase against subsequent
firings and low-temperature degradation should be investigated.
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Appendix A

Table A1. Quantification of the phase content of the FDPs fabricated from 3Y_VT. VT: Vita Zahnfabrik.

3Y_VT M R T T′ ′ C

3Y_VT_1 (as sintered) 0 0 82 7 11
3Y_VT_2 (coarse bur) 0 0 64 22 12

3Y_VT_3 (fine bur) 0 0 60 29 11
3Y_VT_4 (coarse polisher) 0 30 39 16 15

3Y_VT_5 (fine polisher) 0 0 74 8 18

Table A2. Quantification of the phase content of the FDPs fabricated from 3Y_DD. DD: Dental Direct.

3Y_DD M R T T′ ′ C

3Y_DD_1 (as sintered) 0 0 80 8 12
3Y_DD_2 (coarse bur) 0 0 67 17 16

3Y_DD_3 (fine bur) 0 0 69 20 11
3Y_DD_4 (coarse polisher) 0 14 68 14 4

3Y_DD_5 (fine polisher) 0 0 84 7 9
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Table A3. Quantification of the phase content of the FDPs fabricated from 4Y_VT. VT: Vita Zahnfabrik.

4Y_VT M R T T′ ′ C

4Y_VT_1 (as sintered) 0 0 60 21 19
4Y_VT_2 (coarse bur) 0 0 44 39 17

4Y_VT_3 (fine bur) 0 0 42 47 12
4Y_VT_4 (coarse polisher) 0 30 25 34 11

4Y_VT_5 (fine polisher) 0 0 54 27 19

Table A4. Quantification of the phase content of the FDPs fabricated from 4Y_DD. DD: Dental Direct.

4Y_DD M R T T′ ′ C

4Y_DD_1 (as sintered) 0 0 60 24 16
4Y_DD_2 (coarse bur) 0 0 53 32 15

4Y_DD_3 (fine bur) 0 0 52 37 11
4Y_DD_4 (coarse polisher) 0 18 53 23 6

4Y_DD_5 (fine polisher) 0 0 60 29 11

Table A5. Quantification of the phase content of the FDPs fabricated from 5Y_VT. VT: Vita Zahnfabrik.

5Y_VT M R T T′ ′ C

5Y_VT_1 (as sintered) 0 0 24 64 12
5Y_VT_2 (coarse bur) 0 0 28 56 16

5Y_VT_3 (fine bur) 0 0 30 59 11
5Y_VT_4 (coarse polisher) 0 15 18 62 5

5Y_VT_5 (fine polisher) 0 0 28 57 15

Table A6. Quantification of the phase content of the FDPs fabricated from 5Y_DD. DD: Dental Direct.

5Y_DD M R T T′ ′ C

5Y_DD_1 (as sintered) 0 0 24 66 10
5Y_DD_2 (coarse bur) 0 0 23 57 20

5Y_DD_3 (fine bur) 0 0 22 61 17
5Y_DD_4 (coarse polisher) 0 18 15 60 7

5Y_DD_5 (fine polisher) 0 0 26 63 11
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