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Recent work has suggested that disorganised speech might be a powerful predictor of later psychotic illness in clinical high risk
subjects. To that end, several automated measures to quantify disorganisation of transcribed speech have been proposed.
However, it remains unclear which measures are most strongly associated with psychosis, how different measures are related to
each other and what the best strategies are to collect speech data from participants. Here, we assessed whether twelve automated
Natural Language Processing markers could differentiate transcribed speech excerpts from subjects at clinical high risk for
psychosis, first episode psychosis patients and healthy control subjects (total N= 54). In-line with previous work, several measures
showed significant differences between groups, including semantic coherence, speech graph connectivity and a measure of
whether speech was on-topic, the latter of which outperformed the related measure of tangentiality. Most NLP measures
examined were only weakly related to each other, suggesting they provide complementary information. Finally, we compared the
ability of transcribed speech generated using different tasks to differentiate the groups. Speech generated from picture
descriptions of the Thematic Apperception Test and a story re-telling task outperformed free speech, suggesting that choice of
speech generation method may be an important consideration. Overall, quantitative speech markers represent a promising
direction for future clinical applications.
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INTRODUCTION
Psychotic disorders typically develop at the end of adolescence or
in early adulthood, following a clinical high risk (CHR-P) phase.
Previous work has identified a number of clinical, cognitive,
neuroimaging and peripheral blood measures that are associated
with transition to psychosis in CHR-P subjects [1–4]. However,
there remains a clinical need to develop more accurate predictive
tools, which are non-invasive and can be easily translated to the
clinic. Such methods could open the gateway to preventative
interventions, targeted at those who need them most [5].
A core feature of psychotic disorders is Formal Thought

Disorder, which is manifest as disorganised or incoherent speech.
Recently, several automated approaches have been proposed to
quantify speech disorganisation in transcribed speech from
patients with psychotic disorders [6–12]. Elvevåg et al. [8] first
proposed to use Latent Semantic Analysis (LSA) [13] to quantify
semantic coherence of transcribed speech data from psychosis
patients. Briefly, LSA represents each word as a vector, such that
words used in similar contexts (e.g. ‘desk’ and ‘table’) were
represented by similar vectors. Elvevåg et al. then used LSA to
calculate the semantic coherence between adjacent words, the

tangentiality of an individual’s speech, i.e. how likely it was to
diverge off-topic over time, and semantic similarity between
speech excerpts from different participants. Later work extended
these approaches [6, 9], for example, to use new, state-of-the-art
word and sentence embedding methods to obtain vectors from
words and sentences, instead of LSA [9]. Other authors have used
different approaches to quantify disorganised speech, such as
automated measures of referential cohesion [9, 14], based on
evidence this may be altered in patients with schizophrenia
[15, 16]. Finally, Mota et al. [11] proposed a graph theoretical
approach in which speech was represented as a graph. Speech
graph connectivity was significantly reduced in patients with
schizophrenia compared to healthy control subjects [11].
These automated approaches allow disorganised speech to be

quantified and studied at scale. This is an important improvement
on previous qualitative approaches which were subjective and
time-consuming, limiting sample sizes. There is also growing
evidence that quantitative speech markers can not only distin-
guish cases with psychosis and healthy controls [12, 17] but may
help to predict the later onset of psychosis in CHR-P subjects.
Corcoran et al. [7] reported that in a CHR-P sample, decreased
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semantic coherence (LSA), greater variance in semantic coher-
ence, and reduced usage of possessive pronouns predicted
transition to psychosis with approximately 80% accuracy. Rezaii
et al. [18] predicted conversion to psychosis with approximately
90% accuracy from low semantic density and speech content
focusing on voices and sounds. Mota et al. [10] obtained ~80%
accuracy for predicting a schizophrenia diagnosis 6 months in
advance, based on a speech graph approach [11].
While alterations in speech are an important component of

psychosis, it is still unclear which strategies for assessing speech
are most useful. For example, some studies analyse speech
produced in response to a stimulus, while others examine free
speech recorded during a conversation. In addition, to date, most
studies have used a relatively limited set of measures to quantify
disorganised speech, and there is a need to identify which analytic
measures can provide a comprehensive overview of speech
abnormalities in CHR-P individuals. Here, we aimed to address
these questions in order to provide methodological insights into
how best to quantify formal thought disorder in psychosis.
To that end, we first investigated whether twelve Natural

Language Processing (NLP) measures could distinguish tran-
scribed speech excerpts from CHR-P subjects, first episode
psychosis (FEP) patients and healthy control subjects, using
speech excerpts generated by asking participants to describe
pictures from the Thematic Apperception Test (TAT; [19]). These
pictures typically induce relatively incoherent speech in patients,
and have been previously used both to assess thought disorder,
for example with the Thought and Language Index assessment
tool [20], and to identify the neural substrate of thought disorder
[21, 22]. We also assessed whether NLP measures could
distinguish CHR-P subjects who did or did not transition to
psychosis. We included a range of NLP measures because these
measures are computationally cheap to calculate (requiring at
most a few seconds per participant, on a single CPU) and
ultimately a combination of measures is likely to be more
informative than any single measure. Ten of the NLP measures
were chosen because they were widely employed in the prior
literature, had been previously suggested to show differences in
psychosis, and could plausibly capture a range of dimensions of
thought disorder [6–9, 11, 12]. We also employed two additional
measures: one potentially related to the repetitiveness of speech,
motivated by prior evidence that perseverance is a component of
thought disorder [20], and another of whether a participant’s
speech was ‘on-topic’, which is related to tangentiality [8]
and similar to measures previously employed by [8, 23].

Our motivation for these additional measures was to quantify
aspects of thought disorder not already captured by the original
ten metrics. Second, we investigated whether these NLP measures
were correlated with each other, to explore whether they
contained overlapping or complementary information and there-
fore might be usefully combined in future to predict conversion.
Finally, we assessed whether speech generated using two
alternative approaches to the TAT would show similar differences
between the three participant groups, to ascertain which strategy
for eliciting speech provided most power to assess thought
disorder. In particular, we used speech generated by asking
participants to re-tell stories from the Discourse Comprehension
Test (DCT; [24]) and free speech excerpts.

MATERIALS AND METHODS
Participants
Three groups of participants were recruited as described by Demjaha et al.
[25]: 25 CHR-P participants, 16 FEP patients and 13 healthy control
subjects. CHR-P participants were recruited from the Outreach and Support
in South London (OASIS) service [26], and met ultra-high risk criteria
assessed with the Comprehensive Assessment of At-Risk Mental States
(CAARMS; [27, 28]). FEP patients were recruited from the South London
and Maudsley NHS Foundation Trust. Healthy controls with no previous or
current history of psychiatric illness and no family history of psychosis were
recruited from the same geographical area. Groups were matched for age
(one-way ANOVA, P= 0.38) and sex (P= 0.33); see Table 1.
All participants were fluent in English and gave written informed

consent after receiving a complete description of the study. Ethical
approval for the study was obtained from the Institute of Psychiatry
Research Ethics Committee.
CHR-P subjects were followed clinically for an average of 7 years after

participating in the study to assess whether they subsequently developed
a psychotic disorder. Eight of the 25 CHR-P subjects transitioned to
psychosis. Transition to psychosis was defined as the onset of frank
psychotic symptoms that did not resolve within a week.

Procedure
Our primary analyses were performed using transcribed speech generated
using the Thematic Apperception Test (TAT; [19]). Participants were
presented with eight TAT pictures and asked to talk about each picture for
one minute. Pictures were presented in the same order to all participants. If
the participant stopped talking during the minute they were prompted to
continue, using the prompts: “Anything else?”, “What do you think is
happening?”, “Can you describe it more fully?”. Speech samples were
recorded and transcribed by a trained assessor blind to group status.
Inaudible parts of speech were noted as [?] [29].

Table 1. Sample characteristics for the three groups: healthy control subjects (CON), clinical high risk subjects (CHR-P) and first episode psychosis
patients (FEP).

CON CHR-P FEP Group difference

Sample size 13 25 16 N/A

Age (years) 26.5 ± 5.2 25.1 ± 4.8 24.5 ± 3.7 P= 0.38

Sex (M) 8 (61.5%) 15 (62.5%) 13 (81.3%) P= 0.33

No. on antipsychotic medication 0 4 6 P= 0.031

Years in education 18.4 ± 4.2 13.0 ± 2.8 13.3 ± 1.9 P < 0.001

WRAT IQ 115.6 ± 5.2 103.3 ± 11.8 99.8 ± 15.0 P= 0.0019

Digit span 20.7 ± 4.1 17.0 ± 3.6 13.3 ± 4.5 P < 0.001

TLI total 0.37 ± 0.51 1.8 ± 1.4 3.5 ± 2.9 P < 0.001

TLI positive 0.37 ± 0.51 1.4 ± 1.3 2.9 ± 3.0 P= 0.0029

TLI negative 0 ± 0 0.27 ± 0.61 0.58 ± 0.86 P= 0.055

We note that age information was missing for two participants: one CHR-P subject and one FEP patient and sex information was missing for one CHR-P
subject. Results are reported as the mean average and standard deviation where appropriate. Group differences were calculated using a 1-way ANOVA. WRAT
IQ, digit span, TLI and education information were missing for one CHR-P subject.
TLI Thought and Language Index, WRAT IQ Wide Range Achievement Test Intelligence Quotient.
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We repeated our analyses using speech data generated from the same
participants with two alternative approaches. First, participants were read
six stories from the Discourse Comprehension Test (DCT; [24]) and asked to
re-tell them. Finally, free speech was recorded from an interview in which
participants were asked to speak for 10minutes about any subject.
Participants often chose subjects such as their hobbies and interests, life
events and plans for the weekend. If the participant stopped talking, they
were prompted to continue, using a list of topics the participant was happy
to discuss.
Data was not available for all participants for all tasks. For the TAT task,

no data was available for 1 participant and 1 participant’s recording was
excluded due to poor audio quality, leaving N= 52. A further 1 participant
had 1 picture response (out of 8) missing and was included with only 7
picture descriptions. For the DCT task, 3 participants had no data available,
leaving N= 51. 6 participants had 1 story response (out of 6) missing and 1
participant had 2 story responses missing; these participants were included
with the responses available. For free speech, 2 participants had no data
available, leaving N= 52. Tasks were presented in the same order to all
participants, with the free speech task first, then the TAT task and the
DCT task.
Thought disorder was assessed by applying the Thought and Language

Index (TLI; [20]) to the TAT speech excerpts, again by a trained assessor
blind to group status. The positive and negative syndrome scale (PANSS;
[30]) was used to measure symptoms. Participants also completed the
WRAT IQ test [31], the Wechsler Adult Intelligence Scale Digit Span test
[32], and reported the number of years they spent in education.

Natural Language Processing measures
Basic measures. For each excerpt, we calculated the total number of
words, Nword, the total number of sentences, Nsent, and the mean number
of words per sentence, Nword/Nsent.

Semantic coherence. Speech incoherence was conceptualised by [33] as
“a pattern of speech that is essentially incomprehensible at times”, and [34]
later linked to problems integrating meaning across clauses [35]. Here we
quantified semantic coherence using the same approach as [6, 9], which
measures how coherent transcribed speech is in terms of the conceptual
overlap between adjacent sentences. The text was first split into sentences
and pre-processed by removing stop words (defined from the NLTK corpus
[36]) and filler words (e.g. ‘um’). Each remaining word was then
represented as a vector, using word embeddings from the word2vec
pre-trained Google News model [37]. From these word embeddings, we
calculated a single vector for each sentence, using Smooth Inverse
Frequency (SIF) sentence embedding [38]. We used word2vec and SIF
embeddings because they previously gave the greatest group differences
between patients with schizophrenia and control subjects [9]. Finally,
having represented each sentence as a vector, the semantic coherence
was given by the mean cosine similarity between adjacent sentences [6, 9].

Tangentiality. Tangentiality captures the tendency of a subject to drift
‘off-topic’ during discourse. We used the tangentiality measure described
by [8, 9], where, for a given response, the cosine similarity was calculated
between each sentence in the participant’s response and an a priori
description of the stimulus used to generate speech (e.g. a sentence
describing the TAT picture). Again, we used word2vec and SIF for word and
sentence embeddings, respectively. Tangentiality was then computed as
the slope of the linear regression of the cosine similarities over time
(ranging from −1 to 1). A more negative slope means the response
became less closely related to the stimulus over time.
For the TAT task, we used a priori descriptions of each of the 8 pictures

from [39]; see Section S1. For the DCT task we used the original stories to
calculate the a priori vectors. Note that we did not obtain tangentiality
scores from free speech, due to the absence of an a priori description.

On-topic score. We also employed an ‘on-topic’ score, which is closely
related to tangentiality. Here, instead of calculating the slope of the cosine
similarities over time, we calculated the mean of the cosine similarities
between each sentence and the a priori stimulus description (ranging from
−1 to 1). This measure captures how ‘on-topic’ the participant’s response
to the stimulus was on average across the whole response, rather than
whether it became less closely related to the stimulus over time. The
measure is similar to the approach used by [23] where LSA vectors
representing participants’ descriptions of a story were compared with a
vector representing the original story. Again, we used the TAT picture

descriptions from [39] and the original DCT stories as the a priori
descriptions, and we did not obtain on-topic scores for free speech.

Repetition. Prior work has suggested that speech from patients with
schizophrenia may be more repetitive than control subjects [20]. As a first
step towards measuring repetitiveness quantitatively, we calculated the
cosine similarity between all possible pairs of sentences, and defined a
candidate repetition score as the maximum cosine similarity between any
two sentences (ranging from −1 to 1). A maximum similarity score of 1
means that (at least) two of the sentences in the response were represented
by identical vectors, suggesting the same content was repeated.

Number of ambiguous pronouns. Given evidence that patients with
schizophrenia may not use referential pronouns correctly [16, 9] proposed
to count the number of ambiguous pronouns as a syntactic measure of
speech incoherence. Here, ambiguous pronouns are pronouns which were
either (1) never resolved (e.g. “I think that’s their dog”, where “they” are
never named) or (2) resolved only after the use of a proper noun (e.g. “I
told him to go away, my friend, I didn’t want to see him”) [9]. Following [9],
we first identified all the pronouns in a participant’s response and the
subject they referred to, using a pre-trained co-reference resolution model
[40]. We then counted the number of times the first term used to refer to a
subject was a third-person pronoun (he, she, etc).

Speech graphs. Speech graphs were proposed by [12]. Briefly, each
unique word in a participant’s response is represented by a node, and
directed edges link the words in the order in which they were spoken. Prior
work has already applied speech graph analysis to our TAT speech excerpts
[29], and found significant group differences in speech graph connectivity.
Here, we compared speech graph connectivity to the other NLP measures
above. We also applied the speech graph approach to speech from the
DCT task, and free speech.
Following [29], we used the SpeechGraphs software [11] to calculate

four measures of graph connectivity: the total number of nodes in the
largest connected component (LCC) and the largest strongly connected
component (LSC) [10, 11], plus the corresponding values normalised to
randomised speech graphs- LCCr and LSCr [11, 29]; see Section S3.

Statistical analyses
The metrics described above were calculated for each speech excerpt.
Where there was more than one excerpt available per subject (e.g. from 8
TAT pictures), we calculated the mean score across the excerpts, to obtain
a single value per subject.
We used the Shapiro-Wilk test to assess the Normality of the NLP

measures, see Table S1. Some measures were not Normally distributed,
and we used the two-sided Mann–Whitney U-test to calculate the
statistical significance of group differences. The relationships between
different NLP measures were calculated with linear regression, controlling
for group membership as a co-variate.
We counted the number of inaudible pieces of speech in each excerpt,

normalised to the total number of words. We assessed whether there were
significant differences in the number of inaudible pieces of speech per
word between groups or between the TAT, DCT and free speech methods
using the two-sided Mann–Whitney U-test. For those methods where there
were differences, as an additional sensitivity analysis we tested whether
group differences in the NLP metrics remained significant when controlling
for the number of inaudible pieces of speech per word, using a
Generalized Additive Model for Location, Scale and Shape (GAMLSS) with
a gamma distribution [41].
We also used GAMLSS models to control for IQ, years in education and

digit span test score. For these post-hoc sensitivity analyses, we report
multiplicative effect sizes on the mean (λ) in addition to T-statistics and P-
values.

RESULTS
Speech profiles
We first calculated all twelve NLP measures outlined in the
‘Methods’ section, for the TAT excerpts from all subjects. The
average values for all measures per group are shown as average
‘speech profiles’ (spider plots) in Fig. 1A. For illustrative purposes,
in Fig. 1B, C we show speech profiles for two participants’
descriptions of one of the TAT pictures.

S.E. Morgan et al.
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Group differences in NLP measures, for the TAT
Table 2 gives group differences for all NLP measures obtained from
the TAT speech excerpts, with corresponding box-plots in Fig. 2.
Comparing FEP patients to control subjects, both number of words
and mean sentence length were significantly lower for FEP patients,
whilst the number of sentences was significantly higher. We also
observed lower semantic coherence for FEP patients, in-line with [9].
Tangentiality did not show any significant group differences,
however on-topic score significantly decreased in FEP patients,
showing a larger group difference than any other measure. This
suggests that FEP patients’ responses did not diverge from the prior
picture description over time, but were instead less closely related
to the prior picture description on average across all time points.

There were no significant differences in the ambiguous pronoun
count between the FEP patients and control subjects, in contrast to
[9], or in the maximum similarity (repetition) measure. As previously
reported [29], speech graph connectivity was reduced in FEP
patients, in-line with [10, 11].
In the CHR-P group, on-topic score and semantic coherence

were reduced compared to the control subjects. These measures
showed no significant differences between CHR-P subjects and
FEP patients. In contrast, LCC, LCCr and LSCr increased in CHR-P
subjects with respect to FEP patients, but showed no significant
differences between CHR-P subjects and control subjects.
4 of the CHR-P subjects and 6 of the FEP patients were taking

antipsychotic medication (Table 1). Excluding subjects who were
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on the shore and um behind the stream, bushes and little trees
and more grass and more wilderness. Now, [?] because it's
black and white it's quite cold. Then maybe it's the sun it's so it's
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Fig. 1 Speech profiles. A Average speech profiles for the control subjects, CHR-P subjects and FEP patients. B, C Example descriptions of one
of the TAT pictures, for a particular CHR-P subject and control subject, respectively. The response in part B diverges somewhat from the
average control response, with more, shorter sentences, and lower coherence, on-topic score and LCC, for example. The response in part C
follows the average control response quite closely, but has a somewhat higher maximum similarity between sentences. We note that the
healthy control subject whose speech profile is given in part C was excluded from our calculation of the average control response, to avoid
inflating the similarity between their speech profile and the average control profile. Spider plots were generated using code from ref. [48].
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taking antipsychotic medication did not qualitatively change the
group differences in the NLP measures; see Table S2, apart from
the group difference in number of words between controls and
FEP patients, which was no longer significant (Z=−1.7, P= 0.081).
When controlling for IQ, there were significant differences in

LSC and LSCr between the CHR-P subjects who did or did not
transition to psychosis (T=−2.8, P= 0.011 and T=−3.1, P=
0.0050, respectively). None of the other NLP measures differed
between these two subgroups; see Table S3. These differences
were not evident when not controlling for IQ.

Number of prompts
Table S4 reports group differences in the number of prompts given
to participants when describing the TAT pictures. FEP patients were
given more prompts than both healthy control subjects (Z= 2.6,
P= 0.0084) and CHR-P subjects (Z= 2.3, P= 0.020).

Inaudible pieces of speech
For the TAT speech excerpts, there were no significant differences
in the number of inaudible pieces of speech per word between
the FEP patients and the control subjects (Z= 1.1, P= 0.26), or
between the FEP patients and the CHR-P subjects (Z=−1.2, P=
0.22); Fig. S1. However, there was a significant difference in the
number of inaudible pieces of speech per word between the CHR-
P subjects and the healthy control subjects (Z= 2.2, P= 0.029);
Table S5. All previously identified group differences in NLP metrics
remained significant when controlling for the number of inaudible
pieces of speech per word; see Table S6.

Relationships between NLP measures
We next explored whether the NLP measures were significantly
associated with each other, by fitting a linear regression model to
each pair of NLP measures, controlling for group as a co-variate.
Fig. 3A) shows the relationships between the NLP measures, with
those that were significant with P < 0.01 plotted in the network in
Fig. 3B).
The four speech graph measures (LCC, LCCr, LSC and LSCr) were

strongly associated with each other, as expected. There was also a
significant negative association between LSC and maximum
similarity (repetition), and a significant positive association
between LSC and on-topic score. Interestingly, there was no
significant association between any of the speech graph measures
and semantic coherence. Semantic coherence was significantly
negatively associated with number of sentences and significantly
positively associated with number of words, sentence length and
on-topic score.

Relationships between NLP measures and the TLI, symptoms
and cognitive measures
We observed group differences in the TLI, IQ, number of years in
education and the digit span test score; see Table 1. 15 CHR-P
subjects and 8 FEP patients also had PANSS data available. Table
S7 shows the associations between the NLP measures and the TLI,
PANSS, IQ and number of years in education. After FDR correction
for multiple comparisons (12 × 8= 96 comparisons across all NLP
and TLI, symptom and cognitive measures), we observed
significant associations between TLI negative and: the number
of words (T=−4.9, PFDR < 0.001), LCC (T=−4.1, PFDR= 0.0038),
LCCr (T=−5.4, PFDR < 0.001), LSC (T=−4.4, PFDR= 0.0023) and
LSCr (T=−3.6, PFDR= 0.014).
There were no significant associations between NLP measures

and IQ or number of years in education (although we note the
potential for type 2 error given the small sample size and multiple
comparisons correction- see Limitations). Nonetheless, after
controlling for IQ and number of years in education as covariates
in the GAMLSS models, not all group differences remained
significant; see Tables S8 and S9 for T-statistics, P-values and
effect sizes. In particular, between FEP patients and controls, theTa
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group differences in number of words, number of sentences and
LSCr were no longer significant, although mean sentence length
and other speech graph, coherence and on-topic measures still
showed significant differences. The NLP metric whose multi-
plicative effect differed most from 1 was mean sentence length
(λ= 0.77 controlling for years in education, λ= 0.82 controlling
for IQ). Between CHR-P subjects and controls, group differences in
coherence and, when controlling for education, on-topic score
were no longer significant.
For the TAT task, there was a significant association between

digit span test score and semantic coherence (Table S10; FDR
corrected for 12 multiple comparisons as part of a post-hoc test).
When controlling for digit span test score, only group differences in
on-topic score and speech graph connectivity measures remained
significant (see Table S11 for T-statistics, P-values and effect sizes).

DCT task and free speech
Finally, we re-calculated the group differences for each of the NLP
measures using speech generated from either the DCT story
retelling task or free speech. Results are shown in Table 2. With the
DCT task, we observed a significant decrease in semantic
coherence and on-topic score in FEP patients with respect to
healthy controls, as well as in the number of words, mean
sentence length, LCC, LCCr, and LSCr, replicating the equivalent
results for the TAT task. All of these measures apart from number
of words and LCCr also showed significant reductions in FEP
patients with respect to CHR-P subjects, but there were no
significant differences between CHR-P subjects and healthy
control subjects apart from for LSCr (unlike the TAT task where
semantic coherence and on-topic score showed significant
differences between CHR-P and control subjects, but not between
CHR-P and FEP patients). With the DCT task we also observed a
significant increase in the number of ambiguous pronouns in FEP
patients with respect to control subjects, but there was no
difference in ambiguous pronoun count between CHR-P subjects
and either FEP patients or healthy controls.
With free speech, we observed a significant increase in the

number of sentences spoken by FEP patients with respect to both

CHR-P subjects and healthy controls. However, none of the other
measures showed significant differences between FEP patients
and healthy control subjects, including semantic coherence, on-
topic score and maximum similarity. We note that the maximum
similarity measure gave the highest possible score of 1 for several
of the free speech excerpts, unlike for the TAT and DCT. This was
due to the greater length of the free speech excerpts compared to
the TAT and DCT excerpts, and suggests the measure may need
adapting for use with longer excerpts. Interestingly, we did
observe a significant decrease in LCC, LCCr, and LSCr in FEP
patients with respect to CHR-P subjects, despite there being no
significant difference between these measures for FEP patients
and healthy controls.
For the DCT task, we observed significant correlations between

the digit span test score and number of sentences, on-topic score
and ambiguous pronoun count (Table S12). When controlling for
digit span test score, no NLP group differences were statistically
significant; see Table S13 for T-statistics, P-values and effect sizes.
There were no group differences in number of inaudible

pieces of speech per word for the free speech excerpts, although
there was a significant increase in number of inaudible pieces of
speech per word for the FEP patients compared to control
subjects for the DCT speech excerpts (Z= 2.0, P= 0.047). All
previously identified group differences in NLP metrics observed
from the DCT excerpts remained significant when controlling for
the number of inaudible pieces of speech per word with the
GAMLSS model, apart from the decrease in total number of
words observed in the FEP patients compared to the healthy
controls which was no longer significant (Z=−0.28, P= 0.78),
and the difference in ambiguous pronoun count between FEP
patients and healthy controls, which we were not able to test
with the GAMLSS model; see Table S14. Whilst there was no
significant difference in number of inaudible pieces of speech
per word between the TAT and DCT speech excerpts, we did
observe a significant reduction in number of inaudible pieces of
speech per word in the free speech excerpts compared to both
the TAT (Z=−3.1, P= 0.0022) and the DCT excerpts (Z=−4.0,
P < 0.001), see Table S15; Fig. S2.

Fig. 2 Box-plots showing group differences in all twelve NLP measures. Results are shown for speech generated using the TAT.
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DISCUSSION
Our primary analysis of the TAT picture speech excerpts showed
that several NLP measures did indeed discriminate between
groups. Notably, both semantic coherence [9] and speech graph
connectivity [11, 12] were significantly reduced in FEP patients
compared to control subjects. Semantic coherence and speech
graph connectivity also distinguished CHR-P subjects from control
subjects and FEP patients, respectively (although the former was
not robust to controlling for years in education), and speech graph
connectivity was the only measure to show differences between
CHR-P subjects who did or did not transition to psychosis
(although only when controlling for IQ). There were no significant
group differences in our novel measure of repetition or
ambiguous pronoun count, although the latter may be worth re-
visiting with more accurate co-reference resolution models as they
become available. Interestingly, on-topic score exhibited signifi-
cant group differences between control subjects and both CHR-P
subjects and FEP patients, in contrast to the related measure of
tangentiality [8, 9].
Given the small sample size, group differences in semantic

coherence, sentence length and on-topic score between FEP
patients and controls were remarkably robust to controlling for
the potentially confounding effects of IQ and years in education.
However, after controlling for IQ or years in education, the group
difference in LSCr between FEP patients and controls was reduced,
in-line with prior work showing that LSC varies with both IQ in
normal development [42] and with educational level [43].
Second, we investigated the relationships between different

NLP measures. There were some significant relationships, for
example, we observed a negative association between LSC speech
graph connectivity and the maximum similarity measure, which
makes sense given that repetitive speech with fewer unique
words will lead to fewer nodes being included in a speech graph
and hence reduced connectivity. The ‘on-topic’ measure was
positively related to semantic coherence and the LSC speech
graph connectivity. Nonetheless, most inter-measure relationships
were weak, for example there was no significant association
between speech graph connectivity and semantic coherence.
These results suggest that different NLP measures may provide

complementary information. It is predictable that different speech
measures may capture distinct aspects of psychosis, e.g. different
symptoms. Combining different measures in machine learning
algorithms might also give additional power to predict future
disease trajectories for CHR-P subjects, compared to using a single

measure. Future studies should examine multiple NLP measures
concurrently in larger samples, to test these hypotheses. The
limited associations between the NLP measures and the TLI is also
interesting and merits further consideration. The low computa-
tional cost of calculating the automated NLP measures described
in this paper (at most seconds per participant) makes extracting
multiple measures computationally straightforward.
Finally, we explored the impact of using different approaches to

generate speech. Speech generated using the DCT story task
replicated many of the NLP group differences observed with the
TAT pictures. Free speech exhibited fewer, weaker NLP group
differences compared to speech generated using the TAT pictures
or the DCT story task, suggesting that this approach may be less
sensitive for assessing thought disorder. A task-dependency is in-
line with previous work, which found speech in which participants
described their dreams was more predictive of psychosis than
speech in which participants described their waking activities [11].
We note that the three tasks had different cognitive demands (for
example regarding working memory and executive function),
which could be related to the differences in NLP metrics observed.
We were unable to generate all NLP measures from free speech
excerpts, for example due to a lack of a priori stimulus description
from which to calculate on-topic scores. These observations
suggest that the task(s) used to generate speech in future studies
should be considered carefully.

Limitations
Ultimately, further external work is required before speech
measures are ready to be “rolled out” to clinical applications.
A key limitation of this study was the sample size, which was in-

line with prior work, but still small considering the known
heterogeneity of CHR-P subjects [44]. The number of CHR-P
subjects who transitioned to psychosis (N= 8) was therefore
correspondingly small. The modest sample size means that there
is a potential risk of type 2 errors. Further work is also needed to
test the generalisability of our findings, and replicate them in
larger cohorts of CHR-P subjects. To facilitate such work, we have
made our code openly available on GitHub: https://github.com/
SarahMorgan/NLP_psychosis.
The modest sample size meant we focussed on group-level,

statistical analyses. However, to be clinically useful, future work
will need to use NLP measures to predict individual disease
outcomes, for example by applying more “data hungry” machine
learning approaches. We believe our results provide an important

Fig. 3 Relationships between NLP measures. A Heat mapping showing the relationships (T-statistics) between different NLP measures,
calculated using linear regression, controlling for group membership. Colormap from ref. [49]. B Network showing the NLP measures which
are significantly associated with each other, with P < 0.01. Corresponding T-statistics are shown on the network edges between measures.
*The colorbar was truncated at T= 10 for visualisation purposes; T= 29.79 for the relationship between LCC and LCCr.
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step towards large studies at the individual level, by highlighting
which methods may be best suited to eliciting incoherent speech
and the potential power of combining multiple NLP measures.
The present study focused on FEP patients, and did not include

patients with chronic psychosis. Consequently, we were not able
to examine how acute FTD may differ from chronic FTD [45, 46].
This would be important to address in future work using
automated NLP markers of transcribed speech. We focussed on
12 NLP measures but there are many more that may show
significant group differences, e.g. pronoun incidence [47].
Finally, group comparison studies are vulnerable to differences in

confounding factors between groups and here there were group
differences in antipsychotic medication, IQ, number of years of
education, working memory as assessed by the digit span test and
number of prompts given (Tables 1 and S11). Excluding subjects
who had been prescribed antipsychotic medication did not
qualitatively change our main results (Section S5). Not all NLP
group differences remained significant when controlling for IQ, years
in education or digit span test score (Tables S3, S4, S12–15, effect
sizes also provided). Most notably, when controlling for digit span
for the DCT task, no NLP group differences were significant. In
contrast, for the TAT task, group differences in on-topic score and
speech graph connectivity remained significant after controlling for
digit span, suggesting that the specific cognitive demands of the
task are important. These task differences could suggest potential
mechanisms. Future work should assess these relationships and task
differences in more depth and investigate whether automated
language markers provide additional predictive power beyond
measures of cognition. It seems likely that group differences in the
number of prompts reflected differences in the subjects’ speech
rather than differences in how often they were prompted by the
investigator, given that subjects were only prompted if they stopped
speaking. Nonetheless, we cannot completely rule out the possibility
that these or other, unobserved confounding factors might
contribute to differences in NLP measures between groups. There
were also significantly more inaudible pieces of speech per word in
the free speech excerpts compared to the TAT and DCT excerpts,
and the order in which tasks were presented to subjects was not
randomized, which may be related to the weaker group differences
in NLP metrics observed in the free speech excerpts.

CONCLUSIONS
Overall, automated approaches to assessing disorganised speech
show substantial promise for diagnostic applications. Quantifying
incoherent speech may also give fresh insights into how this core
symptom of psychotic disorders manifests.
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