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� Sample storage and nucleic acid
isolation influence microbiota
compositions.

� Error-corrected amplicon sequence
variants (ASVs) improve 16S rRNA
analysis.

� Contamination and host cells
confound and complicate microbiota
analysis.

� Quantitative and active microbiota
analyses can complement existing
methods.

� Open data and protocol sharing
increases transparency and
reproducibility.
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Microbiome research has transformed the scientific landscape, as reflected by the exponential increase in
microbiome-related publications from many different disciplines. Host-associated microbial communi-
ties play a role for almost all aspects of human, animal and plant biology and health. Consequently, there
are tremendous expectations for the development of new clinical, agricultural and biotechnological
applications of microbiome research. However, the field continues to be largely shaped by descriptive
studies, the mechanistic understanding of microbiome functions for their hosts remains fragmentary,
and direct applications of microbiome research are lacking. The aim of this review is therefore to provide
a general introduction to the technical opportunities and challenges of microbiome research, as well as to
make experimental and bioinformatic recommendations, i.e. (i) to avoid, reduce and assess the confound-
ing effects of sample storage, nucleic acid isolation and microbial contamination; (ii) to minimize
non-microbial contributions in host-associated microbiome samples; (iii) to sharpen the focus on
physiologically relevant microbiome features by distinguishing signals from metabolically active and
inactive or dead microbes and by adopting quantitative methods; and (iv) to enforce open data and
protocol policies in order increase the transparency, reproducibility and credibility of the field.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Most microbiome projects today apply large-scale parallel
sequencing to taxonomically and functionally characterize
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previously described and not-yet-cultivated, uncharacterized
microorganisms. The widespread application of high-throughput
genomic approaches has been afforded by next-generation
sequencing platforms that are easy to install and maintain. In addi-
tion, widely established experimental and bioinformatic protocols
exist for sample processing, nucleic acid isolation, sequence target
amplification, library preparation, sequence data processing and sta-
tistical analysis. Other high-throughput methods for system-wide
microbiome analyses, such as metaproteomics or metabolomics/
metabonomics [1], are less well established and widely used but
are often successfully combined with genomics for systems-level
approaches to simultaneously study different aspects of the
microbiome. Cultivation-based isolation and characterization of
individual microorganisms from microbiome samples can further
complement nucleic acid sequencing-based and other ’omic
approaches [2]. In the following, the microbiota will be referred
to as the ’assemblage of microorganisms present in a defined envi-
Fig. 1. Overview of recommendations for improved sequence-based microbiome a
microbiome analysis projects (black boxes) and the bioinformatic resources that are
recommendations to expand and improve existing protocols (in red). Abbreviations: qP
sequence variants.
ronment’ and the microbiome as the ’entire habitat, including the
microorganisms . . . , their genomes . . . , and the surrounding envi-
ronmental conditions’ [1]. As sequencing-based microbiome anal-
ysis continues to be the most popular technique across the field,
this review focuses on the discussion of experimental and bioinfor-
matic aspects of this approach to highlight current problems and
pitfalls as well as future chances and possibilities (Fig. 1).

Genomics and bioinformatics techniques of microbiome
analysis

Sequencing-based characterizations of entire microbial com-
munities, as well as their individual components and functions in
unprecedented detail, is largely afforded by two main techniques:
amplicon sequencing and metagenomics. The first method gener-
ates taxonomic compositional microbiota profiles at relatively
moderate costs that allow even small research groups to run
nalysis. Important technical components of typical laboratory and bioinformatic
generated in these projects (green columns) are shown, together with specific

CR, quantitative real-time PCR; OTUs, operational taxonomic units; ASVs, amplicon
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large-scale bacterial microbiota analysis projects. The latter
method generally affords a more comprehensive, but also more
costly, taxonomic and functional analysis of the entire viral, bacte-
rial and eukaryotic microbiota [3]. Both approaches have been
scaled up to include thousands of samples in a single study. Best
practice recommendations for microbiome analysis, including lab-
oratory and bioinformatic procedures are available, for example,
from the U.S. Microbiome Quality Control [4] project.

Taxonomic microbiome profiling by amplicon sequencing

Amplicon sequencing methods rely on the selective binding of
universal primer pairs to highly conserved regions within the gen-
omes of specific microbiome members of interest and the sequenc-
ing of the resulting PCR products, which encompass taxon-specific
hypervariable regions [5]. The most commonly used target ampli-
con for microbiome analysis is the bacterial 16S rRNA gene, but
universal primer pairs have also been described for archaeal and
eukaryotic small subunit ribosomal RNA genes, internal tran-
scribed spacers (ITS) of the fungal and other ribosomal RNA oper-
ons and other conserved genomic loci [6]. Within the bacterial 16S
rRNA gene numerous primer combinations have been proposed to
amplify different hypervariable regions and to generate PCR prod-
ucts of variable lengths suitable for different sequencing platforms
(e.g., Pacific Biosciences vs. Illumina) [5]. However, even ‘‘univer-
sal” primers can preferentially bind specific bacterial taxa, leading
to compositional study biases that vary between microbiome types
(e.g. gut vs. vaginal microbiome) and should be considered in the
project planning phase [7,8].

Sequence variations in 16S and 18S rRNA genes, ITS regions and
other metagenomic loci contain phylogenetic information that can
be used to infer the taxonomic relationships of their microbial
hosts. However, natural genetic variations are not easily distin-
guishable from sequencing errors, which even on the relatively
accurate Illumina sequencing platform affects �0.1% of all
sequenced nucleotides [9]. Given the scale of current microbiome
studies, bioinformatic protocols therefore have to account for mil-
lions of wrong base calls per project.

For amplicon sequencing-based microbiota analysis, sequences
are traditionally clustered into operational taxonomic units (OTUs)
based on arbitrarily defined thresholds of sequence similarity.
For example, 16S rRNA gene fragments of >97% sequence identity
are clustered into separate OTUs that reflect the phylogenetic
boundaries of distinct bacterial species. Sequence clustering can
be guided by bacterial reference genomes, yet common methods
often also include de novo clustering to identify previously
unknown species [10]. OTU picking assigns similar, but slightly dif-
ferent sequences to the same taxon, assuming a shared biological
origin. Clustering therefore diminishes the impact of technical
variation on the analysis results, but at the expense of reduced sen-
sitivity in detecting biological variation. Fungal microbiota analysis
by ITS amplicon sequencing follows similar principles as bacterial
16S rRNA analysis but sequence clustering and classification are
complicated by inconsistent amplicon lengths and varying
sequence similarities between fungal species [11]. The UNITE pro-
ject represents an effort to generate a resource to represent the
growing, known diversity of ITS sequence data [12], similar to
the well-established SILVA database for pro- and eukaryotic small
and large subunit rRNA genes [13].

To differentiate between biological and technical sequence vari-
ations, reference-free statistical denoising methods such as Deblur
or Dada2 [14,15] have recently been implemented in QIIME2, a
popular open-source software package for 16S rRNA analysis
[16]. These tools generate error profiles of amplicon sequence
datasets, which are then used to resolve sequencing errors and
achieve single-nucleotide resolution for each amplicon sequence.
Compared to OTU-based approaches, analysis of the resulting
amplicon sequence variants (ASVs) provides improved sensitivity
and specificity and reduces the problem of inflated microbiota
datasets due to falsely identified distinct OTUs originating from
mis-clustered sequences [17]. In addition, OTU clustering results
are bound by the specific sequence data from which they were
inferred and are therefore non-reproducible with modified or
expanded datasets. The latest denoising algorithms overcome this
limitation by recovering independent biological sequences as ASVs,
fostering the reproducibility and comparability of amplicon-based
microbiome analysis [18].
Taxonomic and functional profiling of the entire microbiome by
metagenomics

Metagenomics uses the whole-genome shotgun approach to
fragment and sequence the entire DNA of a microbiome sample
instead of 16S rRNA gene fragments or other target amplicons
alone. Correspondingly, the generated reads can originate from
phages, viruses, bacteria, archaea, fungi and other eukaryotes and
include plasmids and other extra-chromosomal elements as well
as host, chloroplast and mitochondrial DNA. Compared to 16S
rRNA analysis, this method needs significantly more data to obtain
the sequencing depth that is required to identify and characterize
rare microbiota members, often reaching several terabases per
study and increasing costs and bioinformatic demands. However,
as metagenomics potentially allows for functional microbiota char-
acterization and, in theory, affords taxonomic resolution down to
the level of individual microbial strains, it has become increasingly
popular in microbiome research [19].

Quality control measures for metagenomic shotgun sequencing
with new tools, such as KneadData, combine quality-based
metagenomic read trimming and filtering with the bioinformatic
detection and removal of human, plant and other eukaryotic host
DNA (http://huttenhower.sph.harvard.edu/kneaddata). Metage-
nomic sequence data are typically analysed either by de novo
assembly or by comparing reads individually to reference data-
bases in a mapping-based process [20]. The de novo assembly of
microbial genomes can help identify and comprehensively charac-
terize previously unknown members of the microbiota [21]. How-
ever, because assembly requires substantial sequencing depth,
assembly-based methods are typically restricted to the genomic
reconstruction of highly abundant microbiome members. Marker
gene-based sequence mapping with tools such as MetaPhlAn2
can be used for taxonomic profiling of entire microbial communi-
ties, including rare microbiome members [22].
Microbiome sample handling and processing

Maintaining microbiome integrity during sample collection and
storage

Among many other factors, the accuracy of sequencing-based
microbiota analysis depends on how well the original structure
of the microbial community can be preserved between the time
of sample collection and processing. Distinct members of the
human, plant and environmental microbiota respond differently
to extended periods of sample storage by dying or by suspending,
retaining or increasing metabolic activity. Problematic artefacts for
taxonomic or functional microbiota analysis can also arise from
unintended disruption of the sample environment due to
freeze–thaw cycles; exposure to oxygen, UV light, or osmotic
stress; storage buffer components, etc. As a consequence, storage

http://huttenhower.sph.harvard.edu/kneaddata
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conditions can affect microbiome analysis and lead to biased
results [23].

Snap freezing of microbiome samples in liquid nitrogen and
their long-term storage at �80 �C are generally considered as the
gold standard for sample preservation [24]. However, commercial
nucleic acid-preserving reagents and sampling kits that are used
to maintain sample integrity in studies involving the collection of
environmental samples or self-collected human specimens outside
of the laboratory environment have generally been reviewed
favourably [23]. Studies have suggested that temperature shifts
alone have minor effects on taxonomic compositions and inter-
individual differences in human gut microbiota analyses [24]. Chu
et al. (2017) found the living bacterial microbiota of faecal samples
to be most strongly affected by oxygen exposure, rather than by
other factors, even repeated freeze–thaw cycles [25]. The same
accounts for fungal microbiome samples, which are commonly
stored with nucleic acid-preserving agents [26]. As mycorrhizal soil
fungi colonize plant root tissues, the disruption of root connections
after sampling can reduce mycorrhizal mycelial abundance and
subsequently, induce the growth of mycelium-dependent other
fungal opportunists, highlighting a specific protential problem for
plant-associated fungal microbiota analysis [27].

Avoiding selective enrichment and depletion of microbes during
nucleic acid isolation

Obtaining personalized gut microbiome analysis results from
consumer microbiome testing services, journalist Tina Saey was
surprised to receive substantially different results, particularly
with respect to the relative abundance of the two dominant bacte-
rial gut phyla Firmicutes and Bacteroidetes [28]. While numerous
confounding factors might account for these observed variations,
differences between nucleic acid isolation protocols have been
known to introduce biases in taxonomic microbiota analysis. Even
widely used commercial kits for DNA and RNA isolation differ in
their efficiency in lysing specific microbes, including
Gram-positive and Gram-negative bacteria, such as Firmicutes
and Bacteroidetes, respectively [29,30]. Host-associated and envi-
ronmental microbiome samples typically contain heterogeneous
mixtures of viral, archaeal and eukaryotic microorganisms, includ-
ing live and dead, active and inactive, vegetative and sporulated
cells; cellular debris; free nucleic acids and other macromolecules.
Microbial lysis protocols differ in their capacity to break open these
different types of microbial components for nucleic acid isolation.
Humic acids, melanin, polysaccharides, polyphenols and other
sample components can interfere with DNA and RNA isolation
and downstream applications, such as nucleic acid amplification
or concentration determination [31].

Most microbiome analysis protocols include combinations of
physical and enzymatic disruptions of microbial cells for nucleic
acid isolation [4], which can be amended based on project-
specific requirements, e.g., by adding specific polysaccharide-
degrading enzymes such as lyticase for fungal microbiome analysis
projects [32]. However, protocol variations lead to study-specific
biases, which is one reason for the scarcity of meta-analyses of
microbiome data [33–35]; these meta-analyses have had trouble
with, for example, the identification of universal, disease-specific
biomarkers across separate humanmicrobiome studies. Depending
on the microbiome sample type and specific microbial taxa of
interest, testing and evaluating different nucleic acid extraction
protocols on mock communities of diverse, defined microbial com-
position should be part of the early project planning phase. But
project-specific technical biases are difficult to completely avoid,
and consistency of the applied methods within specific micro-
biome studies might be most useful and practical.
Reducing, assessing and characterizing microbiome contamination

The interpretation of microbiome data can be complicated by
contamination from sources other than the original sample [36].
The high sensitivity of sequencing-based microbiome analysis, par-
ticularly 16S rRNA gene amplicon sequencing, in detecting previ-
ously unknown, rare, and often non-cultivable microbiome
members can also be problematic when contamination leads to
false positive results. Laboratory consumables, reagents and even
DNA extraction kits contain trace amounts of microbial DNA, and
to some extent, sample collection, handling and processing always
lead to low-level contamination [37,38]. Salter et al. (2014) ran
microbiome analyses on serial dilutions of the same clonal culture
of Salmonella bongori and identified a diverse microbiome that
included both environmental and host-associated bacteria from
the human skin and gut [37]. Importantly, the relative abundance
of bacterial signals from contamination was positively correlated
with the dilution factor of the original culture, demonstrating that
the microbiome signal from contamination becomes more signifi-
cant with decreasing amounts of sample starting material. Thus,
contamination is less relevant for the analysis of faecal or soil sam-
ples of high microbial density than for host-associated human or
plant microbiome studies of low microbial biomass, such as skin
and vaginal swabs, tissue biopsies, urine, and the phyllosphere
[39,40].

A prominent example of a controversially discussed micro-
biome finding concerns the placenta [41]. While several prominent
publications reported on the presence of a unique placental micro-
biome in clinically asymptomatic women [42,43], these reports
have been challenged as contradicting the paradigm of a tightly
immune-controlled sterile womb and the practice of surgically
removing sterile mouse pups from pregnant mice to generate
germ-free mice [41]. Lauder et al. (2016) compared human pla-
centa samples with vaginal swabs and experimental controls,
including sterile and ’air swabs’, and found the bacterial density
and taxonomic composition of the healthy placental samples to
be indistinguishable from those of microbiome-negative controls
[44].

A three-tiered approach has been proposed to address the con-
tamination problem [36]: First, good laboratory practice measures
can reduce the chance of contamination when handling and
preparing microbiome samples. This includes using purified,
DNA-free reagents and kits, whenever possible, as well as spatially
separating sample processing and DNA isolation, PCR setup and
subsequent steps in the lab. Besides bacterial cells and genomic
DNA from environmental sources, amplified PCR products can pose
an important laboratory source of contamination for 16S rRNA
analysis [37]. Second, the extent of contamination should be
assessed by including technical replicates and internal controls in
every step of the sample preparation protocol. Negative,
microbiome-free, extraction controls and positive controls of
microbial mock communities in defined concentrations can be
used to determine the upper and lower limits of detection. Third,
contamination controls should be sequenced and analysed
together with the biological samples to characterize the influence
of contamination on analysis results. For example, similarities
between microbiome profiles of biological samples and negative
controls can be quantified to compare the effect sizes of biological
findings against contamination signals. However, the general
exclusion of putative contamination signals from the analysis, by
removing taxa from negative controls, can also distort microbiome
analysis results and should be avoided. As contamination often
originates from the laboratory environment, it can be directly
influenced by related projects and include microbial signals that
are similar to those from the original samples [37].
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Reducing the impact of host DNA

Non-microbial DNA from human, animal or plant hosts is
another major concern for sequencing-based microbiome analysis.
Inadequate removal of host DNA can significantly increase the cost
of host-associated microbiome projects or even make them practi-
cally impossible if the sequencing effort to obtain sufficient cover-
age of the microbial metagenome becomes prohibitively large.
Healthy human faeces typically contain <10% human DNA, but
up to 90% of sequence reads from low-microbial biomass samples
such as saliva, nasopharyngeal, skin and vaginal swabs can be
assigned to the human host [40]. While bacterial concentrations
in urine increase during bladder infection, the concomitant
increase in host DNA from epithelial cell damage can complicate
microbiome analyses [Fricke, unpublished data]. As chloroplast
and mitochondrial genomes from eukaryotic cells also carry 16S
rRNA genes, host DNA can be problematic for 16S rRNA analysis,
especially for food or plant microbiome projects [45]. Finally, host
sequence removal may be mandatory before newly generated
sequence data can be released in public databases to secure the
privacy and confidentiality of human study participants, as
required by most journals and funding agencies prior to publica-
tion, or to protect proprietary information from genetically modi-
fied or patented crops.

The relative level of host DNA can be reduced experimentally,
either by removing host cells before DNA extraction or by selec-
tively enriching microbial DNA after DNA extraction, or host DNA
can be deleted bioinformatically by identifying and removing host
reads from resulting sequence data, as described above. To remove
host cells before DNA extraction, differential lysis can be used to
selectively release and degrade host DNA before microbial (bacte-
rial and fungal) DNA is isolated since mammalian cells are less
robust than most microbial cells [46]. Density gradient centrifuga-
tion has also been used to separate host tissue from bacterial cells
in plant samples [47]. However, microbiome samples, such as
human faeces, also contain free microbial DNA from dead bacteria
or cells that were disrupted during sample collection or storage,
and certain microbes may be more susceptible to eukaryotic lysis
regimens than others. Therefore, differential lysis protocols can
reduce total yields of isolate nucleic acids [48] and bias subsequent
compositional microbiota analyses towards specific taxa such as
hard-to-lyse gram-positive bacteria [49]. Commercial solutions
have become available to detect and remove vertebrate DNA by
binding methylated CpG sequence motifs, which are abundant in
eukaryotic but rare in microbial genomic DNA [50]. The latter
method has been used to enrich bacterial and protist DNA for sub-
sequent analysis of human and fish samples [50]. As an alternative
approach to reduce the number of host-derived, non-bacterial PCR
products, Lundberg et al. (2013) developed synthetic oligomers
that bind as peptide nucleic acid (PNA) PCR clamps specifically to
plant chloroplast and mitochondrial 16S rRNA gene sequences
and block them from amplification [45]. In a similar approach,
Agler et al. (2016) used specific nested primers, or ‘‘blocking
oligos”, inside the 16S rRNA gene of unwanted plant organelle
DNA, to avoid amplification of the full-length PCR product for sub-
sequent analyses [51].
New perspectives: Quantitative analysis and identification of
active microbes

Adopting methods for quantitative microbiome profiling

Without accounting for potential differences in absolute micro-
bial abundance between samples, the vast majority of microbiome
projects today aim to characterize microbial communities based on
compositional data [52]. These studies typically determine
fractions of an unknown total number of microbial species, 16S
rRNA gene copies, and other taxon-specific genes or functional
gene categories. Unfortunately, compositional data tend to be
misinterpreted as suggesting absolute shifts, reductions or
increases in specific microbial taxa, gene functions or other micro-
biome parameters. Changes in absolute abundance of microbiome
features can be biologically and clinically relevant, e.g. in small
intestinal bacterial overgrowth (SIBO) [53], but tend to be ignored
in standard microbiota projects. Vandeputte et al. (2017) found the
bacterial load of human faeces to vary between healthy people and
in individuals over time and bacterial density correlated with
faecal enterotype [54]. Moreover, the authors demonstrated that
quantitative microbiota profiling can change clinical perspectives.
In this case, compared to previous reports based on relative faecal
microbiota profiling, different bacterial taxa could be identified as
specific biomarkers for inflammatory bowel diseases [54].

Different experimental approaches have been proposed to
gather quantitative microbiome information, including cell count-
ing by flow cytometry [54], quantitative or real-time PCR of the
universal bacterial 16S rRNA gene [55] and normalization of bacte-
rial relative abundances based on defined cell numbers that are
spiked into the samples before nucleic acid isolation [56]. While
the first approach is technically more demanding, commercial kits
have become available to easily integrate quantitative analyses
into microbiome project workflows. Importantly, sequencing
depth, i.e., the number of reads assigned to each sample after
16S rRNA gene amplicon sequencing, should not be used to infer
quantitative information, as inconsistent read counts between
samples are typically technical artefacts that do not reflect quanti-
tative differences [54]. However, the sequencing depth per sample
does affect the alpha- and beta-diversity parameters of the micro-
biota and should be controlled, e.g., by bioinformatically rarefying
read counts to equal numbers prior to statistical analysis [57].

Differentiating between total and active microbes

Sequencing-based microbiome studies typically rely on DNA as
sole evidence for the existence of a microbiota in a sample. How-
ever, DNA from dying cells or spores or cell-free DNA in a sample
may be evidence for microbial contact, but it does not necessarily
indicate microbial life and an active microbiota in the sample. For
example, the existence of a blood microbiome remains controver-
sial, despite PCR-based evidence for bacterial 16S rRNA genes in
blood DNA extracts from non-septic individuals, as attempts to
culture bacteria from the same samples have mostly been unsuc-
cessful [58]. While bacterial adaptation to the harsh conditions of
the stomach has been demonstrated, metabolically active microbes
in the stomach are difficult to distinguish from ingested, inactive
microbes from other, adjacent body sites or food using DNA-
based microbiota surveys alone [59]. To address this problem, a
number of experimental and bioinformatic approaches have
recently been proposed to identify metabolically active microbes
reflective of a thriving microbiota.

Propidium monoazide (PMA) intercalates into double-stranded
DNA, preventing it from being amplified by PCR and has been used
by Chu et al. (2017) to remove free DNA from dead microbes prior
to 16S rRNA gene amplicon sequencing [25]. Several groups have
shown that 16S rRNA-based taxonomic microbiota compositions
differ between RNA and DNA fractions isolated from the same sam-
ple [59]. This has been used to differentiate between transcription-
ally active bacteria, which are identified on the basis of RNA
evidence, and all other bacteria, which are identified on the basis
of DNA evidence. Moreover, if DNA- and RNA-based analyses are
combined with quantitative microbiota profiling, the ratio of
16S rRNA transcript-to-gene copies can be used to quantify



110 A.M. Fricker et al. / Journal of Advanced Research 19 (2019) 105–112
transcriptional activity and stratify bacterial taxa [59]. However,
recent studies on soil bacteria also found 16S rRNA transcripts to
remain stable for extended periods of time [60] and 16S rRNA gene
and transcript compositions to be indistinguishable [61], suggest-
ing that RNA-based methods to measure metabolic activity do
not work equally well for all microbiome types. Importantly,
experimental protocols need to support the simultaneous isolation
of DNA and RNA from the same sample and extracted RNA should
be carefully controlled for contamination with trace amounts of
DNA, in order to avoid selectively enriching specific microbial taxa
with separate lysis protocols or erroneously interpreting DNA-
based signals as indicators of transcriptional activity, respectively
[59].

An interesting approach to bioinformatically infer microbial
growth rates from metagenome sequence data has been proposed
by Korem et al. (2015) [62]. The authors demonstrated a positive
correlation between bacterial growth and replication activity
in vitro that is reflected by relatively increased concentrations of
DNA from genomic regions around the origin compared to that
from the terminus of replication. By mapping metagenomic
sequence reads to bacterial reference genomes, a ’peak-to-trough’
coverage ratio was calculated by comparing the origin and termi-
nus DNA concentrations for each individual genome. This ratio
was then used to stratify gut bacteria according to replicational
activity and to statistically associate specific active bacteria with
diseases such as inflammatory bowel disease and type II diabetes
[62].
Release of published microbiome data and protocols

Microbiome research benefits from the availability of research
data and protocols, and efforts should be made to establish and
maintain open data and protocol policies across the entire field
of microbiome research [63]. Progress in human microbiome
research is increasingly driven by large, multi-centre studies based
on the processing, sequencing and analysis of thousands of sam-
ples, often using custom laboratory and bioinformatic protocols
to generate a statistical basis to detect subtle microbiome pheno-
types. As a consequence, newly generated raw data and metadata,
tools and protocols represent a substantial scientific resource to
the broader research community that allows others to reproduce
and expand published findings, recombine datasets for meta-
analyses and develop new analytical approaches. For this reason,
raw sequence and other omics data, associated sample metadata,
and experimental and bioinformatic protocols for sample process-
ing and analysis from published studies need to be made fully,
freely and easily accessible. Accurate, detailed and complete bioin-
formatics analysis protocols should all scripts and precise com-
mands that are needed to allow for full reproduction of raw data
processing, data analysis and the generation of published figures.
Although most funding agencies and journals in theory have set
formal policies for data availability, access can be complicated in
practice due to incomplete or inconsistent datasets, missing meta-
data information, and simple technical difficulties. Authors can be
reluctant to comply with formal requirements that journals and
funding agencies are struggling to enforce. Universal mandatory
data and protocol release before manuscript submission would
facilitate and improve peer review and allow journals to check
for data availability as part of the submission process.
Conclusions and future perspectives

Microbiome research continues to excite both the scientific
community and the public at large. However, the field has also
been blamed for overselling findings and not producing reliable,
applicable results [64]. While the mechanistic understanding of
microbiota functions may yet remain too fragmentary to allow
for the immediate development of diagnostic and therapeutic
applications, there is little doubt about the general importance of
human, animal and plant microbiomes for their hosts. To foster
successful microbiome research in the future, it will be important
for researchers, authors, reviewers, journals and funding agencies
to (i) push the field towards the more widespread application of
carefully controlled protocols for sample storage, nucleic acid iso-
lation, contamination, amplification, sequencing and bioinformatic
analysis; (ii) develop, optimize and standardize appropriate,
improved analysis protocols; (iii) adopt and combine new experi-
mental techniques, such as DNA- and RNA-based, relative and
quantitative microbiota profiling; and (iv) increase the trans-
parency and outreach of microbiome research by releasing data,
metadata and protocols from published studies (Fig. 1).
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