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The vestibular system is a critical part of the human balance system, malfunction of this
system will lead to balance disorders, such as vertigo. Mammalian vestibular hair cells,
the mechanical receptors for vestibular function, are sensitive to ototoxic drugs and
virus infection, and have a limited restorative capacity after damage. Considering that
no artificial device can be used to replace vestibular hair cells, promoting vestibular hair
cell regeneration is an ideal way for vestibular function recovery. In this manuscript, the
development of human vestibular hair cells during the whole embryonic stage and the
latest research on human vestibular hair cell regeneration is summarized. The limitations
of current studies are emphasized and future directions are discussed.
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INTRODUCTION

Vestibular sensory epithelia are composed of hair cells (HCs) and supporting cells (SCs). HCs of the
vestibular sensory epithelia, which are surrounded by supporting cells, convert mechanical signals,
such as head movement or tilt, into electrical signals (Gao et al., 2019; Liu et al., 2019; Qi et al., 2019,
2020; Tan et al., 2019). These signals are then transmitted by afferent fibers to the vestibular nuclei
that send out fibers projected to the corresponding neural structures to control eye movement,
posture, and balance (Cullen, 2012; Guo et al., 2019, 2020, 2021b,c; Hu et al., 2021; Wei et al., 2021).

Hair cells are easily injured by ototoxic drugs (Li et al., 2018; Zhang et al., 2019; Zhong et al.,
2020; Fu et al., 2021b), aging (Cheng et al., 2019; Guo et al., 2021a; He et al., 2021), genetic factors
(Qian et al., 2020; Cheng et al., 2021; Fu et al., 2021a; Lv et al., 2021; Zhang S. et al., 2021) and
infections (Han et al., 2020; He et al., 2020; Zhang Y. et al., 2021). The loss of human vestibular
HCs is closely related to balance dysfunction (Tsuji et al., 2000; Ishiyama et al., 2015). It has been
stated that the annual incidence of vertigo is about 11% (Corrales and Bhattacharyya, 2016), and
the lifetime prevalence of moderate to severe vertigo and dizziness is about 30% (Strupp et al.,
2020). However, our current understanding of the development and generation of vestibular HCs is
mainly derived from rodent models. Here, we review the current information on the development
of human vestibular epithelia, as well as the latest progress made in restoring human vestibular
HCs upon damage.

Abbreviations: AAV, adeno-associated virus; AD, adenovirus; Anxa4, annexin A4; Atoh1, atonal homolog 1; BDNF,
brain-derived neurotrophic factor; bHLH, basic helix-loop-helix; caspase-3, cysteine aspartate-specific protease-3; CMV,
cytomegalovirus; E, embryonic day; EGF, epidermal growth factor; FGF, fibroblast growth factor; GATA3: GATA binding
protein 3; GW, gestational week; HATH1, human homolog of Atoh1; HC, hair cell; hESCs, human embryonic stem cells;
IDPN: 3,3′-iminodiproprionitrile; IGF-1, insulin-like growth factor-1; IGF-2, insulin-like growth factor-1; LGR5: leucine-
rich repeat-containing G protein-coupled receptor 5; MAPK, mitogen-activated protein kinase; Mapt, microtubule associated
protein; mTOR, mammalian target of rapamycin; Ocm, oncomodulin; PI-3K, activation of phosphatidylinositol-3 kinase;
PKC, protein kinase C; RA, retinoic acid; rhGGF2, recombinant human glial growth factor 2; SC, supporting cell; SOX2: SRY
(sex-determining region Y)-box 2; Spp1, secreted phosphoprotein 1; TGF-α, transforming growth factor alpha.
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STRUCTURE OF HUMAN VESTIBULAR
SENSORY EPITHELIA

The human vestibular sensory epithelia, like that of other
mammals, are composed of three crista ampullaris perpendicular
to each other for sensing rotational motion of the head,
and the utricular and saccular maculae, which detect linear
acceleration (Angelaki and Cullen, 2008). In the mature state,
the average surface areas of human cristae, utricular maculae and
saccular maculae are around 0.9, 3.6, and 2.2 mm2, respectively
(Watanuki and Schuknecht, 1976).

Hair cells are vestibular receptors located on sensory epithelia
and surrounded by supporting cells. According to the different
afferent synaptic terminals, human vestibular HCs can be further
classified into two types: Type I HCs innervated by flask-shaped
calyces and Type II HCs innervated by boutons (Wersall, 1956).
There are several other morphological and functional differences
between the two types which have been widely discussed in
rodents (Rüsch et al., 1998), and the characteristics of these two
types of HCs are similar in the human vestibule (Oghalai et al.,
1998; Lim et al., 2014).

The human vestibular sensory epithelia can be divided
into central and peripheral regions according to different
characteristics. In the cristae, the central regions account for 46%
of the total surface area. Type I HCs account for 70% of the
central region HCs, while type II HCs account for 50% of the
peripheral region HCs in the human cristae (Rosenhall, 1972a).
In the utricular maculae, the central striola region accounts for
about 8.6% of the surface area. The proportion of type I HCs in
the striola region is higher and type II HCs show a high density
in the peripheral region. The HC distribution in saccule maculae
is similar to that of the utricle maculae (Rosenhall, 1972b).

Interestingly, the polarity of the hair bundle, which is
determined by the position of kinocilia of HCs, varies between
the human utricular and saccular maculae. The orientation of
the utricular kinocilia is directed from the periphery toward the
striola, while the kinocilia orientation is opposite in the saccule.
Moreover, the striolar region of the utricular maculae is crescent,
while the saccular maculae are “S” shaped (Rosenhall, 1972b).

Both the vestibular hair cell distribution and cilia polarity of
humans are similar to those of mice. However, the number and
differentiation time of vestibular HCs are significantly different
between the two species, as will be discussed below.

DEVELOPMENT OF HUMAN
VESTIBULAR EPITHELIA

Morphological Development of Human
Vestibular Organs
Anatomical studies have shown many details of human vestibular
development (Figure 1). The formation of the otic placode is
regarded as the first sign of inner ear development, which is
the result of the ectoderm’s inner layer thickening at gestational
week (GW) 3 (O’Rahilly, 1963). The otic placode then invaginates
to form the otic cup that in turn pinches off the surrounding

ectoderm and converts into the otic vesicle, composed of a dorsal
(vestibular) and a ventral (cochlear) pouch, at the rhombomere
5 level by GW 4 (Streeter, 1906). From GW 4–5, the dorsal
pouch expands into a triangular-shaped region forming the base
of the three semicircular canals. The development of human
anterior and posterior semicircular canals starts at embryonic
days 41–43 with the depression of vestibular pouch wall, while
the development of lateral semicircular canals begins a little later
at embryonic days 44–46 (Yasuda et al., 2007). All semicircular
canals are discernible at embryonic day (E) 47–E48 (Toyoda et al.,
2015). Meanwhile, the atrium, which is the primordium of the
utricle and saccule, can be observed in the ventral part of the
vestibular pouch. Subsequently, a horizontal cleft that separates
the atrium into an upper and lower compartment appears and
the utricle and saccule are clearly detectable at E49–E51 (Streeter,
1906; Yasuda et al., 2007). By the end of the 5th month of the
embryo, the bony labyrinth has been formed and the vestibular
system is intact in morphology (Jeffery and Spoor, 2004), after
which there is only a modest increase in the distance between the
semicircular canals (Johnson Chacko et al., 2019).

Maturation of the human vestibular sensory epithelia includes
lengthening of the cristae and thinning of the maculae. The
length of cristae increases rapidly from GW 8–9 but slows down
and changes in shape during GW 9–12. The anterior crista
undergoes a second rapid growth during GW 12–14, reaching
approximately 55% of adult size (Dechesne and Sans, 1985). The
reduction of utricular epithelial thickness can be divided into two
stages: GW 7–8 and GW 11–13, during which the number of
supporting cell layers decreases significantly, while the thickness
remains unchanged during GW 8–12. Finally, the supporting cell
nuclei tend to be arranged in a single layer and the hair cell nuclei
migrate to the cell base (Dechesne and Sans, 1985).

The morphogenesis of vestibular organs in humans is similar
to that in rodents, but the human vestibular organs have been
distinct in the early embryonic stage (by the end of GW 7,
Figure 1; Streeter, 1906), while the mouse counterparts do not
attain its mature shape until the late embryonic stage. The
vestibular organs of mice become distinguishable on E15 and the
membranous labyrinth morphology approaches maturity as late
as E17 (Morsli et al., 1998).

Differentiation of Vestibular Hair Cells
Cilia
Differentiation of human vestibular sensory epithelium does not
occur until GW 7. The differentiation level of vestibular HCs is
usually judged by their cilia, stereocilia and kinocilia.

Crista stereocilia are detectable at GW 8, during which time
cristae are covered by short hair bundles with the putative
kinocilia, the latter are longer than stereocilia in most cases
and located at the edge of the bundle. Subsequently, there is a
lengthening of cristae stereocilia, which leads to the longer and
more mature hair bundles at GW10–11. From GW 12–14, the
length of the hair bundles increases significantly, and the number
of growing hair bundles decreased (Dechesne and Sans, 1985).

In the case of the utricle, the hair bundles observed at GW 10
are very short, and some kinocilia are shorter than the adjacent
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FIGURE 1 | Summary of developmental milestones in the development of human vestibular sensory epithelia.

stereocilia. At GW 12, some hair bundles in the protruding
utricle are close to maturity, while some are still growing. At
GW 14, the hair bundles are morphologically mature and the
number of newborn bundles decreases, while the microvilli
are still abundant (Rosenhall and Engström, 1974; Dechesne
and Sans, 1985), which indicates the HCs have not been fully
developed so far.

From GW 14–18, hair bundles of HCs further mature in both
human utricle and cristae. Stereocilia of the HCs in GW 18 fetus
seem to be thicker than those in the GW 14 fetus. However, the
number and diameter of stereocilia do not change significantly
after GW 14, with about 80–100 stereocilia per HC (Rosenhall
and Engström, 1974; Hoshino, 1982).

Molecular Marker
The differentiation of mammalian HCs is accompanied by
the expression of cell-specific molecular markers, such as
MyosinVIIa and Sox2. In the human vestibule, MyosinVIIa and
Sox2 staining can be observed as early as GW 9. Moreover, the
expression of MyosinVIIa is restricted to the vestibular HCs,
while Sox2 is expressed in the supporting cells and a few of the
HCs (Chacko et al., 2020).

In order to distinguish different cell types, recent work on
mouse utricles has identified specific molecular markers for
Type II HCs (Calretinin, Anxa4, and Mapt) and Type I HCs
(Spp1 and Ocm) (McInturff et al., 2018). However, it remains
to be investigated whether these vestibular hair cell markers are
applicable to human specimens.

Electrophysiology
Evidences in electrophysiology demonstrate the functional
similarities between human and rodent HCs. Whole-cell
conductances of human vestibular HCs from GW 11–14 fetus
are similar to those of mature type II HCs from rodents.
The peak outward conductances obtained from human type
II HCs increase from GW 15–18. Moreover, the rodent type
I HC specific low-voltage activated K+ conductance, which is
called GK, L, can also be detected in GW 15 human cristae,
although relatively small (Lim et al., 2014). The similarities were
further confirmed by the voltage-dependent currents that are
expressed in vestibular HCs of both adult humans and rodents
(Oghalai et al., 1998). However, so far there are few studies on

the electrophysiological differences of vestibular HCs between
humans and other mammals.

Hair Cell Number
There are no reports about the accurate time point at which
the progenitors of human vestibular sensory epithelium begin to
differentiate into hair cells since the spatio-temporal expression
patterns of atonal homolog 1 (ATOH1), which is critical
to HC formation, has not been investigated in the human
vestibule so far. The distinct high expression of the HC marker,
MyosinVIIa, is first observed in the crista as early as GW
9, indicating that some vestibular HCs have been formed at
GW 9 (Johnson Chacko et al., 2020). But how these immature
hair cells differentiate into type I and type II vestibular hair
cells is not clear.

There is no significant difference in the number of cristae
HCs between adults and the 4th–6th month fetuses: an
average of 7,800 HCs per cristae at GW 16–23 and 7,500
HCs per cristae after birth (Rosenhall, 1972a). Another study
observed an average of 8,005 HCs (type I 4,119 and type
II 3,886) per lateral cristae of adults aged 26–67 years
(Lopez et al., 2005).

It is reported that the number of HCs in the utricular and
saccular maculae is about 2–4 times that in the cristae (Watanuki
and Schuknecht, 1976). This study divided the specimens by
age into the embryonic group (GW 14–23) and the postnatal
group (<40 years old), and the average number of HCs was
comparable between the two groups. As for the utricle, the
average number is 33,100 (2,300 in the central area), with 32,900
HCs in the embryonic group and 33,200 in the postnatal group.
The average number of saccular maculae HCs is 18,800 (1,600
in the central area), with 19,100 in the embryonic group and
18,400 in the postnatal group. Another study about utricles
shows that the average number of utricular HCs at GW 16 is
about 36,000, not significantly different from that at the age
of 15, but significantly higher than the 13,000 at GW 10–12
(Severinsen et al., 2010).

Overall, the time point of HC differentiation is remarkably
earlier in humans than that in rodents. As mentioned above,
the number of human vestibular HCs reaches the adult
level no later than the 5th month of gestation. In contrast,
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over half the mouse HC population is formed after birth
(Burns et al., 2012).

Factors Related to the Development of
Human Vestibular Sensory Epithelia
Several reviews have summarized the relevant regulatory
factors in hair cell development in animal models. In general,
mammalian hair cell development involves the emergence of
Sox2-labeled pro-sensory areas, the expression of transcription
factor Atoh1, the regulation of cell cycle by factors such as
p27Kip1, and the manipulation by signaling pathways such as
Notch, Fgf, Wnt, Shh, and Bmp (Wu and Kelley, 2012; Atkinson
et al., 2015; Whitfield, 2015). However, there haven’t been many
studies on the regulation of human hair cell development so far.

Proliferation and apoptosis are essential processes during
human inner ear development. It is demonstrated by Ki-
67 staining that the percentages of proliferating cells in the
utricle and semicircular canal are 43 and 38%, respectively,
at GW 6, but decrease to 24 and 30% at GW 9. However,
the trend of Bcl-2 expression in the vestibular epithelium
is opposite to that of Ki67 during GW 7–10. Moreover,
cysteine aspartate-specific protease-3 (caspase-3) and insulin-
like growth factor-1 (IGF-1) are also expressed during vestibular
epithelial development (Tafra et al., 2014). These results
suggest that factors related to proliferation and apoptosis may
contribute to the morphogenesis and differentiation of vestibular
sensory epithelia.

Brain-derived neurotrophic factor (BDNF) is a neurotrophic
protein. Previous studies have shown that BDNF plays an
important role in vestibular nerve development in animals
(Fritzsch et al., 1997). In the human vestibule, BDNF is firstly
expressed in the entire utricular sensory epithelium, but its
expression decreases from GW 9–12 and is restricted in the
extrastriola at GW 12. In adult human utricles, BDNF is only
present in the apical part of HCs. The expression of p75NTR
in vestibular organs and TrkB and C in nerve fibers increase
with development, suggesting an essential role of neurotrophic
receptors in the survival of vestibular neurons during early
embryonic stages (Johnson Chacko et al., 2017).

Another study reported the expression of several key
transcription factors during human inner ear development. For
the vestibular sensory epithelia, LGR5 expression increased from
GW 8–12 and was broad in the apical poles of the vestibular HCs.
Another transcription factor, GATA3, was expressed in the striola
of the utricular and saccular maculae at GW 11. Expression for
SOX2 was primarily restricted to the utricular supporting cells
at GW 9, suggesting its function in regulating the differentiation
of supporting cells (Johnson Chacko et al., 2020). These
results indicate that the active transcription factors during the
development of the mammalian inner ear may also play a critical
role in the development of human vestibular sensory epithelia.
However, the spatio-temporal expression patterns of other genes
essential for hair cell formation, such as Math1, Six1, Gfi1, and
Pou4f3, are not explored in the human vestibule up to now.

In general, research on vestibules of human embryos is quite
limited and the previous work mainly focused on the expression

of specific molecules. Further experiments are required for
demonstrating the similarities and differences of vestibular hair
cell development between human and animal models, and the
underlying mechanisms as well.

REGENERATION OF HUMAN
VESTIBULAR HAIR CELLS

Discovery of Hair Cells Regeneration in
the Mammalian Vestibular Epithelium
Considering that no artificial device can be used to replace
vestibular function, recovery from vestibular dysfunction mainly
depends on the compensation of central vestibular function,
which can hardly lead to a full recovery. Promoting vestibular HC
regeneration is an ideal way for vestibular function recovery.

Many studies have shown differences in the regeneration
ability of vestibular sensory epithelium between different species.
Non-mammalian vertebrates such as birds are able to produce
HCs throughout their lives (Balak et al., 1990; Roberson et al.,
1992; Weisleder and Rubel, 1992). In contrast, the restoration
of vestibular HCs is relatively limited in mammals (Forge et al.,
1993; Wang et al., 2015; Wu et al., 2016; You et al., 2018; Zhang
et al., 2020), which can be realized through two processes, namely,
mitosis or trans-differentiation (Rubel et al., 1995).

Loss of vestibular HCs, whether induced by aminoglycoside
antibiotics (Kawamoto et al., 2009), IDPN (Zeng et al., 2020)
or other injury methods (Golub et al., 2012; González-Garrido
et al., 2021), significantly enhances spontaneous regenerative
proliferation. However, compared to the complete recovery of
vestibular function in most non-mammalian vertebrates (Jones
and Nelson, 1992; Carey et al., 1996), both the number and the
function of the newborn HCs are limited in the mammalian
vestibular epithelium (Forge et al., 1993; Kawamoto et al., 2009;
Golub et al., 2012; Zeng et al., 2020; González-Garrido et al.,
2021). As a result, techniques to boost the regeneration of
mammalian vestibular HCs are needed.

Manipulation of Vestibular Hair Cell
Regeneration in Mammals
Considering the important role of growth factors in the
development of the mammalian inner ear, many studies want
to reveal whether they could also initiate the generation of
vestibular HCs. Through in vitro culture, transforming growth
factor alpha (TGF-α) is first found to be capable of restoring HCs
in adult mouse vestibular organs after injury (Lambert, 1994).
Subsequently, epidermal growth factor (EGF) (Yamashita and
Oesterle, 1995), fibroblast growth factor (FGF) family members,
IGF-1 and IGF-2 (Zheng et al., 1997) are demonstrated to trigger
the proliferation of rat vestibular epithelial cells together with
TGF-α. Recombinant human glial growth factor 2 (rhGGF2)
and insulin are also capable of evoking great cell proliferation
in the utricular epithelium of neonatal rats (Gu et al., 2007).
Compared to TGF-α alone, simultaneous infusion of TGF-
α and insulin into the rat inner ear shows combined effects
in producing HCs (Kuntz and Oesterle, 1998a,b). Furthermore,
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combined utilization of TGF-α, IGF-1, and retinoic acid (RA) and
BDNF performs well in restoring type I vestibular HCs in vivo
and suggests application value (Kopke et al., 2001).

Regulation of intracellular signals is another method of
promoting regeneration. Activation of phosphatidylinositol-
3 kinase (PI-3K), mammalian target of rapamycin (mTOR),
protein kinase C (PKC), mitogen-activated protein kinase
(MAPK) and increased intracellular calcium enhance the
proliferation of cells in murine vestibular epithelia. All of
these signals are closely associated with the S-phase entry
(Montcouquiol and Corwin, 2001).

The basic helix-loop-helix (bHLH) transcription factor, atonal
homolog 1 or Atoh1, is critical for the differentiation of HCs
(Bermingham et al., 1999). Atoh1 overexpression activates the
HC differentiation in murine vestibular epithelia both in vitro
(Zheng and Gao, 2000; Huang et al., 2009; Qian et al., 2021)
and in vivo (Staecker et al., 2007; Schlecker et al., 2011; Gao
et al., 2016; Sayyid et al., 2019), which can be enhanced by injury
(Staecker et al., 2007; Schlecker et al., 2011; Sayyid et al., 2019;
Hicks et al., 2020; Qian et al., 2021) and depressed by aging
(Gao et al., 2016). On the other hand, Atoh1 deletion inhibits the
spontaneous returning of HCs significantly (Hicks et al., 2020).

Disrupting the lateral inhibition established by Notch
signaling is another classic strategy for producing new HCs.
After adding DAPT and TAPI-1, two inhibitors of the Notch
signaling pathway, to the explanted utricles of adult mice,
enhanced hair cell regeneration was observed, especially in the
striolar/juxtastriolar region (Lin et al., 2011). DAPT treatment
also leads to extensive HC generation in cristae explants of adult
mice (Slowik and Bermingham-McDonogh, 2013). Moreover,
downregulation of the Notch target gene Hes5 through siRNA
can also induce the trans-differentiation of supporting cells and
boost hair cell regeneration in the damaged mouse utricles
(Jung et al., 2013).

Apart from the traditional means mentioned above, recent
studies have revealed some new targets for regulating HC
regeneration. Several studies connected the ability of supporting
cells to reenter the cell cycle during murine utricular development
or after injury to nuclear Yap signaling (Gnedeva et al.,
2017, 2020; Kastan et al., 2021). Collado et al. (2011) found
the accumulation of E-Cadherin as an inhibitor for trans-
differentiation of supporting cells. Knockdown of Foxg1 in
supporting cells was revealed to be another viable method
of enhancing HC regeneration in the neonatal mouse utricle
(Zhang et al., 2020). In order to achieve better regenerative
effects, attempts have been made to simultaneously promote
supporting cells proliferation and hair cell differentiation through
a combined regulation of multiple signaling pathways, such as
Wnt and Notch (Wu et al., 2016).

Although vestibular hair cell regeneration in mammals still
faces many hurdles, the good news is that murine vestibular
function, under certain modulations, has been partially restored
after injury (Kopke et al., 2001; Staecker et al., 2007; Schlecker
et al., 2011). However, whether the regeneration phenomenon
can also be discovered in humans and whether it can be regulated
in the same manner as in rodents are questions that must be
addressed for the clinical application of regenerative techniques.

Regenerative Potential of Human
Vestibular Hair Cells
Studies on the regenerative potential of human vestibular HCs
started almost at the same time as that of other mammals.
Through in vitro experiments, Warchol et al. (1993) found
proliferating supporting cells after neomycin injury in the human
utricle. After 25 days of culture, some labeled nuclei in the
lumenal stratum that was normally occupied by the nuclei of HCs
appeared, which suggested the restoration of HCs (Warchol et al.,
1993). In another study, 22 patients with Meniere’s disease were
tested on their vestibular function 1–2 years after gentamicin
treatment. The horizontal semicircular canal afferent nerve
restored its excitability to warm and cold water in 38% of them,
which was regarded as functional evidence for HC regeneration
(De Waele et al., 2002). However, the evidence here is insufficient,
in which the study could not confirm the direct cause of
the functional recovery, since vestibular inhibition and central
compensation could also lead to functional restoration. The
morphological evidence came in 2015. Immature hair bundles
were observed in human vestibular specimens harvested from
elderly patients (Taylor et al., 2015). Given that no evidence of
the hair bundle restoration has been detected on surviving “bald”
HCs, there is likely to be spontaneous HC regeneration occurring
in human utricles.

Another approach to investigate the stemness of vestibular
sensory epithelial cells is to extract progenitors or stem cells
from the human inner ear. It was first realized by Chen et al.
(2009) who extracted stem cells capable of differentiating into
HCs from the fetal cochlea in 2009. Since then, attempts have
been made in vestibular organs. Hu et al. (2012) isolated sensory
epithelial cells from postoperative human utricular specimens
and cultured them in vitro. The proliferated cells expressed genes
in pre-sensory cells or stem cells such as SOX2 and P27K IP1 and
showed characteristics of mesenchymal cells when cultured on
2D substrates (Hu et al., 2012). A recent study demonstrated
that the human vestibular epithelial cells have a strong sphere-
forming ability through in vitro culture. Furthermore, the clonal
spheres were able to produce cells expressing markers of HCs and
displayed differentiation ability (Senn et al., 2020). The existence
of multipotent progenitor cells in the adult human vestibule
indicates the capability of sensory epithelial cells to re-enter the
cell cycle and provides a promising source for neonatal HCs.

In conclusion, the regenerative potential of human vestibular
HCs has been revealed from different aspects, reflecting the
similarities between human and rodent vestibules. Therefore,
the theoretical basis for the regulation of human hair cell
regeneration following the example of other mammals has
been established.

Application of Gene Therapy in Human
Vestibular Sensory Epithelia
As is mentioned above, overexpression of Atoh1 serves as a
classic approach to triggering regeneration of vestibular HCs
in rodents. In 2003, Shou et al. (2003) upregulated HATH1 (a
human homolog of Atoh1) in cultured adult rat utricular maculae
through local adenoviral treatment and robust production of
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new HCs was observed in normal and gentamicin-injured
utricles as a result of supporting cell conversion, implying the
conserved function of the atonal homologs during the revolution.
Moreover, considering the similarity between human and murine
homologs of atonal in giving rise to HCs, overexpressing
HATH1 may be a promising target for gene therapy in
human balance organs.

Choosing a suitable transduction vector is essential for
inner ear gene therapy. Adenovirus has been demonstrated
to efficiently transfect both HCs and supporting cells, thus
becoming a competitive candidate. In 2007, Kesser et al. (2007)
developed a multi-gene deletion and replication-free adenovirus
vector (AD2) to test its transfection efficacy in human tissues,
which drove the expression of the green fluorescent protein GFP
gene (AD2-GFP) by cytomegalovirus (CMV) promoter. Results
indicated that both supporting cells and HCs were transfected
and the transfection rate was higher in supporting cells and
varied with viral titer and transfection time. Furthermore, the
adenovirus vector also performed well when GFP and wild-type
potassium channel gene KCNQ4 were transfected simultaneously
into the human inner ear, with 17.3% hair cell transfection rate for
GFP and 10% for KCNQ4 (Kesser et al., 2007). Adeno-associated
virus (AAV) is another promising vector that has enabled efficient
gene transfer to several organs. Recently, an AAV variant (AAV-
ie) has been designed for inner ear gene delivery. It was shown
that AAV-ie infected about 93% of SCs and 76% of HCs in human
utricle. In addition, the saccular macula and cristae could be
transduced as well (Tan et al., 2019).

Based on the maturity of the transduction vector, Taylor
et al. (2018) made the first attempt to generate HCs in
human utricle. Taylor et al. (2018) collected utricles from
patients undergoing excision of vestibular schwannoma and
HCs were ablated through gentamicin. Ad2-GFP-Atoh1 was
used here to transfect utricular maculae and supporting cells
were efficiently transduced. Compared with the control group,
transfection successfully increased the HC number in the
maculae. Moreover, Notch signaling pathway inhibitor TAPI-1
also induced regeneration in human utricles, while the newborn
HCs were fewer than those in the Atoh1 transfection group.
Finally, no synergistic effect of the two treatments was observed,
implying Atoh1 overexpression as a more effective solution.
This study creates a precedent for gene therapy targeting the
human inner ear.

FUTURE PERSPECTIVES

Although gene therapy targeting human vestibular epithelium
has triggered HC regeneration successfully, many problems
remain to be addressed before more mature and functional HCs
can be generated. Considering the similarities between vestibular
and auditory sensory epithelium, recent studies on the cochlea
may offer some inspiration.

Atoh1-induced HC regeneration still has some limitations
in both mouse and human vestibules. First, the number of
hair cells could not be fully restored after injury. Second,
nearly all the new hair cells converted from supporting cells

were Sox2 + type II hair cells, the lack of new type I hair
cells is not conducive to vestibular rehabilitation. Moreover,
the regenerated hair cells were immature, as demonstrated by
immature cilia (Schlecker et al., 2011; Taylor et al., 2018; Sayyid
et al., 2019; Qian et al., 2021). Recent studies report some
progresses in cochlear hair cell regeneration by manipulating
multiple signaling pathways or transcriptional factors (Walters
et al., 2017; Lee et al., 2020; Menendez et al., 2020; Chen et al.,
2021; Sun et al., 2021). In order to improve both the quality and
quantity of new vestibular hair cells, regulating multiple factors
which can promote the maturation and subtype differentiation of
vestibular hair cells may be an important strategy. In addition,
it might be beneficial to combine epigenetic regulatory factors
with Atoh1 overexpression to promote hair cell regeneration in
the human vestibule.

Generating organoids provides ideal models for screening
drug candidates for the treatment of inner ear diseases. Recent
studies have succeeded in producing otic organoids from
human pluripotent stem cells. Some of them shared many
characteristics with human vestibular epithelia (Koehler et al.,
2017; Jeong et al., 2018; van der Valk et al., 2021). In the
future, exploring the regulatory mechanisms underlying hair cell
formation using organoids and the latest techniques, such as
single-cell and single-nuclear sequencing, may help to identify
regulatory pathways and key factors which play important roles
in the maturation and subtype differentiation of vestibular
hair cells. Progresses in this area will contribute to the study
of hair cell regeneration in human vestibule and balance
function reconstruction.

Chen et al. (2012) transplanted otic neuroprogenitors derived
from human embryonic stem cells (hESCs) into ouabain-
treated gerbils (an auditory neuropathy model) through the
round window, and restoration of auditory evoked response
was observed. The protocol of transplanting progenitor cells
discussed here offers another promising strategy for generating
functional HCs in the human vestibule.

Trans-differentiation of Lgr5+ or Plp1+ supporting cells is
traditionally regarded as the main source of postnatal hair cell
generation in utricles (Wang et al., 2015, 2019). However, the
latest studies suggested transitional epithelial cells (TECs) located
at the border between sensory and non-sensory regions to be
another reliable source of HCs (Huang et al., 2009; Burns et al.,
2015; Gao et al., 2016; Jan et al., 2021; Qian et al., 2021). How to
achieve effective trans-differentiation from TECs into supporting
cells or HCs could be another future direction.
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