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Abstract

Interpretation of volumetric medical images represents a rapidly growing proportion of the workload in radiology.
However, relatively little is known about the strategies that best guide search behavior when looking for
abnormalities in volumetric images. Although there is extensive literature on two-dimensional medical image
perception, it is an open question whether the conclusions drawn from these images can be generalized to
volumetric images. Importantly, volumetric images have distinct characteristics (e.g., scrolling through depth,
smooth-pursuit eye-movements, motion onset cues, etc.) that should be considered in future research. In this
manuscript, we will review the literature on medical image perception and discuss relevant findings from basic
science that can be used to generate predictions about expertise in volumetric image interpretation. By better
understanding search through volumetric images, we may be able to identify common sources of error,
characterize the optimal strategies for searching through depth, or develop new training and assessment
techniques for radiology residents.
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Significance
Volumetric medical images, such as computed tomog-
raphy (CT) scans, consist of a series of stacked two-
dimensional (2D) images, allowing for more accurate
representation of the three-dimensional (3D) nature of
the body’s anatomical structures. In recent years, there
has been a steady increase in the number of volumetric
medical images interpreted in diagnostic radiology. Al-
though volumetric images are typically associated with
better performance, missed or incorrect diagnoses re-
main prevalent in radiology. In this review, we will dis-
cuss findings from basic scientific research on visual
attention and memory that may aid in our understand-
ing of volumetric medical image search. In addition, we
will discuss what is already known about volumetric
image search through a review of the literature on med-
ical image perception. Although there are currently

substantial gaps in our knowledge of how best to search
through volumetric images, this type of research might
ultimately reveal superior search strategies for evaluating
volumetric images, determine when errors are likely to
occur, or lead to improved training methods for new
radiologists.

Introduction
Volumetric medical imaging, such as CT, magnetic res-
onance imaging (MRI), or digital breast tomosynthesis
(DBT), helps retain the 3D nature of the body’s internal
structures by stacking multiple cross-sectional images.
This imaging technique often results in a massive
amount of information for the radiologist to evaluate
(Andriole et al., 2011): a single chest radiograph is now
often supplemented with a chest CT with a stack of
1000 high-resolution images (Fig. 1). Unfortunately, ab-
normalities are sometimes very small relative to the
overall size of the image. To illustrate this point, Rubin
(2015) calculated that lung cancer nodules between 4
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mm and 10 mm in size make up 0.01% or less of the
total volume in a typical chest CT scan. Lung cancer
nodules of this size would only be visible on a hand-
ful of slices, rendering them undetectable for the
vast majority of the radiologist’s overall search time
(Rubin, 2015). How do expert radiologists efficiently
sort through all of this information and detect po-
tential abnormalities? Are there optimal strategies
for navigating through volumetric images? Unfortu-
nately, despite decades of medical image perception
research, relatively little is known about expertise in
the interpretation of volumetric medical images.
However, given the increasing number of volumetric
images in radiology, answering these questions will
likely be at the forefront of medical image percep-
tion research in the coming years (McDonald et al.,
2015).
The purpose of this manuscript is to review the litera-

ture and identify the current gaps in our understanding
of volumetric image interpretation using a basic-science
framework. First, we will discuss the merits of using
basic scientific research on attention and memory to
generate informed predictions about medical image

perception. Next, we will discuss nine research areas that
we feel best represent the current priorities of the field
(Table 1). In each of these sections, we will discuss rele-
vant findings from the basic science and medical
image perception literatures and highlight promising
areas for future research. This review should not be
considered an exhaustive account of the literature.
For example, the debate that surrounded the transi-
tion from analog to digital in radiology will not be
covered in depth. Although the history of volumetric
imaging is an interesting topic in its own right, it is
beyond the scope of this review. In addition, we will
not provide detailed discussion of the unique meth-
odological challenges involved in volumetric imaging
research and the approaches researchers have used to
address them. Instead, we direct the reader to existing
resources that cover this topic in depth (Rubin, Drew,
& Williams, 2018; Venjakob & Mello-Thoms, 2015).
Rather, this manuscript is a selected review of the lit-
erature on volumetric image perception through the
lens of basic research on visual attention and mem-
ory. Although many of these topics undoubtedly per-
tain to 2D imaging as well, the primary intent of this

Fig. 1 Size comparison of two-dimensional medical images and volumetric medical images. Image sizes are estimates and actual image sizes
may vary considerably between cases. Lung nodule size estimates assume a 96-dpi monitor. CT, computed tomography

Table 1 Important research areas for volumetric image perception

Important Topics for Volumetric Image Perception Research

1) What are the stimulus properties that guide attention in volumetric medical images?

2) What are common sources of error in volumetric medical image interpretation?

3) What are the consequences of increased cognitive load and how can they be overcome?

4) What are the best strategies for searching through depth across different tasks and modalities?

5) How are scene regularities learned in volumetric images? 

6) What are the characteristics of expertise in volumetric image interpretation? 

7) What are the consequences of limited memory in volumetric image search? 

8) How do radiologists decide to terminate search in large volumetric images? 

9) How do motor and perceptual processes interact in the evaluation of volumetric images? 
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manuscript is to focus on issues most relevant to
volumetric imaging and serve as a catalyst for future
research in this area.

What can we learn about medical image
perception from basic scientific research?
For several decades, researchers have sought to
characterize how expert radiologists interpret medical
images. Concurrently, cognitive scientists have been
building a vast body of literature on visual search using
tightly controlled laboratory tasks, such as “find the
horizontal line amongst vertical lines.” At first glance,
these artificial tasks seem to have little in common with
complex radiology tasks, such as identifying signs of
breast cancer in a mammogram. However, at their core,
both of these tasks can be characterized as visual search
and rely on the same mechanisms (Wolfe, Evans, Drew,
Aizenman, & Josephs, 2016). In recent years, cognitive
scientists have demonstrated the remarkable potential of
applying findings from basic science to real-world tasks,
such as radiology (Fig. 2). For example, observers in the
laboratory often fail to notice a person walk through a
basketball game wearing a gorilla suit when they per-
form a secondary task (e.g., counting the number of
passes between players), a phenomenon known as “inat-
tentional blindness” (Simons & Chabris, 1999). Similarly,
83% of radiologists missed a matchbook-sized gorilla
image embedded into a slice of a chest CT scan when
they were looking for signs of lung cancer (Drew, Võ, &

Wolfe, 2013). This research may help explain why inci-
dental findings, which are unexpected abnormalities that
are not the primary focus of search, are sometimes
missed in radiology (Wolfe, Soce, & Schill, 2017).
Examples of translational research from basic science to

radiology, which have been thoroughly summarized else-
where (Wolfe, 2016; Wolfe et al., 2016), highlight the
promise of using our knowledge of human cognition to
make predictions about how radiologists search through
medical images and when they will be most susceptible to
error. However, volumetric imaging has created a new set
of challenges for both radiologists and the perception sci-
entists seeking to better understand them. Volumetric im-
aging was first introduced to clinical practice in the 1970s,
but recent years have seen a dramatic increase in the size
and number of volumetric images being interpreted in the
radiology reading room (Andriole et al., 2011; McDonald
et al., 2015). For example, the number of cross-sectional
images at one institution increased tenfold between 1990
and 2010 (McDonald et al., 2015). Unfortunately, the ma-
jority of research on medical image perception is based on
2D images, such as chest radiographs. In basic science,
there is an extensive literature on visual search in 2D la-
boratory tasks and a growing literature on search in the
3D world. However, volumetric images do not fall neatly
into either of these categories (Fig. 2). Nonetheless, there
are a number of findings from these two bodies of litera-
ture that may provide insight on volumetric image inter-
pretation, which we will highlight in this review.

Fig. 2 Although many findings from laboratory visual search tasks have been replicated in the medical image perception literature (e.g., Evans,
Georgian-Smith, et al., 2013; Drew et al., 2013), there is no clear analog to volumetric images in the basic science literature. However, insight for
future research directions on volumetric image search might be gained from findings on 2D visual search, as well as growing research in the
realms of driving, real-world visual search, closed-circuit television (CCTV), and virtual reality. Ultrasound image reprinted from Hansen et al. (2016).
Ultrasonography of the kidney: a pictorial review. Diagnostics, 6(1), 2., and used here under the Creative Commons License. Pathology image
obtained from National Cancer Institute Clinical Proteomic Tumor Analysis Consortium Sarcomas (CPTAC-SAR) collection 2018 and used here
under the Creative Commons License
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Although much of a radiologist’s job can be character-
ized as decision-making, such as determining if a suspi-
cious finding is cancerous or benign, this review will
focus on how potential abnormalities are located and
identified using visual search. To frame the discussion
on visual search, we will primarily rely on the Guided
Search model (Wolfe, Cave, & Franzel, 1989). The
Guided Search model posits that early information
guides attention in a bottom-up or top-down manner to-
ward specific features in the scene. Bottom-up guidance
is driven by the properties of the stimulus itself. For ex-
ample, in the absence of another task, a bright red poppy
in a field of daisies is likely to capture attention. In con-
trast, top-down guidance is driven by the observer’s in-
ternal state and selection history. Top-down attention
can often override the effects of bottom-up mechanisms.
For example, target representations held in memory can
help guide attention away from salient distractors (e.g.,
the red poppy) and toward features in the environment
that match the target’s features. Together, bottom-up
and top-down factors generate a priority map that di-
rects attention to areas in the scene that are more likely
to contain the target.

What are the stimulus properties that guide attention in
volumetric medical images?
Bottom-up guidance in visual search can be highly ef-
fective when the most salient objects in the scene are
consistent with your goals (e.g., identifying a large brain
tumor), but harmful if your task involves detecting in-
conspicuous targets (e.g., small lung cancer nodules).
Unfortunately, the most salient regions of medical im-
ages are not always the most informative for the radiolo-
gist. One well-established mechanism for limiting the
influence of bottom-up information is through top-
down knowledge about the task. All else being equal, ex-
perts should be able to better utilize a top-down strategy
in medical image search than novices due to their exten-
sive medical knowledge and past experience with similar
images. For the same reason, the largest differences be-
tween experts and novices should be found in tasks that
do not benefit from a bottom-up strategy. Broadly, these
predictions have been well-supported in radiology, in
addition to a number of other tasks and professions
(Cooper, Gale, Darker, Toms, & Saada, 2009; Humphrey
& Underwood, 2009; Koide, Kubo, Nishida, Shibata, &
Ikeda, 2015; Lansdale, Underwood, & Davies, 2010). For
example, novices’ eye-movements were closely predicted
by a saliency map when analyzing single-slice brain CT
scans for cerebrovascular incidents (Matsumoto et al.,
2011, see also Nodine, Kundel, Lauver, & Toto, 1996).
Similarly, experts viewed clinically relevant areas of low
salience longer than novices. However, if clinically

relevant areas were high-salience, experts and novices’
eye-movements did not differ (Matsumoto et al., 2011).
Future research is needed to determine the features

that influence the detectability of abnormalities in volu-
metric medical images. In chest radiographs, researchers
have used eye-tracking to make distinctions between le-
sion properties that capture attention initially during
search (as measured by time to first hit) and those that
hold attention once the abnormality is detected (as mea-
sured by dwell time) (Krupinski, Berger, Dallas, & Roeh-
rig, 2003). In the context of guided search, “time to first
hit” provides an index of the stimulus properties that
more effectively guide attention to the lesion during vis-
ual search, whereas dwell time likely reflects recognition
or decision-making processes. Although a number of
characteristics (e.g., signal-to-noise ratio, conspicuity, lo-
cation, and calcification) were evaluated, none of these
features influenced how quickly attention would be di-
rected to the relevant location in the image. However,
both nodule size and conspicuity influenced dwell time
on the lesion and predicted overall nodule detection
rate. In contrast, Carmody, Nodine, and Kundel (1981)
found that nodule conspicuity influenced both search
and decision-making processes. Less conspicuous nod-
ules were detected less often in a flash-viewing paradigm
and were associated with more comparative scans to
normal structures in the image during free viewing (de-
fined as a fixation on the abnormality followed by a sac-
cade and a refixation). In future work, it would be
beneficial to evaluate the role of comparison scans for
identifying different types of lesions in volumetric im-
ages. For example, the decision-making process for iden-
tifying a lung nodule might involve comparing how the
abnormality’s appearance changes through depth relative
to normal structures in the image (e.g., blood vessels).
In order to determine which stimulus features improve

detectability in volumetric image search, it may be fruit-
ful to lean on the basic science literature. According to
Wolfe and Horowitz (2004), there are four guiding attri-
butes that have been well-established by converging evi-
dence in the literature: motion, color, orientation, and
size. Although all of these features are undoubtedly im-
portant for detecting abnormalities in medical images,
motion is an attribute that is uniquely applicable to
volumetric images. In volumetric images, structures may
appear to move along the 2D plane as the observer navi-
gates through the depth of the image, which is thought
to elicit smooth pursuit eye-movements as the observer
tracks these structures through depth (Venjakob &
Mello-Thoms, 2015). In addition, certain abnormalities,
such as lung cancer nodules, appear to flicker in and out
of view when scrolling through the depth of the image
due to rapid changes in the structure’s diameter. This
phenomenon may mimic abrupt motion onset cues,
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which are known to capture visual attention (Abrams &
Christ, 2003; Girelli & Luck, 1997; Jonides & Yantis,
1988; Theeuwes et al., 1999). Furthermore, motion can
serve as a filtering mechanism in visual search and
strongly predicts where attention will be allocated in dy-
namic scenes (Kramer, Martin-Emerson, Larish, & An-
dersen, 1996; McLeod, Driver, Dienes, & Crisp, 1991;
Mital et al., 2011). In addition, even if movement is not
a defining feature of the target, observers learn frequent
associations between targets and their movements and
use this information to guide search (Scarince & Hout,
2018).
Although basic science suggests that motion cues

serve as an effective form of guidance to a target, only a
few studies have addressed this topic in medical image
perception. For example, researchers found that artifi-
cially inducing motion cues into static images increased
detection ability for both mammograms and chest radio-
graphs (Andia et al., 2009). In addition, researchers
tested the prediction that searching in smaller windows
would be superior to searching in larger windows in
volumetric images because it would increase the ability
to detect motion cues using foveal vision (Venjakob,
Marnitz, Phillips, & Mello-Thoms, 2016). Although
there were no overall differences in accuracy between
conditions, a smaller image size was associated with lo-
cating abnormalities more quickly. Finally, Nakashima et
al. (2016) tested whether lung nodules are less likely to
be detected early in the trial, when task-relevant motion
onset cues (e.g., lung nodules) are likely obscured by
simultaneous motion onset cues from task-irrelevant in-
formation (e.g., blood vessels). They found a significant
effect of nodule location for novices, but not experts,
which suggests that experts do not need to rely as heav-
ily on these bottom-up signals for target detection. This
is likely because experts have additional mechanisms,
such as strong target representations and enhanced hol-
istic processing, which also aid in the detection of
abnormalities.

What are common sources of error in volumetric medical
image interpretation?
During visual search, target representations in memory
are thought to guide attention in a top-down manner to-
ward features in the environment that match the target’s
features (Olivers & Eimer, 2011; Olivers, Meijer, &
Theeuwes, 2006; Soto, Heinke, Humphreys, & Blanco,
2005). In typical laboratory paradigms, the observer
searches for a single well-defined target that is either
cued on each trial or remains the same throughout the
experiment. However, searching for targets in more real-
istic circumstances where information about the target
is degraded may be more challenging. Search perform-
ance is best when information about the target is precise

(e.g., picture cues), and search is guided less effectively
by imprecise (e.g., word cues) or categorical (e.g., cats
versus Garfield) target cues (Hout & Goldinger, 2015;
Wolfe, Horowitz, Kenner, Hyle, & Vasan, 2004). In
addition, when multiple targets are present in an image
(e.g., Garfield and Nermal), the second target is less
likely to be detected after the first target is located (Ber-
baum et al., 1990; Cain & Mitroff, 2013). This
phenomenon was originally termed “satisfaction of
search” which suggested the error was caused by prema-
turely terminating search following the detection of the
first target (Berbaum et al., 1990; Tuddenham, 1962).
However, subsequent research has cast doubt on this ex-
planation (Berbaum et al., 1991), and these errors are
thought to have multiple causes (Cain, Adamo, & Mitr-
off, 2013). As a result, the term “subsequent search mis-
ses” has been proposed as a theory-neutral alternative
(Cain & Mitroff, 2013). Unfortunately, a radiologist’s task
often represents the worst-case scenario for target repre-
sentations: identifying an unspecified number of poorly
defined abnormalities.
Given these challenges, it is particularly important to

consider how different imaging techniques might im-
prove the radiologist’s ability to locate abnormalities. For
example, 2D medical imaging forces the observer to
view organs as overlapping structures, which can ob-
scure findings and provide inaccurate spatial relation-
ships between anatomical structures. In contrast,
although volumetric imaging is not truly 3D, there is less
need to mentally translate anatomical structures from
their 2D representations to the 3D world. Non-
overlapping structures, as well as the availability of mo-
tion cues, may improve the ability to detect abnormal-
ities in volumetric images. Aside from breast cancer
screening, direct comparisons between volumetric im-
ages and their two-dimensional counterparts are rare
(Andersson et al., 2008; Ciatto et al., 2013; Gennaro et
al., 2010; Gur et al., 2009; Michell et al., 2012; Rafferty et
al., 2013; Spangler et al., 2011). However, studies that
used this approach have demonstrated that volumetric
images are associated with improved accuracy (Adamo
et al., 2018; Aizenman et al., 2017; Alakhras et al., 2015;
Blanchon et al., 2007; Mathie & Strickland, 1997; Seltzer
et al., 1995). Critically, these accuracy differences are
generally driven by both an increase in hit rate and a de-
crease in false alarms. However, volumetric imaging is
also associated with a substantial cost: a large increase in
search time and a decrease in overall coverage (Adamo
et al., 2018; Aizenman et al., 2017; Lago et al., 2018).
It is important to note that although volumetric im-

aging appears to be superior to other imaging tech-
niques, both inter-observer variability and overall error
rates in radiology suggest there is substantial room for
improvement. In addition, recent research demonstrates
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that volumetric imaging may not be universally advanta-
geous (Lago et al., 2018). In a comparison between 3D
breast tomosynthesis (DBT) and single-slice DBT, there
were no differences in performance when readers were
asked to identify masses. In contrast, 2D imaging was as-
sociated with better detection of microcalcifications. The
researchers proposed that volumetric imaging leads to
less image coverage and an increased reliance on para-
foveal processing. Therefore, there is likely to be a cost
of volumetric imaging when abnormalities cannot be
readily detected in the periphery.
In order to better understand the sources of error in volu-

metric image interpretation, it is beneficial to move beyond
behavioral data. For example, if an observer misses a lesion,
it is often unclear whether they failed to find it or located it
but decided it should not be reported. For this reason, eye-
tracking has widely been used to determine why abnormal-
ities are missed in various radiology tasks, such as lung can-
cer screening (Manning, Ethell, & Donovan, 2004). In
general, both false positive and false negative decisions are
associated with longer dwell time, which indicates that in-
correct decisions are often associated with additional scru-
tiny (Kundel, Nodine, & Krupinski, 1989; Manning, Barker-
Mill, Donovan, & Crawford, 2006). Eye-tracking has also
been used to identify three distinct types of errors: search er-
rors occur when a lesion is never foveated, recognition er-
rors occur when a lesion is fixated on briefly (for < 1 s) but
not reported, and a decision error occurs when a lesion is
fixated on for a prolonged period of time (> 1 s) but not re-
ported (Fig. 3a, Kundel, Nodine, & Carmody, 1978).
In lung cancer screening with chest radiographs,

decision-making errors are the most common error type,

followed by recognition and search errors (Donovan &
Litchfield, 2013; Kundel et al., 1978). However, Drew, et
al., 2013 observed a relatively small proportion of deci-
sion errors in lung cancer screening using chest CT
scans. In fly-by 3D colonography, a virtual navigation
through an endoluminal reconstruction of the colon, the
majority of errors were identified as recognition errors
and search errors were almost non-existent (Phillips et
al., 2013). In addition, errors were evenly distributed be-
tween search and recognition errors in the identification
of microcalcifications in DBT (Lago et al., 2018). How-
ever, the errors were primarily recognition errors for the
identification of masses. These studies are good exam-
ples of extending current eye-tracking metrics to volu-
metric images, which allows direct comparisons between
these modalities. By doing so, researchers have discov-
ered that volumetric imaging may improve the ability to
accurately identify an abnormality once it has been lo-
cated across a variety of tasks, which may be a benefit of
non-overlapping structures (Drew et al., 2013; Lago et
al., 2018; Phillips et al., 2013). However, the distribution
of errors can differ substantially based on the nature of
the task or even between search strategies within same
task (Drew et al., 2013; Lago et al., 2018). In future re-
search, it will also be important to identify how the dis-
tribution of errors changes over the course of training in
the interpretation of volumetric medical images, which
may ultimately provide insight on the type of assistance
(e.g., computer-aided detection) that would be most
beneficial across levels of experience.
Although similar approaches have been used to classify

errors in 2D and volumetric images (Drew et al., 2013;

Fig. 3 a Illustration of how a missed nodule can be classified as a search, recognition, or decision error using eye-tracking. Yellow circles
represent fixations and the red square represents the region of interest for the abnormality. b Example of image coverage calculation
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Lago et al., 2018; Phillips et al., 2013), it is largely un-
clear whether the thresholds for these categories are ap-
propriate for volumetric images. It is also important for
researchers to consider the appropriateness of applying
these categories to different types of tasks. Certainly, an
abnormality that is not fixated on indicates some level of
search error, but determining whether fixational dwell
time for an intermediate time (e.g., 500 ms) constitutes a
recognition or decision error likely depends on both the
task at hand and the level of expertise of the observer.
For example, overall nodule dwell time in chest radio-
graphs was lower for experts than trainees, which was
mirrored by a shift to more recognition errors relative to
decision-making errors (Donovan & Litchfield, 2013).
An alternative approach to Kundel’s classic error

categorization was recently advanced by Cain et al.
(2013). After recording eye movements for thousands of
trials, they used a data-driven approach for the task in
question (a multiple-target, visual search task in their
case) to describe different types of errors. Data-driven
approaches allow the threshold between recognition and
decision errors to be adjusted for a given stimulus based
on the distribution of dwell times or the average search
slope. Using this approach, Cain et al. (2013) identified a
threshold ~ 25% of the value typically used as a thresh-
old in medical image perception. Notably, there was lit-
tle evidence to support a clear, qualitative distinction
between recognition and decision errors. Rather, the
data could be more adequately described by models of
perceptual decision-making, such as drift diffusion (Rat-
cliff & McKoon, 2008), that posit that evidence is slowly
accumulated during the fixation on an item until a deci-
sion threshold is reached. From this perspective, recog-
nition and decision errors occur on a continuum rather
than as distinct categories. In addition, Cain et al. (2013)
demonstrated that search errors for the second target
could be further sub-divided into novel categories. On
some trials, the search was terminated as soon as the
first target was identified with no attempt to locate the
second target (“strategy” error). On other trials, the first
target was re-fixated on during search (“resource deple-
tion” error), which suggests working memory resources
might have been depleted by maintaining information
about the first target (Cain and Mitroff, 2013). This re-
search highlights that there is not a one-size-fits-all ap-
proach to error classification between tasks, as well as
the potential for data-driven classification to provide
additional insight on sources of error in visual search.
Although this approach requires a large amount of data,
which can be difficult to collect with radiology ob-
servers, it may be informative to use a data-driven
method to create a taxonomy of errors in volumetric
image search. For example, an abnormality might be
missed in a volumetric image if the abnormality is visible

during search but never fixated on, but a miss error
could also occur if the slice of the image that contains
the abnormality is never visited. Although these would
both be considered search errors under Kundel’s classifi-
cation system, these likely represent different sources of
error.

What are the consequences of increased cognitive load
and how can they be overcome?
In light of the increased ability to detect abnormalities
in volumetric images, one might expect volumetric im-
ages to be associated with a reduced cognitive load.
However, medical students report greater mental effort
when viewing volumetric images, which may be due to
the increased size, complexity, and evaluation time asso-
ciated with these images (Stuijfzand et al., 2016). This
finding appears to be supported by pupil size, a physio-
logical measure of cognitive load (Porter, Troscianko, &
Gilchrist, 2007; Unsworth & Robison, 2018), which in-
creases with search time in volumetric images (Stuijf-
zand et al., 2016). Along similar lines, recent work with
breast pathologists examining digital pathology slides
has found that pupil diameter is sensitive to perceived
case difficulty: more difficult cases were generally associ-
ated with a larger pupil diameter (Brunyé et al., 2016).
Findings from a wide variety of sources suggest that vis-
ual search is impaired when working memory is taxed.
Concurrent spatial working memory load reduces the ef-
ficiency of visual search in both laboratory and applied
tasks, such as driving (Oh & Kim, 2004; Recarte &
Nunes, 2003). In addition, salient bottom-up features are
known to capture attention more effectively under cog-
nitive load (Matsukura, Brockmole, Boot, & Henderson,
2011). Typically, observers in natural tasks seek to
minimize their cognitive load by frequently scanning their
environment, particularly when memory load is high and
the task is unpredictable (Droll & Hayhoe, 2007). This ef-
fect seems to be exaggerated in novices: weaker chess
players favor moves that will reduce working memory
load, such as decreasing the number of pieces on the
board (Leone, Slezak, Cecchi, & Sigman, 2014).
In radiology, increases in cognitive load and fatigue

may have a detrimental impact on patient care. Discrep-
ancies increase during the final hours of a long work
day, and volumetric images have been identified as a
risk-factor for these discrepancies (Ruutiainen, Durand,
Scanlon, & Itri, 2013). After viewing CT images, ob-
servers have reduced accuracy, greater visual fatigue,
and increased visual strain (Krupinski et al., 2012). Simi-
larly, think-aloud protocols reveal that radiologists
verbalize more often about efficient search strategies and
image manipulation skills in volumetric images than in
2D images (van der Gijp et al., 2015). Furthermore, one
study suggests that residents are more affected by fatigue
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than experts while detecting abnormalities in abdominal
CT (Bertram et al., 2016). In future research, it will be
necessary to determine which search strategies best off-
set the cognitive load associated with volumetric medical
images.

What are the best strategies for searching through depth
across different tasks and modalities?
One particularly promising avenue of research is to ex-
plore how variation in scrolling behavior might relate to
search performance. Drew et al. (2013) found that adopt-
ing a strategy of rapidly “drilling” through depth while
maintaining fixation was superior to “scanning” the x
and y plane while slowly moving through depth during
lung cancer screening (Fig. 4). Although this study did
not test the use of motion cues directly, it is possible
that drilling allows the observer to more effectively take
advantage of transient motion cues to distinguish blood
vessels from nodules that appear to “pop in and out of
view” while scrolling through depth. In support of this
proposal, Wen et al. (2016) found that scanners and
drillers make use of different bottom-up cues in lung
cancer screening tasks. It appears that drillers are better
able to make use of salient motion cues, whereas scan-
ners’ search behavior is driven largely by 2D saliency. In
addition to overall performance differences, the

distribution of errors differed between scanners and
drillers: drillers tended to have more recognition errors
than scanners, and scanners tended to make more
search errors than drillers. At present, it is unclear how
these search strategies emerge over the course of train-
ing. Drew et al. (2013) found that drillers tended to read
more CT cases per week than scanners. However, there
were no differences in search strategy based on years of
experience, and the sample size was not large enough to
fully tease apart the effects of search strategy versus ex-
perience in relation to overall performance.
In future research, it will be beneficial to investigate

the best search strategies in volumetric images across
different tasks and modalities. Search strategies that are
most effective for a given task (e.g., detecting focal ab-
normalities, such as lung cancer nodules) may not be
optimal for abnormalities defined by different bottom-up
properties (e.g., detecting diffuse abnormalities, such as
pneumonia). There are some good examples of these
comparisons from studies using 2D medical images (e.g.,
Gegenfurtner & Seppänen, 2013; Krupinski, 2005; Kru-
pinski et al., 2003; Mousa et al., 2014). For example,
when viewing chest radiographs, different search pat-
terns are elicited for diffuse abnormalities, focal abnor-
malities, and normal images (Kok, De Bruin, Robben, &
van Merriënboer, 2012). Furthermore, experts and

Fig. 4 Two strategies emerge when searching through chest computed tomography (CT) scans for lung nodules: scanning and drilling. Scanners
move their eyes along the two-dimensional plane while slowly scrolling through depth. In contrast, Drillers keep their eyes relatively stationary in
one region at a time while rapidly scrolling through depth. At present, it is largely unknown how these strategies translate to other modalities or
tasks. Figure reprinted with permission from Rubin et al. (2018). Perception of volumetric data. In Handbook of medical image perception &
technology (Vol. 2). Cambridge, United Kingdom: Cambridge University Press. Original figure was recreated from Drew, Võ, Olwal, et al. (2013).
Scanners and drillers: characterizing expert visual search through volumetric images. Journal of Vision, 13(10), 3
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novices have different patterns of behavior based on the
type of abnormality. Diffuse abnormalities generally led
to shorter and more dispersed fixations, but this effect
was more pronounced in the students. In contrast, focal
abnormalities were characterized by longer fixations at a
given location. Notably, in a direct comparison between
breast tomosynthesis and chest CT, Aizenman et al.
(2017) found that breast tomosynthesis led to a more
rigorous drilling strategy than chest CT. Furthermore,
no observers adopted a scanning strategy. Similarly, al-
though both scanners and drillers could be identified in
examinations of abdominal and pelvic CT, there was no
accuracy advantage associated with being a driller (Kela-
han et al., 20192019). The scanner/driller distinction has
also recently been extended to the realm of digital path-
ology, where clinicians pan and zoom into large images
to more closely view suspicious regions (Mercan, Sha-
piro, Brunyé, Weaver, & Elmore, 2018). In this domain,
scanning appears to be the dominant strategy, but there
were no differences in performance. In future research,
it may be beneficial to evaluate the stimulus properties
that influence the relative proportion of these strategies
in volumetric images in a more systematic manner.
A recent study approached the question of inter-

observer variability in scan patterns using a novel tool
called ScanMatch (Crowe, Gilchrist, & Kent, 2018). The
ScanMatch method compares fixation sequences across
observers by assigning a letter value to each region and
generating a string sequence for each participant. These
strings are then compared between observers and a
similarity score is obtained. In this study, observers
viewed two runs of a fixed speed presentation of brain
MRI scans. Overall, experts engaged in more similar
scan patterns than novices. In addition, greater similarity
was associated with better performance. These results
could be explained in a number of ways. First, it is pos-
sible that experts are driven by statistical irregularities
picked up in the first presentation of the stimulus, which
is supported by increased similarity scores for true posi-
tives and lower similarity scores for false negatives.
However, the same pattern was not found for true nega-
tives, which led the authors to suggest that experts
might instead use more systematic search strategies in
the absence of statistical irregularities. Consistent with
this view, observers adopt endogenous systematic search
strategies in visual displays that are lacking in features
that typically guide search behavior, such as saliency and
semantic information (Solman & Kingstone, 2015). In
addition, systematic search strategies were more closely
associated with the strongest performers. In future re-
search, it would be interesting to test these predictions
more directly in volumetric image search, particularly as
it relates to the reliability of scrolling behavior through
depth using more clinically-valid free-scroll paradigms.

How are scene regularities learned in volumetric images?
In a typical laboratory search task, the observer might be
asked to indicate whether a target is present or absent in
a display that consists of randomly ordered objects on a
blank background. In contrast, real-world scenes are rich
with context, and neighboring objects are often closely
related to each other. A toothbrush near the bathroom
sink will be identified more quickly than a toothbrush
placed on a piano or floating in midair (Torralba, Oliva,
Castelhano, & Henderson, 2006). This form of top-down
guidance is referred to as scene grammar (Võ & Wolfe,
2015). To a knowledgeable observer, medical images are
also highly structured and contextual. For example, gall-
stones always occur in the gallbladder, which is situated
under the liver. This greatly constrains the regions of an
abdominal CT scan that need to be evaluated for gall-
stones. This type of top-down knowledge is thought to
alter the areas of chest radiographs that are attended
over the course of training, leading to qualitatively dif-
ferent search patterns between experts and novices
(Kundel & La Follette, Jr., 1972; Manning, Ethell, Dono-
van, & Crawford, 2006). Importantly, this effect seems to
develop organically without any explicit instructions on
how to search through chest radiographs, which suggests
it is strongly driven by top-down knowledge about
where abnormalities are likely to occur rather than train-
ing on specific search strategies.
Although our knowledge of the world allows us to

make an educated guess about where to find a tooth-
brush in a stranger’s house, we will likely find a tooth-
brush more quickly in our own bathroom due to
repeated experience. In the laboratory, the response time
benefit from repeated exposures to the same search
array is referred to as contextual cueing (Chun & Jiang,
1998). Although these effects are typically observed in
highly artificial search tasks, contextual cueing is also
found in dynamic tasks where targets and distractors re-
peatedly move with a certain trajectory, 3D depth dis-
plays, outdoor environments, and virtual apartments
(Chun & Jiang, 1999; Jiang, Won, Swallow, & Mussack,
2014; Kit et al., 2014; Li, Aivar, Kit, Tong, & Hayhoe,
2016; Zang, Shi, Müller, & Conci, 2017). Furthermore,
although object-based information is a strong contextual
cue (Koehler & Eckstein, 2017), contextual guidance
does not necessarily depend on objects in a scene; this
information can be extracted from statistical regularities
in low-level visual features (Torralba et al., 2006). In
addition, contextual cueing is tolerant to a number of
changes between exposures (Song & Jiang, 2005).
Given the large size of volumetric medical images

(Andriole et al., 2011; McDonald et al., 2015), it is un-
doubtedly important for radiologists to lean on some of
the aforementioned mechanisms to narrow the search
area down to relevant regions of space. It is simply not

Williams and Drew Cognitive Research: Principles and Implications            (2019) 4:21 Page 9 of 24



practical to search every pixel of a large CT scan (Fig. 1)
and it is likely this top-down guidance is one of the big-
gest advantages of expertise (for reviews, see Gegenfurt-
ner et al., 2011 and van der Gijp et al., 2016). However,
unlike 2D medical image interpretation, the influence of
top-down knowledge on the observer’s search strat-
egy over the course of training when reading volumetric
images is largely unknown, particularly as it relates to
scrolling through depth. Typically, expertise studies ap-
proach these questions by analyzing indirect measures,
such as image coverage or time to first hit, across levels
of experience (e.g., Donovan & Litchfield, 2013; Man-
ning et al., 2006). However, it can be difficult to disen-
tangle the influence of medical knowledge versus
learned statistical regularities using these indirect mea-
sures of top-down processing. A complementary ap-
proach to these indirect measures might be to train
novice observers on artificial volumetric displays and de-
termine how search behavior changes with experience.

What are the characteristics of expertise in volumetric
image interpretation?
The advantage of regularities in our environment is that
we can form detailed scene representations, known as
schemas, to guide visual search behavior. For example,
contextual cueing appears to rely on spatial working
memory resources for the expression, but not acquisi-
tion, of learned displays (Annac et al., 2013; Manginelli,
Langer, Klose, & Pollmann, 2013). It is thought that
spatial working memory rapidly links the current search
configuration to schemas held in long-term memory,
making the observer sensitive to statistical irregularities
in their environment. In fact, familiar scenes presented
for a fraction of a second can be accurately categorized
(Potter, 1975), guide subsequent eye-movements (Castel-
hano & Henderson, 2007), and increase the detectability
of novel objects in the scene (Brockmole & Henderson,
2005; Chen & Zelinsky, 2006). This phenomenon is re-
ferred to in the literature as “gist”, “holistic”, or “global”
processing, and it is frequently studied using a flash
moving-window paradigm (Castelhano & Henderson,
2007). In this paradigm, observers are shown a brief pre-
view of the scene followed by a mask and a subsequent
target cue. The search task is performed using a gaze
contingent window, which eliminates the influence of
online parafoveal processing and isolates the effect of
scene preview (i.e., the initial holistic impression) on
search behavior.
In radiology, the beneficial effects of scene preview ap-

pear to be more modest than those observed in the vis-
ual search literature. Scene previews before a lung
cancer detection task were associated with small im-
provements in search time and fewer overall fixations
(Litchfield & Donovan, 2016). However, these benefits

did not correspond with an increase in accuracy and
were only weakly associated with expertise. Furthermore,
scene previews appeared to be harmful if the pathology
varied between trials. Nonetheless, there is strong evi-
dence that radiologists are able to rapidly detect statis-
tical anomalies in medical images. Kundel and Nodine
(1975) found that 70% of lung nodules were detected
after chest radiographs were viewed for only 200 ms.
Similarly, research has shown that mammographers can
classify images as normal or abnormal at a rate above
chance after viewing them for only 250 ms (Evans,
Georgian-Smith, Tambouret, Birdwell, & Wolfe, 2013).
However, the ability to localize these lesions was at
chance (though see Carrigan, Wardle, & Rich, 2018). In
addition, the majority (57%) of breast cancers and a large
portion (33%) of lung cancers are fixated on in the first
second of viewing, which is simply not enough time to
perform a thorough search (Donovan & Litchfield 2013;
Kundel, Nodine, Conant, & Weinstein, 2007; Kundel,
Nodine, Krupinski, & Mello-Thoms, 2008). In addition,
eye-tracking demonstrates that expertise is associated
with substantial differences in search behavior: experts
exhibit more circumferential scan patterns, shorter time
to first fixation, greater fixation duration, a smaller fix-
ation count, less image coverage, and reduced variability
in gaze (Kundel & La Follette, Jr., 1972; McLaughlin,
Bond, Hughes, McConnell, & McFadden, 2017). Notably,
expert-like scan patterns may pre-date expert decision-
making (Kelly, Rainford, Darcy, Kavanagh, & Toomey,
2016).
These findings have led to a series of models on

medical image perception, which all feature holistic
processing as a prominent component of expertise
(Drew et al., 2013; Nodine & Kundel, 1987; Swenn-
son, 1980). Swennson proposed a two-stage model.
The first stage involves a pre-attentional filter, similar
to feature integration theory (FIT), which rapidly se-
lects certain areas of the image for processing. In the
second stage, the areas marked during the first stage
receive further scrutiny. Similarly, Nodine and Kundel
(1987) proposed a global-focal search model. During
an initial global impression, the image is rapidly com-
pared to the observer’s schema of a normal image. In
the next stage, perturbations between the image and
the mental representation are further evaluated using
focused attention. Finally, Drew et al. (2013) outlined
a model that relies on two parallel pathways (see also
Wolfe, Võ, Evans, & Greene, 2011). The nonselective
pathway extracts global information from the image
using a large field of view. The selective pathway ex-
tracts detailed visual information that supports object
recognition using a more focal search. Although these
models are nuanced, they all emphasize the import-
ance of rapidly extracting global information to guide
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search behavior: an ability which is thought to in-
crease with experience.
Although much is known about expertise in 2D im-

ages, there is far less research on expertise in volumetric
images. Of the existing research, several rudimentary
findings have been replicated in volumetric images
(Table 2). For example, experts are more accurate,
search faster, locate abnormalities more quickly, and ex-
hibit more fixations in regions of interest (Bertram,
Helle, Kaakinen, & Svedstrom, 2013; Cooper et al., 2009,
2010; Mallett et al., 2014). However, many findings based
on 2D medical images have not been replicated
using volumetric images (Table 2). For example, Bertram
et al. (2013) found no differences in average fixation dur-
ation between experts and novices, which is typically
used as an index of increased processing ability with ex-
pertise. In addition, the researchers found no group dif-
ferences in saccadic amplitude, which is a key index of
global processing ability. Similarly, Mallett et al. (2014)
failed to find any differences in eye-movements between

experts and novices in fly-by endoluminal CT colonogra-
phy, aside from reduced time to first pursuit. However,
both of these studies utilized tasks (e.g., enlarged lymph
nodes, visceral abnormalities, and colon polyps) that are
far removed from the tasks typically used in studies
with 2D images. At present, it is unclear if these differ-
ences are due to the nature of the task or fundamental
differences in how expertise is expressed in volumetric
imaging. In fact, there are very few direct eye-tracking
comparisons between 2D and volumetric search. In a
rare example of this approach, Aizenman et al. (2017)
found that breast tomosynthesis was associated with lon-
ger fixations and less image coverage than traditional
mammography. However, saccadic amplitude was
equivalent, which suggests an equal ability to rely on
parafoveal processing in both modalities.
The increase in holistic processing ability with expert-

ise is one of the most important discoveries in the med-
ical image perception literature, but it is almost
completely unknown how these abilities might manifest

Table 2 A list of common expertise-related findings in two-dimensional images. Many of these basic expertise findings have either
not replicated or not yet been tested in volumetric images (particularly using free-scroll paradigms with stacked images)

Which medical image perception expertise findings have been replicated in volume? 

Expertise Finding Replicated in Volume? Volumetric Studies

Improved accuracy Yes
Bertram, et al., 2013; Bertram, et al., 2016; 
Cooper, et al., 2009; Cooper, et al., 2010; 

Mallett, et al., 2014

Shorter Search Time Yes Cooper, et al., 2010

Decreased attention to 
irrelevant salient regions/

Increased attention to task-
relevant regions

Yes Bertram, et al., 2013; Cooper, et al., 2019

Smaller Fixation Count No Mallett, et al., 2014; Kelehan, et al., 2019

Shorter Dwell Time No Mallett, et al., 2014; Kelehan, et al., 2019

Shorter Fixation Duration No Bertram, et al., 2013; Kelehan, et al., 2019

Reduced Saccadic Amplitude No Bertram, et al., 2013; Kelehan, et al., 2019

Shorter time to first fixation Mixed
Yes: Cooper, et al., 2009; Mallett, et al., 

2014
No: Kelehan, et al., 2019

Reduced Coverage Unknown

Reduced variability in scan 
patterns Unknown

Fewer refixations Unknown
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in volumetric images. One possibility is that global im-
pressions are continually formed on the 2D plane as the
observer scrolls through depth. For example, the obser-
ver might fixate more quickly on abnormalities from the
moment they are first visible on the screen (e.g., Helbren
et al., 2014, 2015). If this is the case, analogs of eye-
tracking measures associated with global processing in
2D image interpretation should transfer to volumetric
images (Table 2). However, a global representation of the
scene could also be formed by rapidly scrolling through
the depth of the image prior to utilizing a more focal
search pattern. There is support for this proposal in the
literature. In real-world tasks, such as making a sand-
wich, observers conduct an initial scan of the scene,
which helps them locate target objects more quickly
during the task (Hayhoe, Shrivastava, Mruczek, & Pelz,
2003). Moreover, it is possible that global processing
ability is expressed differently based on the search strat-
egy of the observer. For scanners, global impressions
might be established on the 2D plane with each transi-
tion through depth. In contrast, drillers might establish
a global impression by scrolling through depth and then

returning to layers of depth that were statistically
anomalous.
In addition to scanners and drillers, other metrics of

scrolling behaviors through depth have been proposed in
relation to global processing ability (Table 3): the num-
ber of visits per slice, the number of oscillations (scrol-
ling back and forth through less than 25% of depth), the
number of half runs (scrolling back and forth through
25–50% of depth), and the number of full runs (scrolling
back and forth through > 50% of depth) (Venjakob, Mar-
nitz, Mahler, Sechelmann, & Roetting, 2012). Radiolo-
gists who engage in more full runs are thought to use a
more global search process, which should increase with
the experience of the observer. However, this proposal
has not yet been tested, and these measures have not
been widely used outside of this initial exploratory study
using cranial CT images.
In other realms of medical imaging that might be

considered similar to volumetric images, such as vir-
tual microscopy, there is a clear link between expert-
ise and global processing ability (Krupinski, Graham,
& Weinstein, 2013; Krupinski et al., 2006). Although

Table 3 Common eye-tracking metrics, their cognitive correlates, and proposed analogs for volumetric medical images. ROI, region
of interest

Common eye-tracking measures and their volumetric counterparts

Eye-tracking Metric Cognitive Correlate Volumetric Analog

Fixation Measures 
(e.g., Fixation Count, 

Fixation Duration)

Processing of visual 
information

Fixation classification in volume will heavily depend on the task at 
hand:
Option 1: Fixations are calculated normally and depth dimension is 
ignored.
Option 2: Fixations are calculated normally and treated as cylinders 
that extend into depth.
Option 3: Fixations are re-calculated offline for each slice of the image. 
Saccades may need to be extracted first from the raw data. 

Refixation Rate Memory in search Refixations in volume need to account for the individual slices of the 
image using Option 1 or 2 above. 

Dwell Time Decision Time Dwell time can be calculated similarly to 2D images if a 3D ROI is 
defined.

Time to First Fixation Global processing ability
Learned scene regularities

Option 1: Time to first fixation is calculated relative to the moment ROI 
is first visible.

Option 2: Time to first-pursuit, defined as consecutive fixations within 
50 pixels of an ROI for at least 100 ms. (Helbren, et al., 2014).

Saccadic Amplitude Global processing ability
Saccades can be calculated using the same methods as 2D images. 

However, smooth-pursuit eye-movements, which may be miscalculated 
as fixations and saccades, may need to be accounted for in the data.

Image Coverage
Global processing ability

Learned scene regularities

Image coverage should be summed across each slice in the volume, 
which can be accomplished by co-registering the position in depth with 

each eye-tracking sample.

Error Type Search, recognition, or 
decision error

Errors can be categorized similarly to 2D images if a 3D ROI is defined 
for each abnormality. However, it is unclear if the threshold for 

recognition vs decision errors is appropriate in volume.

Pupil Size Cognitive Load Same as 2D images
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pathologists at all levels of experience were likely to
select informative areas for the locations they would
like to magnify, more experienced pathologists spent
less time evaluating regions that ultimately would not
be selected for magnification. This evidence, in
addition to a number of critical behavioral and eye-
tracking measures, suggests that experienced patholo-
gists have an increased ability to rapidly extract the
most important information from medical images.
Other studies have highlighted the similarities in
search strategies between digital pathology and volu-
metric imaging (Mercan et al., 2018), but it is largely
unclear how these findings relate to expertise in ei-
ther domain. In addition, there are clear differences
between these images: choosing to view a visible part
of the image at a greater resolution is not the same
as scrolling to reveal visual information that is em-
bedded throughout the depth of the image. We be-
lieve there are a number of promising areas for
future research related to how search behaviors might
differ in relation to expertise across a wide variety of
areas (e.g., pathology, ultrasonography).
When discussing changes in search strategy with

expertise, an important caveat should be considered:
differences in search patterns between experts and
novices do not necessarily mean that training the
novice to use those strategies will improve perform-
ance. In many cases, the research indicates that
strengthening the target template through greater ex-
posure to examples of normal and abnormal images
would be far more beneficial to the novice than
instructing them where to look (Chen et al., 2017;
Donovan & Litchfield, 2013; Kundel & La Follette, Jr.,
1972; Manning et al., 2004; Nodine et al., 1996, 1999)
. Although it is tempting to identify shortcuts to ex-
pertise, most efforts to train novices to utilize new
strategies or to follow the scan paths of experts have
had modest success or limited generalizability (Gegen-
furtner, Lehtinen, Jarodska, & Saljo, 2017; Kok et al.,
2016; Litchfield, Ball, Donovan, Manning, & Crawford,
2010; Mello-Thoms, 2008; van Geel et al., 2017).
When considering this issue, it may be helpful to
consider which aspects of visual search might be en-
hanced by using these techniques. Training novices to
mimic the search behavior of experts might improve
overall search strategy, but it is doubtful these
methods would substantially improve global process-
ing ability, which is considered a hallmark of expert-
ise. Rather, global processing ability is attributed to a
greater ability to rapidly detect statistical abnormal-
ities in an image via strong mental representations,
which is acquired through extensive experience. Not-
ably, expert radiologists search different areas of the
image on each case, which is thought to be driven by

the global properties of each image (Manning, Ethell,
& Crawford, 2003). However, trained radiographers
tend to skip the same regions consistently, which
likely reflects a strategy more influenced by the prior
probabilities of encountering an abnormality at a
given location (Manning et al., 2003). These findings
suggest that although both experts and novices rely
on their previous experiences to guide search, experts
have stronger mental representations to rely on than
novices. Future research that seeks better training
techniques should consider which elements of expert-
ise require experience and which are learned strat-
egies. In addition, it may be beneficial to focus on
supporting radiologists at different stages of develop-
ment rather than seeking shortcuts between them.
In addition to group-level differences between ex-

perts and novices, it may be equally beneficial to ex-
plore how idiosyncrasies in eye-movements relate to
the substantial variability in performance observed
among experts. Hayes and Henderson (2017) found
that variations in scan patterns explain a large por-
tion of the variance in individuals’ working memory
capacity, speed of processing, and intelligence. More-
over, individual differences in scan patterns seem to
be fairly stable across different types of tasks, even
when adopting a rigid scan pattern may not be opti-
mal (Andrews & Coppola, 1999; Henderson & Luke,
2014; Mehoudar, Arizpe, Baker, & Yovel, 2014; Paeye
& Madelain, 2014; Poynter, Barber, Inman, & Wig-
gins, 2013; Rayner, Li, Williams, Cave, & Well, 2007).
In addition, scan patterns reveal a great deal about
an individual’s search strategy, such as a preference
for speed or accuracy (Hogeboom & van Leeuwen,
1997). Many researchers have attempted to determine
if there are domain general cognitive abilities associ-
ated with expertise in radiology, which may help pre-
dict who might become a better radiologist or
explain why equal experience does not lead to
equivalent performance. These approaches have
largely been unsuccessful and paint a compelling pic-
ture of domain specificity with expertise (Beck,
Martin, Smitherman, & Gaschen, 2013; Evans et al.,
2011; Kelly, Rainford, McEntee, & Kavanagh, 2017;
Leong et al., 2014; Myles-Worsley, Johnston, & Si-
mons, 1988; Nodine & Krupinski, 1998). However,
performance on the first trial of a visual search task
predicts which individuals will perform well with ex-
perience, which suggests there may be important in-
dividual characteristics that have been overlooked in
previous research (Ericson, Kravitz, & Mitroff, 2017).
Research from the basic science literature suggests
that differences in eye-movements may provide
insight on these questions, but this has not yet been
evaluated in the literature.
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What are the consequences of limited memory in
volumetric image search?
Guided search posits that attention will be directed to
the subset of items in your environment that are more
likely to be your target. For example, if you are searching
for romaine lettuce in the grocery store, attending to
green items reduces the overall number of items that
need to be evaluated. However, it stands to reason that
visual search would be most efficient if the cognitive sys-
tem kept track of which green items have already been
evaluated in order to guide attention to novel locations
and minimize unintentional eye-movements to previ-
ously visited locations. Such a mechanism would be par-
ticularly advantageous for professional visual searchers,
such as radiologists, who need to efficiently determine
which areas of large volumetric images they have already
evaluated and when it is time to move on to another
task. Many models of visual search carry the implicit as-
sumption that previously attended objects will never be
reevaluated (e.g., Treisman & Gelade, 1980). Consistent
with this assumption, research has shown that observers
search as if they have implicit memory about where they
have recently looked: saccades are more likely to move
in the same direction as the preceding saccade than the
opposite direction (Klein & MacInnes, 1999), saccadic
latency is higher to previously visited locations than to
novel locations (Vaughan, 1984), and refixation rate
more closely resembles a model that assumes memory
of previous fixations than one that does not (Bays &
Husain, 2012; Peterson, Kramer, Wang, Irwin, & McCar-
ley, 2001).
A commonly proposed mechanism for this

phenomenon is inhibition of return (IOR), which is a
term used to describe delayed response times to
probes in recently attended locations relative to novel
locations (Posner & Cohen, 1984). In real-world
search tasks, IOR is thought to serve as a foraging fa-
cilitator (Klein & MacInnes, 1999). In support of this
hypothesis, Klein and MacInnes (1999) found that
saccades to a probe in a Where’s Waldo search task
were delayed in recently (2–3 back) fixated locations.
However, despite the obvious utility of a memory
mechanism in visual search, evidence for it has been
surprisingly mixed. Horowitz and Wolfe (1998) found
that search efficiency was not affected when objects
moved around in the scene every 100 ms, which sug-
gests that memory typically plays little to no role in
visual search. This extreme model of a memoryless
search has been challenged many times (e.g., Geyer,
Von Mühlenen, & Müller, 2007; Kristjánsson, 2000;
Peterson et al., 2001; Shore & Klein, 2000), but these
results do indicate that visual search may involve less
memory for previously visited locations than our intu-
ition suggests.

One proposal that attempts to reconcile these con-
flicting pieces of evidence is that IOR serves to dis-
courage perseveration in visual search, but is too
limited in capacity (~ 4 items) and takes too long to
develop (~ 200–300 ms) to produce a search that
“samples without replacement” (Wolfe, 2003). These
limitations also cast doubt on the idea that IOR
might play a substantial role when scrolling through
large, volumetric medical images that necessitate hun-
dreds of fixations. Furthermore, IOR appears to be se-
verely disrupted by interruptions, particularly when
the search array is no longer visible (Takeda & Yagi,
2000). This suggests that IOR may be closely tied to
objects in the scene rather than spatial location. If
IOR is only effective when tagged objects are visible,
moving to new layers of depth may disrupt the
process and further limit the utility of an IOR mech-
anism in volumetric image search.
It appears that implicit memory for previously viewed

locations is fairly limited, but what about explicit mem-
ory? When searching a complex scene (e.g., Where’s
Waldo) observers are able to distinguish their own eye-
movements from randomly generated scan paths (Foul-
sham and Kingstone, 2013a, 2013b; Võ, Aizenman, &
Wolfe, 2016). However, observers are close to chance at
distinguishing their own fixations from a stranger’s fixa-
tions, particularly in static displays (Foulsham and King-
stone, 2013a, 2013b; van Wermeskerken, Litchfield, &
van Gog, 2018; Võ et al., 2016). One explanation for this
pattern of results is that observers rely on their know-
ledge of where it would make the most sense to look in
an image to perform the task rather than maintain a
representation of their scan path in memory (Foul-
sham & Kingstone, 2013a, 2013b; Võ et al., 2016). In
further support of this view, observers are able to bet-
ter discriminate their own eye-movements in a given
scene when the second observer searched for a differ-
ent item and over-represent the likelihood that ob-
jects that are easily accessible in memory were fixated
on during visual search (Clarke, Mahon, Irvine, &
Hunt, 2017). Together, these results point to surpris-
ingly poor explicit memory for previously visited loca-
tions, which is primarily driven by informed guesses
about where someone should have looked in a scene
rather than memory per se.
What implications do poor implicit and explicit mem-

ory have for radiologists searching through volumetric
images? If you forget where you have searched for your
keys in the morning, the worst-case scenario is that you
are a few minutes late for work because you checked the
same places more than once. However, it would be
highly consequential for a radiologist to forget whether
or not they have checked everywhere for signs of trauma
after a car accident. This may be particularly relevant for
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volumetric images: it may be more difficult to maintain
a representation of where you have already searched
when images increase in size. Furthermore, it is more
time consuming to start over or retrace your steps in a
large CT scan than in a radiograph if you lose your
place, which is even more consequential in light of the
increase in radiologists’ workload due to volumetric im-
aging (Andriole et al., 2011; McDonald et al., 2015).
The visual search literature suggests that knowledge of

where you have already searched is largely based on stat-
istical regularities and scene context (Chun & Jiang,
1998; Clarke et al., 2017; Torralba et al., 2006). There is
little reason to suspect that expert radiologists would
differ in this finding, but there are clear limitations to
this strategy. For example, following an interruption,
where does the radiologist choose to resume their
search? One possibility is that radiologists have forgotten
where they have already searched and unknowingly re-
visit those locations, which could be observed by track-
ing the number of refixations and the accuracy of search
resumption following the interruption (Williams &
Drew, 2017). However, from these measures alone, it is
unclear if areas are revisited because they are forgotten
or if they are consciously revisiting these areas in order
to better recall what they intended to do next. This limi-
tation highlights the need for more direct measures of
memory in applied visual search tasks. If explicit recall is
largely based on knowledge of which areas should be
searched rather than knowledge of where you have actu-
ally searched, this strategy may lead to inaccurate search
resumption following an interruption. One possibility is
that relevant areas will be prioritized and more resistant
to the effects of interruptions. Alternatively, if memory
recall is primarily based on which areas should be
searched, the most relevant structures might be recalled
despite the fact that they were never searched. One way
to disentangle these possibilities would be to combine
indirect measures (e.g., eye-tracking) with more direct
measures (e.g., periodic probes) to determine which
areas are more likely to be reported as searched follow-
ing an interruption.
Consistent with a poor memory account, radiologists

often search a surprisingly small portion of medical im-
ages, even though coverage is negatively associated with
error rate within an expert population (Drew et al.,
2013; Rubin et al., 2015; Thomas & Lansdown, 1963).
For example, Drew et al. (2013) found that only 69% of
the lung was searched during lung cancer screening
using a 5° useful field of view (UFOV) estimate. Drillers
covered more of the image than scanners, which may be
another factor that explains their better performance.
Using a smaller UFOV (2.6° of visual angle), Rubin et al.
(2015) found that average coverage for lung cancer
screening was only 26.7%. Consistent with research

using 2D images, higher coverage was associated with
reduced sensitivity. In fact, they estimate it would have
taken almost 12 min per case for the images to be thor-
oughly searched, but average search time was closer to
3 min. In a direct comparison between 2D and volumet-
ric image search, coverage was higher for mammography
than breast tomosynthesis over a wide range of UFOV
estimates (Aizenman et al., 2017). In fact, overall cover-
age was less than 30% in volumetric images using the
highest UFOV estimate (5°). A similar finding of de-
creased volumetric image coverage was observed in a
study comparing DBT to single-slice DBT (Lago et al.,
2018).
Although it is clear that coverage is low in volumetric

images, it is impossible to obtain a precise estimate of
coverage without an accurate UFOV estimate (Fig. 5). In
chest radiography, 5° is a common estimate of UFOV
because the vast majority of lung nodules can be de-
tected within that window (Kundel, Nodine, Thickman,
& Toto, 1987). However, UFOV is known to decrease
with image complexity and task difficulty (Drew,
Boettcher & Wolfe 2017; Young & Hulleman, 2013), and
research suggests this estimate may be too generous for
lung cancer screening in chest CT (Rubin et al., 2015). It
is also important to note that UFOV varies substantially
with nodule size, image complexity, and reader (Ebner et
al., 2017). In future research, it may be necessary to em-
pirically validate UFOV estimates for a particular task or
to report results for a range of UFOV estimates (e.g.,
Aizenman et al., 2017). For example, Rubin et al. (2015)
calculated UFOV based on the distance of nodules from
central fixation at the moment of recognition, and found
that 99.8% of detected nodules were 50 pixels or less
from central fixation (2.6° window). Notably, 25% of
missed nodules were never within UFOV, which high-
lights the potential consequences of poor image cover-
age in large volumetric images. In addition, it is
important to understand how UFOV changes as a func-
tion of expertise in order to test models of expertise in
volumetric images. For example, if experts are able to
detect abnormalities more effectively using parafoveal vi-
sion, they should have a wider UFOV than novices.
In light of the poor image coverage associated with

volumetric images, holistic processing might play a
downsized role relative to overall image coverage: it is
obvious there could be no behavioral benefit if the slices
of the image that contain the abnormality are never vis-
ible. For example, there may be a behavioral cost of ex-
pertise if there are unexpected abnormalities in an
image. We know that contextual cueing is detrimental
to performance if the target is not in the expected loca-
tion (Makovski & Jiang, 2010). Similarly, in medical im-
ages, initially incorrect holistic decisions are rarely
reverted (Mello-Thoms, 2009) and clinical history
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significantly affects how images are interpreted (Nor-
man, Brooks, Coblentz, & Babcook, 1992). In volumetric
images, these effects may be exacerbated by the in-
creased need to reduce the overall search area and the
ability to scroll directly to regions of interest. For ex-
ample, the most logical way for a radiologist to evaluate
a patient for gallstones is to focus on the layers of the
image where the gallbladder is present. However, this
approach may lead to negative consequences if there are
unexpected abnormalities, such as cancer, that are visible
on different slices of the image. Although missed inci-
dental findings are not necessarily an error in the con-
text of the assigned task, the undetected cancer may
nonetheless result in negative patient outcomes and/or
medical malpractice claims. Considering the potential
for incomplete image coverage to result in negative

consequences for both the patient and the radiologist,
future research on this topic is essential.
Given the limitations of memory in search, it is rea-

sonable to question how attention is guided to new loca-
tions at all in volumetric images. Eye-tracking during
real-world tasks suggests that humans continually sam-
ple their environment for information rather than rely-
ing on short-term memory (Ballard, Hayhoe, & Pelz,
1995). In fact, some researchers have suggested that the
appearance of mnemonic mechanisms in visual search
may be driven largely by search strategies rather than
memory for previously searched locations (Peterson,
Beck, & Vomela, 2007). Observers often adopt a system-
atic pattern during orderly visual search tasks and dis-
play a bias toward horizontal scans of the scene
(Dickinson & Zelinsky, 2007; Findlay & Brown, 2006;
Gilchrist & Harvey, 2006). Furthermore, working mem-
ory capacity (~ 4 items; Cowan, 2001) is typically as-
sumed to be a limiting factor for the number of previous
locations that can be maintained in memory (McCarley,
Wang, Kramer, Irwin, & Peterson, 2003). However, some
studies have found that observers are less likely to refix-
ate on as many as 12 previous fixations and will report
with high confidence whether or not a target appeared
at those locations (Dickinson & Zelinsky, 2007; Peterson
et al., 2007). Working memory capacity limitations may
be overcome by maintaining a coarse representation of
the general search path rather than a high-resolution
memory of the distractor locations (Dickinson &
Zelinsky, 2007; Godwin, Benson, & Drieghe, 2013; Peter-
son et al., 2007). Notably, random deployments of atten-
tion to salient stimuli are faster than volitional
deployments of attention, which may explain why ob-
servers often fail to engage in a systematic search pat-
tern (Wolfe, Alvarez, & Horowitz, 2000). This research
suggests it is often a better strategy to randomly sort
through large amounts of visual information quickly ra-
ther than perform slow systematic searches of the envir-
onment. However, it could reasonably be argued that a
systematic strategy should play a larger role in radiology
due to the need to prioritize accuracy over speed in
medicine. Nonetheless, Kundel et al. (1987) calculated
that a systematic search strategy through a chest radio-
graph would require 500 fixations and 3min of search-
ing, which far exceeds what is typically observed in these
tasks (e.g., 1 min, 50 s by expert observers in Christensen
et al., 1981). Thus, it seems that radiologists often adopt
search strategies that prioritize efficiency over an ex-
haustive search.
Nonetheless, the sheer size of volumetric images may

necessitate some degree of systematic search through
the depth of the image in order to counteract a limited
memory system. In support of this proposal, Solman and
Kingstone (2017) found that partitioning a search array

Fig. 5 How useful field of view (UFOV) is defined (in terms of
degrees of visual angle (dva)) directly influences the outcome of
downstream analyses, such as error classification and image
coverage. In this hypothetical example, an observer fixated three
times (represented by concentric circles) on an image with a visible
lung-nodule (located in the red box) but failed to report it. Using a
smaller UFOV, the missed abnormality would be considered a search
error. However, it would be classified as a recognition or decision
error using the largest UFOV estimate. Similarly, estimated image
coverage varies considerably with UFOV size. Critically, the size of
the UFOV is both task-dependent and observer-dependent (Drew,
Boettcher & Wolfe 2017; Young & Hulleman, 2013; Ebner et al., 2017)
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encouraged a more systematic search strategy and led to
improvements in explicit recall for previous target loca-
tions. Similarly, expert dermatologists exhibited fewer
refixations that were separated further in time and were
less likely to retrace a scan path than novices (Vaidya-
nathan, Pelz, Alm, Shi, & Haake, 2014). In addition,
there is compelling evidence in other areas of radiology
that using a more structured approach might generally
help offset memory demands and improve performance.
For example, relative to free-form dictation templates,
structured templates improve dictation quality (Marcal
et al., 2015; Marcovici & Taylor, 2014; Schwartz, Panicek,
Berk, & Hricak, 2011), encourage adherence to best
practices (Kahn Jr., Heilbrun, & Applegate, 2013), and
improve diagnostic accuracy (Bink et al., 2018; Lin, Pow-
ell, & Kagetsu, 2014; Rosskopf et al., 2015; Wildman-
Tobriner et al., 2017). Similarly, using a checklist with
anatomical structures and frequently missed diagnoses
improved diagnostic performance in a group of medical
students (Kok, Abed, & Robben, 2017, though see Ber-
baum, Franken Jr., Caldwell, & Schwartz, 2006). In
addition, radiologists tend to look at their dictation
screens more often following an interruption, presum-
ably in order to remember where they have already
searched (Drew, Williams, Aldred, Heilbrun, & Min-
oshima, 2018). Together, this evidence suggests that in-
terventions that target memory limitations are a
worthwhile endeavor, but it is not yet known if adopting
a systematic search strategy might also help counteract
these limitations in volumetric search.

How do radiologists decide to terminate search in large
volumetric images?
Another challenge for our limited memory in visual
search is determining when to stop searching and move
on to the next task. In some cases, the answer is simple.
If you are looking for honeycrisp apples in a new grocery
store, you will stop searching once you have found them.
However, how do you know when to stop searching if
the store does not sell these apples? In radiology, the
problem becomes even more complex; the targets are
often unspecified in both appearance and quantity. If the
radiologist finds a tumor, there may still be other tumors
located elsewhere. The most conservative approach
would be to search every relevant pixel of the image.
However, time-constraints likely prohibit such a strategy,
particularly in light of the increase in the size and num-
ber of images generated by volumetric imaging tech-
niques in recent years (McDonald et al., 2015).
Furthermore, even if the radiologist has an unlimited
amount of time to conduct such a search, a failure to
find an abnormality does not mean that an abnormality
is not there. In fact, many abnormalities in radiology are
fixated on but never reported (Kundel et al., 1978). So

how does the radiologist decide when to terminate
search given all of this uncertainty?
A model of search termination has been proposed that

is similar to a drift diffusion model (Wolfe, 2012). Dur-
ing search, information is acquired about how long or
how many items you have searched until a termination
threshold is reached. This threshold can be pushed
around by variables in your environment, such as the
likelihood of a target being present or the reward associ-
ated with finding the target. Recently, it has been pro-
posed that search termination may mimic foraging
behavior observed in the wild (Cain, Vul, Clark, & Mitr-
off, 2012; Wolfe, 2013). When an animal forages for
food, such as berries, energy intake is maximized by
moving on to the next bush when the intake falls below
the average intake for that environment, which is known
as optimal foraging theory (Charnov, 1976). Observers
seem to follow the predictions of this model when
searching for multiple targets, and collect items in runs
of one target at a time when searching for multiple dif-
ferent types of targets (Cain et al., 2012; Wolfe, 2013;
Wolfe, Aizenman, Boettcher, & Cain, 2016). However, it
is less clear how quitting behavior changes when the
goal is not to collect a large number of abundant, obvi-
ous targets but instead to find rare, hard-to-find targets.
Although terminating search too early may lead to

negative consequences in radiology, the factors that de-
termine when a radiologist decides to terminate search
are poorly understood. Existing models of medical image
interpretation focus on what might be considered the
front-end of the clinician’s ultimate task of accurate
diagnosis: initial perception (Drew et al., 2013; Nodine &
Kundel, 1987; Swensson, 1980). It is important to note
that these models do little to account for the decision-
making that follows perception. This is in contrast to a
number of cognitive models, such as a class of drift-
diffusion models, that were explicitly designed to ac-
count for differences in how long it takes for an observer
to reach a decision (e.g., Ratcliff & McKoon, 2008).
None of the current models of medical image perception
address how a clinician ultimately decides when to stop
examining a case. However, it is clear that most true
positives are identified very early during search (Ber-
baum et al., 1991; Christensen et al., 1981; Nodine,
Mello-Thoms, Kundel, & Weinstein, 2002) and large
portions of CT scans are never searched at all (e.g., Drew
et al., 2013; Rubin et al., 2015). As search continues, the
likelihood of false positives increases dramatically. This
topic is particularly important in the context of volumet-
ric images, which typically take much longer to evaluate
than 2D images. Under these circumstances, ability to
efficiently move on from a healthy patient’s scans may
be a critical indicator of expertise that would be missed
by the existing models. For example, in 2D images,
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experienced radiologists appear to terminate their search
when they are still identifying more true positives than
false positives, but novices continue until false positives
are the dominant response (Christensen et al., 1981;
Nodine et al., 2002). Evaluating the time-course of errors
with expertise in volumetric imaging is completely un-
charted territory and will likely be a fruitful area for fu-
ture research. In addition, future research could seek to
apply a drift diffusion modeling technique to determine
how different factors, such as overall workload or the ex-
perience of the observer, influence the quitting threshold
in volumetric image search.

How do motor and perceptual processes interact in the
evaluation of volumetric images?
Unlike the feature-based searches that are common in
the literature on visual attention, search in the real world
often involves navigating through large 3D spaces for
objects that may be obscured by other objects. When
searching a field for targets, participants spontaneously
adopt a systematic search path (Riggs et al., 2017). Simi-
larly, when searching for evidence of a crime, participant
dyads engage in a highly systematic search and fre-
quently double check their work (Riggs et al., 2018).
However, others have found that revisits are rare in real-
world visual search, which is attributed to the extra ef-
fort required to retrace your steps in locomotive tasks
(Gilchrist, North, & Hood, 2001; Smith et al., 2008). To-
gether, this research has profound implications for volu-
metric image search, which involves both motor and
perceptual components as the observer scrolls through
depth. In recent years, there has been a growing interest
in how motor processes influence visual search when
target items must be located by moving other items,
termed “manually assisted search.” In some cases, manu-
ally assisted search has replicated findings from the vis-
ual search literature (e.g., “the low prevalence effect”,
Solman, Hickey, & Smilek, 2014). In other cases, new
sources of error have been identified. For example, Sol-
man, Cheyne, and Smilek (2012) created an “unpacking”
paradigm where the observer could move overlapping
virtual items using the computer mouse. The researchers
found that target items were often picked up and dis-
carded without being recognized, which suggests that
perception and action can be decoupled in visual search.
In other words, a decision for action (“discard the se-
lected item”) can precede a decision for identification
(“the selected item is my target”). The authors propose
that naturalistic visual search engages a perceptual
search process that supervises, but does not direct, the
motor “unpacking” process (Solman, Wu, Cheyne, &
Smilek, 2013).
In radiology, the findings could mean that the motor

system decides to move through depth before an

abnormality can be identified on the current slice. Al-
though verbal instructions to slow down motor move-
ments were ineffective, forcing the participant to slow
down significantly reduced unpacking errors (Solman et
al., 2013). At present, it is unknown how the speed of
scrolling through the depth of a volumetric medical
image relates to diagnostic accuracy or whether these
“decoupling” errors occur in radiology. Presenting CT
scans at different frame rates has led to mixed outcomes,
ranging from no accuracy differences (Bertram et al.,
2013) to poorer performance at faster speeds (Bertram
et al., 2016). Scrolling speed may also provide insight on
the effectiveness of motion onset cues or the develop-
ment of global processing ability in volumetric imaging.
If experts are able to extract relevant information from
the images more quickly than novices, they might be less
vulnerable to the potentially negative effects of scrolling
more quickly, such as “decoupling” errors. In a lung can-
cer screening task, there were no observed differences in
speed between radiologists and naïve observers (Diaz,
Schmidt, Verdun, & Bochud, 2015). On average, nodules
were detected at a speed between 25 and 30 frames per
second (fps). However, it is notable that performance in
this task was at ceiling for both experts and novices, and
there were no differences in performance across groups.
Therefore, it remains possible that differences in scrol-
ling behavior are more important when there is greater
variability in performance. Bertram et al. (2013) also
found no expertise-related differences in performance
when observers looked for a variety of abnormal-
ities in abdominal CT scans presented as fixed-speed
videos at 7, 14, or 28 fps. In contrast, Bertram et al.
(2016) observed better performance at 5 fps than 3 fps,
and experts were better able to adapt to the increased
presentation rate in abdominal CT scans. However, both
of these studies relied on fixed-speed videos rather than
allowing the observers to control their own speed, which
limits ecological validity. Clearly, there is not yet a
complete picture of how scrolling speed influences
search performance in volumetric images. In future re-
search, it may also be beneficial to analyze the distribu-
tion of errors as a function of naturalistic scrolling
speed. Moreover, it is important to consider the proper-
ties of the abnormality itself. Scrolling speed might be
an important predictor of abnormality detection
when abnormalities elicit motion onset cues or
for smaller abnormalities that are visible on fewer layers
of depth. In contrast, it is less likely that scrolling speed
predicts the detectability of diffuse or large abnormalities
that are visible throughout many slices.

Concluding remarks and future directions
This review of the literature highlights the many contri-
butions made by researchers toward better
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understanding volumetric image interpretation. How-
ever, due to the contemporary nature of much of this re-
search, much of our knowledge is driven by the data
rather than grounded in theory. Although exploratory
analyses often lead to important predictions for future
research, there is a limit to what can be learned from
simply characterizing search behavior. Much like re-
search on 2D medical image interpretation, this ap-
proach has revealed substantial variability between
observers and experience levels in volumetric image
search. However, contrary to the 2D medical image per-
ception literature, models of expertise have not yet been
well-established for volumetric image interpretation. In
fact, it is unknown how even some of the most ubiqui-
tous findings from the literature, such as increased glo-
bal processing ability with expertise, apply to volumetric
image search. In addition, relatively few expertise studies
have been conducted using volumetric images while
allowing the observer to freely scroll through depth,
which leaves substantial unanswered questions about
how scrolling behavior might relate to task performance
or develop with experience. Given the increasing popu-
larity of volumetric imaging and the recent Food and
Drug Administration (FDA) approval of both breast
tomosynthesis and digital pathology, this represents a
significant opportunity for researchers interested in
helping clinicians understand how to best examine these
complex images.
The challenge for the field going forward will be to

transition from describing search behavior in volumetric
images to establishing models of expertise with testable
predictions. Ultimately, these models should be able to
account for the stimulus, the task, and the observer. For-
tunately, researchers are well-situated to make this tran-
sition. Almost 50 years of research into medical image
perception can be leveraged to make predictions about
expertise in volumetric images. This research has led to
models of expertise that are associated with a number of
well-established eye-tracking metrics, and research has
demonstrated it is feasible to adapt these measures to
volumetric images (e.g., Helbren et al., 2014, 2015). Fur-
thermore, there are many examples in the literature that
highlight the promise of using basic science to make bet-
ter predictions about medical image perception (e.g.,
Corbett & Munneke, 2018; Drew et al., 2013; Evans,
Birdwell, & Wolfe, 2013), and there is substantial un-
tapped potential for using this approach in volumetric
imaging as well.
A basic science approach may help the field transition

from a more descriptive, computational analysis of what
radiologists do to a better understanding of how the ra-
diologists perform their task, which represents another
level of analysis in our understanding of complex sys-
tems (Marr, 1982). As outlined in this review, there are

many relevant findings from basic science that are un-
tested in volumetric medical images. Some of the most
exciting avenues for future research may be determining
the limitations of memory in volumetric image search,
the features that capture attention in volumetric images
(e.g., motion onset cues), or the interactions between
motor and perceptual processes when scrolling through
depth. By grounding future research firmly in the litera-
ture on basic science and medical image perception, the
field is poised to make substantial progress in our under-
standing of volumetric image search in the coming
years.
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