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A B S T R A C T   

The impacts of climate change on hydrology underscore the urgency of understanding watershed hydrological 
patterns for sustainable water resource management. The conventional physics-based fully distributed hydro-
logical models are limited due to computational demands, particularly in the case of large-scale watersheds. Deep 
learning (DL) offers a promising solution for handling large datasets and extracting intricate data relationships. 
Here, we propose a DL modeling framework, incorporating convolutional neural networks (CNNs) to efficiently 
replicate physics-based model outputs at high spatial resolution. The goal was to estimate groundwater head and 
surface water depth in the Sabgyo Stream Watershed, South Korea. The model datasets consisted of input var-
iables, including elevation, land cover, soil type, evapotranspiration, rainfall, and initial hydrological conditions. 
The initial conditions and target data were obtained from the fully distributed hydrological model HydroGeo-
Sphere (HGS), whereas the other inputs were actual measurements in the field. By optimizing the training sample 
size, input design, CNN structure, and hyperparameters, we found that CNNs with residual architectures 
(ResNets) yielded superior performance. The optimal DL model reduces computation time by 45 times compared 
to the HGS model for monthly hydrological estimations over five years (RMSE 2.35 and 0.29 m for groundwater 
and surface water, respectively). In addition, our DL framework explored the predictive capabilities of hydro-
logical responses to future climate scenarios. Although the proposed model is cost-effective for hydrological 
simulations, further enhancements are needed to improve the accuracy of long-term predictions. Ultimately, the 
proposed DL framework has the potential to facilitate decision-making, particularly in large-scale and complex 
watersheds.   

1. Introduction 

In recent decades, urbanization and climate change have exacer-
bated water stress in groundwater and surface water systems (Kaandorp 
et al., 2018; Mehran et al., 2017; Taylor et al., 2013). Climate change has 
led to changes in precipitation patterns and an increased frequency of 
extreme weather events (Papalexiou and Montanari, 2019; Schwartz 

and Randall, 2003). To address these issues, hydrological variations in 
watersheds must be estimated (Apurv and Cai, 2020; Delpla et al., 2009; 
Inyinbor Adejumoke et al., 2018). Physics-based, fully distributed hy-
drological models (such as, ParFLow and HydroGeoSphere) are valuable 
for simulating intricate watershed hydrological conditions (Hwang 
et al., 2014; Loague et al., 2006; Maxwell et al., 2015; VanderKwaak and 
Loague, 2001) and excel in capturing spatiotemporal characteristics and 
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key hydrological processes, such as evapotranspiration and 
groundwater-surface water interactions (Guevara Ochoa et al., 2020; 
Sudicky et al., 2008; Vieux et al., 2004). 

However, the application of fully distributed integrated models can 
be problematic due to their data intensity and computational expense, 
particularly for large-scale watersheds. These challenges arise from the 
complexity of surface water and groundwater models, specifically the 
inherent non-linearities (for example, Saint-Venant and Richards’ 
equations) that are present in hydrogeological and hydrological systems 
(Buitink et al., 2020; Ekmekcioğlu et al., 2022; Ocio et al., 2019; Sinha 
et al., 2022). Therefore, the development of computationally efficient 
and simplified approaches is crucial for effective water resource man-
agement. Strategies such as parallel computing and spatial/temporal 
resolution adjustments have been proposed to alleviate the computa-
tional burden (Vivoni et al., 2011; Wang et al., 2018). Parallel 
computing distributes computations across multiple processors or cores, 
notably reducing processing time (Kollet et al., 2010; Wu et al., 2002). 
Adjusting the spatial and temporal resolutions can optimize the balance 
between model accuracy and computational demands (Wang et al., 
2018). 

Although these methods offer some solutions, physics-based 
modeling approaches may be somewhat limited when dealing with 
highly complex systems that require extensive input data and domain 
expertise (Alvi et al., 2023). Consequently, data-driven deep learning 
(DL) techniques are now viewed as a promising alternative compared 
with conventional hydrologic model simulations (Sabzipour et al., 2023; 
Shen and Lawson, 2021). DL algorithms can learn intricate relationships 
and features autonomously (Szegedy et al., 2015; Zhou et al., 2017), 
simplify complex dynamics, such as hydrogeological processes, handle 
vast datasets efficiently (L’heureux et al., 2017; Rasp et al., 2018; 
Talukdar et al., 2023), and provide rapid and accurate predictions of 
hydrological conditions. (Cheng et al., 2007; L’heureux et al., 2017). 

In the field of hydrology, DL algorithms, such as long short-term 
memory networks (LSTMs) (Kratzert et al., 2018; Sabzipour et al., 
2023), convolutional neural networks (CNNs) (Leonarduzzi et al., 2022; 
Liao et al., 2023), and graph neural networks (GNNs) (Gai et al., 2023; 
Liu et al., 2022b) have been widely applied in previous research. Maq-
sood et al. (2022) utilized LSTM and CNN to estimate the variation in 
evapotranspiration under climate change scenarios, and Gai et al. 
(2023) employed GNNs to simulate spring discharge and capture the 
spatial dependence of groundwater propagation and precipitation 
infiltration. LSTMs effectively process sequential and temporal data, 
addressing the vanishing gradient problem (Abbas et al., 2023; Kratzert 
et al., 2018; Pyo et al., 2023). CNNs capture spatiotemporal patterns 
from multi-dimensional data and the nonlinearity inherent within hy-
drological processes (Chen et al., 2020; Maqsood et al., 2022; Prasad 
et al., 2022). Additionally, GNNs demonstrate proficiency in handling 
graph-structured data, such as river networks (Bentivoglio et al., 2023; 
Sun et al., 2022). 

However, hydrological research using DL modeling has typically 
focused on conducting time-series simulations at specific monitoring 
stations (Lange and Sippel, 2020; Maqsood et al., 2022; Shen et al., 
2021). In addition, enhancing the grid resolution of DL modeling for 
spatial analysis is required (Iqbal et al., 2022; Lim and Wang, 2022; Liu 
et al., 2022a; Wang et al., 2022). Sun et al. (2019) integrated a 
physics-based model with deep CNNs to predict spatiotemporal 
groundwater storage anomalies; the authors emphasized the necessity 
for further investigations employing higher-resolution grids to achieve 
outputs with heightened precision, as the grid resolution used in their 
study was relatively coarse. Therefore, we propose a DL framework 
utilizing the CNN algorithm to effectively simulate high-resolution 
spatiotemporal groundwater and surface water distributions on a 
watershed scale. Few studies have combined DL with fully distributed 
watershed models to enhance the efficiency and resolution of hydro-
logical simulations. 

Our focus was on estimating the groundwater heads and surface 

water depths in the Sabgyo Stream Watershed, South Korea (Fig. S1). We 
employed HydroGeoSphere (HGS) (Aquanty Inc., 2023), a 
physics-based, fully distributed hydrological model (Fig. 1A), and 
generated DL model datasets using topographical, geographical, and 
hydrometeorological information from field observations and HGS 
simulations (Fig. 1B and Table 1). We then examined the effect of spatial 
data quantities (n) on DL model performance (Fig. 1C) and optimized the 
input data design, CNN architecture, and hyperparameters, which are 
crucial factors affecting DL model performance and computational cost 
(Bilali et al., 2021; Justus et al., 2018). We compared the optimal CNN 
model estimates with those generated by the HGS model (Fig. 1F) and 
assessed the accuracy of our model in predicting hydrological responses 
under future climate scenarios (Fig. 1G). We propose that this novel DL 
approach offers a computationally efficient solution in 
high-spatial-resolution hydrological simulations. These findings can aid 
in decision-making regarding complex and long-term hydrological 
phenomena in large-scale watersheds. 

2. Results and discussion 

2.1. DL performance with respect to training and validation 

Our DL modeling framework was developed to efficiently reproduce 
the spatiotemporal flow conditions derived from a fully distributed hy-
drological model (HGS). We estimated the regular patterns of ground-
water heads and surface water depths in the Sabgyo Stream Watershed. 
We assessed the computational efficiency of the DL model by training it 
with a smaller dataset compared with that required for constructing the 
HGS model. Specifically, we varied the spatial data quantity (n) of the 
datasets (Fig. S2), which were generated by extracting data from 300, 
500, and 1000 grid cells within the watershed (Fig. 1C). When esti-
mating groundwater heads, the DL model achieved the root mean square 
error (RMSE) of 1.70–3.39 m and coefficient of determination (R2) of 
0.999–1.000 for the training dataset. In the validation dataset, the RMSE 
ranged from 2.98 to 4.93 m with an R2 of 0.999 (Fig. S2A). When esti-
mating surface water depths, the DL model achieved an RMSE of 
0.04–0.08 m and R2 of 0.997–1.000 for the training set. In the validation 
dataset, the RMSE was 0.10–0.26 m with an R2 of 0.970–0.995 
(Fig. S2B). The RMSE values provide insight into the level of deviation 
between the predicted values generated by our DL models and the 
physics-based modeling results. In practical terms, higher RMSE values 
indicate larger prediction errors, suggesting that the predictions gener-
ated by the DL model may deviate more significantly from the ground 
truth. 

In general, the performance of the DL model improved as n increased 
and converged at a certain point. Dataset size is a crucial factor affecting 
DL model performance and computational cost (Heinen et al., 2020; Xu 
and Goodacre, 2018). Here, the groundwater model converged when n 
was 1000, whereas the surface water model converged when n exceeded 
500 (Fig. S2). The results suggest that the DL input resolutions were 1.65 
km2 for simulating the groundwater heads and 0.20 km2 for the surface 
water depths in the Sabgyo Stream Watershed. These values were 
calculated by dividing the watershed drainage area (1650 km2) and the 
stream network area (102 km2) by their respective optimal n. This in-
formation provides insights into the impact of the dataset size on the 
spatial distribution estimation of hydrological components. Previous 
studies have demonstrated that the accuracy of neural networks is 
influenced by the training dataset size and the amount of spatial infor-
mation (Bilali et al., 2021; Lim and Wang, 2022; Pyo et al., 2020). The 
authors reported that their models exhibited improved performance 
with increasing training size and spatial information density up to a 
certain extent. 

2.2. Optimization of the input data and DL model 

The training data size, input window size (wd), look-back size (lk), 
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Fig. 1. Steps in estimating groundwater head and surface water depth: (A) hydrological simulation using the physics-based model HGS, (B–C) preparation of the DL 
dataset, (D) configuration of the DL model, (E) optimization of input data and the DL model, (F) estimation of groundwater and surface water conditions using the 
optimal DL model, and (G) prediction of future hydrological responses under climate change scenarios. In (D), the colored rectangular blocks represent multiple 
layers comprising a CNN structure (for example, convolutional, pooling, ReLU, and normalization layers). Detailed information on these layers can be found in the 
Supplementary Information (Appendix B.2). 
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CNN structure, and hyperparameters were tuned to enhance the DL 
model performance (Fig. 1C–E). The optimal DL model was determined 
by obtaining the minimum RMSE value for mapping. Among the eight 
CNN structures evaluated (DarkNet-19, DarkNet-53, DenseNet-201, 
GoogLeNet, MobileNet-v2, ResNet-18, ResNet-50, and ResNet-101), the 
ResNet structures demonstrated the best performance (Table 2, Fig. 1D). 
The optimal model for groundwater head estimation was ResNet-18, 
comprising 18 deep layers when the dataset comprises n = 1000, wd 
= 3, and lk = 12. This model was trained with a mini-batch size of 128 
and learning rate of 0.001 using the RMSProp optimizer (Table 2A). 
Similarly, for surface water depth estimation, the optimal DL model was 
ResNet-18 with n = 500, wd = 3, and lk = 12, trained with a mini-batch 
size of 128 and a learning rate of 0.005 using the RMSProp optimizer 
(Table 2B). ResNet is renowned for its incorporation of residual and skip 
connections, which facilitate the direct transfer of output from layers to 
both subsequent and earlier layers (Gao et al., 2019; He et al., 2016). 
This mechanism has significantly enhanced model performances by 
effectively addressing challenges such as vanishing gradient and over-
fitting (Huang et al., 2017; Targ et al., 2016). The superior performance 
of ResNet has been recognized in previous studies; Ardakani et al. 
(2020) found that ResNet-101 and Xception outperformed nine other 

CNN structures, whereas Canziani et al. (2016) observed comparable 
model accuracies for GoogLeNet, ResNet-18, and ResNet-101. 

Our DL input design consisted of wd × wd spatial grids and temporal 
data spanning the previous lk months to the present time. These findings 
highlight the significance of utilizing spatiotemporal input data 
measuring 600 m × 600 m (3 × 3 grids) and encompassing the preceding 
12 months to estimate the hydrological conditions in our study. In a 
previous study using a CNN, spatial information of less than 5 × 5 grids 
and temporal data spanning over 30 d was observed to be suitable for 
simulating harmful algal blooms within the study site (Baek et al., 
2021). 

2.3. Estimating watershed hydrological conditions using optimal DL 

2.3.1. Spatiotemporal groundwater heads 
Our DL modeling approach reliably reproduced the spatiotemporal 

distribution of groundwater heads across the entire watershed (Fig. 2). 
The mapping results of the monthly groundwater heads are provided in 
supplementary video clips (Vid. 1–3). These clips enabled a comparison 
of the estimates between the optimal DL and HGS models from 2014 to 
2018. During this period, the optimal model achieved an RMSE of 2.35 

Table 1 
Input data in the DL model: topographical, geographical, hydrometeorological, and hydrological information.   

Input variable Data type Min Max Source 

Topographical data Digital elevation model Numerical 2.31 605.21 National Geographic Information Institute1) 

Weathered rock elevation Numerical − 19.82 564.10 Geotechnical Information DB System2) 

National Groundwater Information Center3) 

Geographical data Land cover Categorical – – Ministry of Environment4) 

Vegetation cover Categorical – – National Institute of Agricultural Sciences5) 

Soil type Categorical – – 
Hydrometeorological 

data 
Rainfall Numerical 2.22 × 10− 9 1.65 ×

10− 7 
Korea Meteorological Administration6) 

Potential 
evapotranspiration 

Numerical 6.40 × 10− 9 5.92 ×
10− 8 

Calculated using the simplified FAO Penman-Monteith equation 
(Valiantzas, 2006) 

Hydrological data Initial hydraulic head Numerical 1.54 561.36 Simulated using the HGS model¶ 

Initial water depth Numerical 2.88 ×
10− 10 

5.48  

1) https://www.ngii.go.kr/kor/main.do; 
2) https://www.geoinfo.or.kr/; 
3) http://www.gims.go.kr/;. 
4) http://me.go.kr/home/web/main.do;. 
5) https://www.naas.go.kr/naas_index.do;. 
6) https://www.weather.go.kr/w/index.do;. 
¶ indicates the Sabgyo Stream Watershed model developed by Lee et al. (2023). 

Table 2 
Optimal settings and DL model performance for estimating (A) groundwater head and (B) surface water depth. The following parameters were optimized: number of 
spatial data points (n), input window size (wd), look-back size (lk), CNN structure, and hyperparameters (i.e., mini-batch size, optimizer, and learning rate). The 
optimal DL model was determined based on mapping accuracy.  

¶ denotes training accuracy. 
¶¶ denotes validation accuracy. 
¶¶¶ denotes mapping accuracy. 
Colored highlighting indicate the input design, CNN structure, hyperparameters, and model performance of optimal DL. 
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Fig. 2. Spatiotemporal maps of estimated groundwater heads using the optimal DL model (A), HGS model (B), and their prediction discrepancy (C). Subplots 1–4 
present mapping results for March, June, September, and December 2016, respectively. (Mapping results for other periods can be found in a supplementary video 
clip). In panels (A) and (B), the color bar indicates groundwater head (m), with red representing higher values and blue representing lower values. In panel (C), the 
color bar displays the estimation discrepancy between the HGS and optimal DL models (i.e., ground-truth - DL prediction), with red indicating underestimations and 
blue indicating overestimations of the DL model compared to the HGS model. 
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m and R2 of 0.999 (Table 2A). Taccari et al. (2022) also demonstrated a 
high DL performance, accurately predicting the groundwater head and 
its patterns compared to a physics-based model (MODFLOW), with an R2 

value of 0.99. 
Furthermore, our DL model provides substantial computational ad-

vantages for watershed-scale simulation. The optimal DL model repro-
duced the results at a resolution of 200 m in 0.115 h on a single graphics 
processing unit (GPU). Conversely, the computation time of the HGS was 
5.137 h, involving four central processing units (CPUs), to simulate a 
mean resolution of 420 m. DL modeling performs complex hydrological 
simulations approximately 45 times faster than would the conventional 
HGS model. Additional details regarding the computer hardware used in 
our study can be found in Section 4.2.3. Our research findings suggest 
that our approach can effectively alleviate the computational burden 
and reduce the time needed to simulate complex, large-scale hydrolog-
ical processes, such as climate change impacts. This enables efficient 
execution of high-spatial-resolution hydrological modeling and pre-
dictions. Previous studies have emphasized the superior computational 
efficiency of DL simulations over conventional, physics-based models 
(Kakuda et al., 2021; Tran et al., 2021). In Leonarduzzi et al. (2022), 
their 2D-CNN model for soil moisture estimation achieved a computa-
tional speed of 500 times that of a physics-based hydrological model 
(ParFlow-CLM) at a resolution of 1000 m. 

In addition, we conducted a detailed temporal analysis of model 
estimates at specific locations over the period 2014 to 2018 (Fig. 4A). 
The estimated groundwater heads were compared at three distinct 
points (GW1–3) located at various elevations (Fig. 4C). At GW3, the 
estimation discrepancy was significant, with an RMSE of 8.09 m 
(Fig. 4A.3), compared to 0.43 m at GW1 and 0.34 m at GW2 (Fig. 4A.1, 
2). Our DL model tended to underestimate groundwater heads in 
mountainous terrains, such as GW3, compared to lower regions (e.g., 
GW1–2). This underestimation was observed at elevations above 400 m 
(Fig. 2C), indicating inherent challenges in accurately predicting peak 
values using data-driven DL models. As discussed in previous studies 
(Sudheer et al., 2003; Wu et al., 2009; Yang et al., 2019), these chal-
lenges can be attributed to the scarcity of extreme values, which im-
pedes the training of DL models for peak values. 

2.3.2. Spatiotemporal surface water depths 
The proposed DL modeling framework demonstrated robust perfor-

mance in capturing spatiotemporal variations in surface water depth 
across the entire water body (Fig. 3). In mapping the surface water 
depths from 2014 to 2018, the optimal DL model achieved an RMSE of 
0.29 m and R2 of 0.941 (Table 2B). The mapping results are provided as 
supplementary video clips (Vid. 4–6). To investigate temporal varia-
tions, this study examined the model outputs at specific spatial points 
(Fig. 4B). Monthly results were collected from 2014 to 2018 at three 
spatial points, denoted as SW1–3 (Fig. 4C). At SW1, the estimation 
discrepancy was an RMSE of 0.07 m, whereas it was 0.08 m at SW2–3. 
The optimal DL model underestimated the surface water depths at 
SW1–2 (Fig. 4B.1–2), suggesting a potential underestimation near the 
watershed outlet and midstream area. These estimation discrepancies 
could be caused by dataset size and imbalanced data distribution 
(Batista et al., 2004; Bilali et al., 2021). Previous research by Hussain 
et al. (2020) found that their 1D-CNN model underestimated the peak 
values for daily and monthly streamflow forecasts. Additionally, the 
data processing step in our study, such as the conversion of HGS data 
from a triangular mesh format to gridded data, may affect the DL model 
performance. Data quality has been identified as a potential factor 
influencing the DL model performance (Budach et al., 2022; Gudivada 
et al., 2017; Jain et al., 2020). 

Overall, our DL approach serves as a valuable tool for efficient 
analysis and rapid decision making. Nonetheless, it is crucial to evaluate 
areas with significant estimation differences when considering the 
practical implications. Specifically, higher RMSE values in our DL esti-
mations suggest less reliable forecasts. This could lead to suboptimal 

decisions, particularly in areas such as resource allocation and climate 
change mitigation strategies. Conversely, lower RMSE values indicate 
higher estimation accuracy, comparable to that of the physics-based 
HGS model, enabling more informed decision-making. 

2.4. Exploratory analysis of the optimal DL model 

2.4.1. Effect of input variables on the DL model estimations 
A parametric sensitivity analysis was conducted to examine the effect 

of time-varying input variables (rainfall and potential evapotranspira-
tion) on the estimations generated by the optimal DL model. This study 
employed the Elementary Effect Test (EET) method (Appendix D.1) with 
Latin hypercube-one-factor-at-a-time (LH–OAT) sampling (Nossent and 
Bauwens, 2012; Saltelli et al., 2008; Xu et al., 2016). The results of this 
analysis are presented in Fig. S3 showing the mean and standard devi-
ation of elementary effect (EE) values. These metrics provide insights 
into the direct effect of the input variable and the interaction effect 
between the variables on the DL model outputs. A detailed analysis of 
the results is provided in Appendix D.2 of the Supplementary 
Information. 

2.4.2. Predictions of future hydrology using the optimal DL model 
The predictive performance of the optimal DL model was evaluated 

under future climate change scenarios (RCP 2.6) (Fig. 1G). The assess-
ment was conducted for two periods: 2041–2070 (the 2050s) and 
2071–2100 (the 2080s). In this analysis, the monthly average prediction 
results of the optimal DL and HGS models were compared at specific 
sites (GW1–3 and SW1–3) (Fig. S4). In terms of predictions of long-term 
groundwater heads, the optimal DL model yielded RMSE and R2 values 
of 0.19 m and 0.88 for 2041–2070 (Fig. S4A.1) and 0.17 m and 0.90 for 
2071–2100 at GW1 (Fig. S4B.1). However, the performance of our 
model deteriorated in high-elevation regions (e.g., GW3). At GW3, the 
estimation discrepancy resulted in an RMSE of 8.09 m for the period 
2014–2018 (Fig. 4A.3), whereas it increased to RMSE values of 12.45 m 
for 2041–2070 (Fig. S4A.3) and 14.33 m for 2071–2100 (Fig. S4B.3). 
This diminishing DL performance is consistent with previous research 
findings regarding the prediction of future events and extreme values. 
Gumiere et al. (2020) reported that despite outperforming physics-based 
models, the DL model prediction accuracy notably decreased towards 
the end of a 3-d lead time, in contrast to the relatively small errors 
observed in physics-based models over time. 

For long-term surface water prediction, the optimal DL model 
showed reliable performance in the watershed outlet region (e.g., SW1). 
At SW1, the RMSE and R2 values were 0.09 and 0.84 m for 2041–2070 
(Fig. S4C.1) and 0.10 and 0.83 m for 2071–2100 (Fig. S4D.1). However, 
the optimal DL model performance deteriorated when predicting the 
surface water depths in the upstream region (for example, SW3). At 
SW3, the estimation discrepancy was an RMSE of 0.08 m for the period 
2014–2018 (Fig. 4B.3), increasing to 0.34 m for 2041–2070 (Fig. S4A.3) 
and 2071–2100 (Fig. S4B.3). In addition, the optimal DL model 
exhibited a larger variation in groundwater prediction over 30 years 
than the HGS model, whereas it demonstrated less variation in surface 
water prediction. These variations in long-term predictions may be 
attributed to out-of-distribution uncertainties in the DL model, in which 
the input data for future climate conditions differ significantly from the 
training data (Liu et al., 2020; Saria and Subbaswamy, 2019). According 
to Wan et al. (2022), traditional DL methods have limitations in pre-
dicting extreme pollutant values under extreme meteorological condi-
tions primarily because they rely on historical data. Therefore, further 
improvements to our optimal DL model are recommended to enhance its 
predictive performance, particularly for long-term hydrological 
estimations. 

3. Conclusions 

With this study we proposed a novel DL modeling framework for 
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Fig. 3. Spatiotemporal maps of estimated surface water depths using the optimal DL model (A), HGS model (B), and their prediction discrepancy (C). Subplots 1–4 
present mapping results for March, June, September, and December 2016, respectively, while mapping results for other periods can be found in a supplementary 
video clip. In panels (A) and (B), the color bar indicates surface water depth (m), with red representing higher values and blue representing lower values. In panel (C), 
the color bar displays the estimation discrepancy between the HGS and optimal DL models (i.e., ground-truth - DL prediction), with red indicating underestimations 
and blue indicating overestimations of the DL model compared to the HGS model. 
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estimating groundwater and surface water conditions using topo-
graphical, geographical, hydrometeorological, and hydrological data. 
The DL model estimates were validated against the HGS model outputs 
and the optimal DL model was determined by optimizing the training 
samples, input design, CNN structure, and hyperparameters. 

• The optimal DL model, based on ResNet-18 with optimal input de-
signs, achieved RMSE values of 2.35 and 0.29 m for mapping 
groundwater heads and surface water depths, respectively.  

• The optimal DL model achieved a computational speed that is 45 
times faster than the HGS model when estimating the hydrological 
conditions in the watershed (Sabgyo Stream Watershed, South 
Korea).  

• However, our DL model performance decreased when predicting 
future hydrological responses to climate change scenarios. 

Overall, our DL model offers rapid hydrological predictions, 
reducing computational costs while maintaining a high spatial resolu-
tion compared with the physics-based, fully distributed HGS model. This 
capability is valuable for water resource management, particularly when 
making urgent decisions regarding large-scale and complex watersheds. 
However, further enhancements are required in our DL model for long- 
range analyses, such as evaluating the long-term effects of climate 
change on hydrology. 

4. Materials and methods 

4.1. Study area 

The study site was the Sabgyo Stream Watershed 
(36.395796◦–36.911621◦ N, 126.596445◦–127.213928◦ E) located in 
the midwestern part of South Korea (Fig. S1). This watershed has a 
drainage area of approximately 1650 km2 and a stream length of 65 km. 

The major soil texture types are sand (50.9 %) and sandy clay loam (26.3 
%), followed by sandy loam (12.8 %) and silt loam (4.8 %) (National 
Institute of Agricultural Sciences, 2020). The study site is covered by 
forests (44.5 %), croplands (42.9 %), and urban areas (4.7 %) (Ministry 
of Environment, 2020). The Sabgyo Stream Watershed has a monsoon 
period with a dry season from October to May and a wet season from 
June to September. From 2000 to 2019, the average annual temperature 
at the study site was 12.1 ± 9.8 ◦C and rainfall was 1203.1 ± 126.3 mm/ 
year (Korea Meteorological Administration, 2020). This watershed has 
19- and 15-gauge stations for monitoring groundwater and discharge, 
respectively (Korea Rural Community Corporation, 2020; National 
Groundwater Information Center (2020); Water Resources Management 
Information System, 2020). 

4.2. DL modeling for simulating groundwater and surface water 

A DL modeling framework was proposed to efficiently reproduce 
spatiotemporal groundwater–surface water flow conditions. Among DL 
techniques, the CNN algorithm was adopted to capture the spatiotem-
poral patterns and nonlinearity inherent within hydrologic processes. 
Our DL modeling focused on estimating the regular patterns of 
groundwater heads and surface water depths within the study site. In 
addition, we assessed the predictive capabilities of future climate 
change impacts. The implementation of DL modeling comprises six 
steps: (1) acquisition of hydrological data from the HGS model (Fig. 1A), 
(2) preparation of the DL datasets (Fig. 1B, C), (3) configuration of DL 
model (Fig. 1D), (4) optimization of input data and DL model (Fig. 1E), 
(5) estimation of hydrological conditions using the optimal DL model 
(Fig. 1F), and (6) prediction of future hydrologic responses under 
climate change scenarios (Fig. 1G). The HGS model simulates hydro-
logical conditions, specifically groundwater heads and surface water 
depths (Fig. 1A). These data were considered as the initial conditions 
and estimation targets during the DL modeling. Additionally, observed 

Fig. 4. Time-series plots of estimated groundwater head (A) and surface water depth (B). Hydrological conditions from 2014 to 2018 were collected at spatial points 
(C). The blue dotted line indicates the HGS model, while the red line represents the optimal CNN model. Light green circles indicate spatial points for groundwater 
(GW1–3), while fuchsia triangles indicate spatial points for surface water (SW1–3). Subplots A.1–3 correspond to the results at GW1–3, respectively, and subplots 
B.1–3 represent the results at SW1–3, respectively. 
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topographical, geographic, and hydrometeorological data were utilized 
as DL model inputs (Fig. 1B and Table 1). This study investigated model 
performance by examining the effect of training data volume and 
varying the number of spatial data points (Fig. 1C). We optimized the 
CNN structure, input design (input window size (wd) and lookback size 
(lk)), and hyperparameters (Fig. 1D and E). These factors are crucial, 
because they affect the model and its computational costs (Heinen et al., 
2020; Justus et al., 2018; Loussaief and Abdelkrim, 2018; Xu and 
Goodacre, 2018; Yu and Zhu, 2020). Subsequently, the optimal DL 
model was determined by comparing its estimates with those of the HGS 
model (Fig. 1F). Additionally, we assessed the predictive capabilities of 
the model by examining hydrological responses under a future climate 
scenario (RCP 2.6) (Fig. 1G). 

4.2.1. Fully distributed hydrological model 
HGS is a 3D-integrated surface-subsurface hydrological model that is 

widely used for water resource management (Persaud et al., 2020; Xu 
et al., 2021). It employs the 2D Saint-Venant equation for surface flow 
simulation and Richards’ equation for variably saturated flow in sub-
surface simulations. In this study, the HGS model developed by Lee et al. 
(2023) was used to conduct hydrological simulations of the Sabgyo 
Stream Watershed. This HGS model consisted of 89530 nodes and 
156420 elements in the 3D domain, while the 2D domain comprised 
17380 nodes with an average length of 420 m (Fig. S1B). The model 
parameters and their values were adopted from previous studies (Chow, 
1959; Freeze and Cherry, 1979; Hwang, 2021; Myneni et al., 2015; 
Panday and Huyakorn, 2004) (Table S1). To calibrate the HGS model, 
simulated groundwater levels were compared with monthly averaged 
observations from 19 monitoring wells and stream discharges were 
compared with data from 15 gauge stations (Fig. S1A). The calibration 
process used a 20-year observational dataset from 2000 to 2019. The 
simulation period was from 2012 to 2018, and monthly climate data 
were used as inputs. Comparisons between the simulated and observed 
groundwater levels and surface water flow rates are shown in Fig. S5, 
demonstrating a reasonable agreement with the observed data. Addi-
tional details regarding the HGS model and calibration are provided in 
Appendix A of the Supplementary Information. 

4.2.2. Data processing for DL model 
The DL model was developed using topological, geographical, hy-

drometeorological, and simulated hydrological data (Table 1). Topo-
logical data consist of a digital elevation model (DEM) and weathered 
rock elevation, and geographical data provide spatial information on 
soil types and land cover. The hydrometeorological data included 
rainfall and potential evapotranspiration (Fig. 1B). These data have been 
recognized as important factors in the hydrological modeling of water-
shed systems (Archfield et al., 2015; Jiang et al., 2022; Nguyen et al., 
2023; Thapa et al., 2018). Additionally, the simulated groundwater 
heads and surface water depths were used as the initial conditions and 
ground truth for the DL model. Monthly data were synthesized using 
HGS model outputs from 2013 to 2018. Data from 2014 to 2018 were 
used for the training and validation periods, 2013 served as the lookback 
period, and December 2012 was used as the initial condition. The DL 
datasets were processed in three main steps: (1) conversion of the HGS 
model outputs into a gridded format; (2) extraction of spatiotemporal 
information from the study site; and (3) transformation of the input data 
from 3D to 2D. A detailed description of the processing dataset is pro-
vided in Appendix B.1 of the Supplementary Information. The DL 
datasets were divided into training (80 %) and validation (20 %) data-
sets. To address potential data imbalances during dataset generation, a 
random sampling approach with uniform distribution was utilized, 
following the methodology employed in previous studies (Brion et al., 
2002; Kim et al., 2023; Tan and Beklioglu, 2006). 

4.2.3. Convolutional neural networks 
A CNN is a type of DL algorithm specialized in capturing 

spatiotemporal features from multi-dimensional data (Ajuria Ill-
arramendi et al., 2022; LeCun et al., 2015). The convolutional filters and 
local connectivity in CNNs facilitate a better capture of the influence of 
the local features of the input data on the results (Liao et al., 2023). A 
typical CNN structure comprises of multiple layers, including convolu-
tional, pooling, dropout, and fully connected layers (Basha et al., 2020; 
Wu and Gu, 2015). The convolutional and pooling layers extract the 
features, whereas the ReLU and normalization layers perform linear and 
normalization calculations, respectively (Ide and Kurita, 2017). Model 
performance can be enhanced by combining these layers (Khan et al., 
2019; Szegedy et al., 2016). Detailed information on the layers is pro-
vided in Appendix B.2 of the Supplementary Information. Eight types of 
CNN architectures were used in this study: DarkNet-19, DarkNet-53 
(Redmon, 2013), DenseNet-201 (Huang et al., 2017), GoogLeNet 
(Szegedy et al., 2015), MobileNet-v2 (Sandler et al., 2018), ResNet-18, 
ResNet-50, and ResNet-101 (He et al., 2016) (Fig. 1D). These architec-
tures, which were recognized in the ImageNet Large-Scale Visual 
Recognition Challenge, are among the leading algorithms used for image 
recognition and classification (Ardakani et al., 2020; Tang et al., 2022). 

Our computational setup featured a high-performance computing 
workstation comprising an Intel ® Core i9–10,900 with a 2.80 GHz CPU 
with 128 GB of RAM. The system was equipped with an NVIDIA GeForce 
RTX 3090 Ti GPU. Model development and training were conducted 
using MATLAB with DL toolboxes (R2022b) operating on the Microsoft 
Windows platform. The loss function during the DL modeling was the 
mean squared error (MSE) (Eq. S1) to quantify the difference between 
DL estimations and HGS outputs during DL training. The DL models 
were evaluated using RMSE (Eq. S2), and R2 (Eq. S3). Detailed equations 
for these metrics can be found in Appendix C of the Supplementary 
Information. 

4.2.4. Optimization of input data and DL model 
Model optimization was conducted to enhance the performance of 

the DL model for estimating groundwater and surface water flow con-
ditions. The optimization process employs a pattern-search algorithm 
known for its efficiency in global optimization and direct search 
methods (Fatemifar et al., 2021; Findler et al., 1987). This algorithm 
minimizes the inequalities by determining the minimum value of an 
objective function using straightforward numerical operations (Pala-
cio-Morales et al., 2021; Park et al., 2014). We optimized the amount of 
training data, input window size (wd), lookback size (lk), CNN structure, 
and hyperparameters (Fig. 1E). The DL datasets were sampled with 
spatial data quantities (n) of 300, 500, and 1000 grid cells within the 
watershed (Fig. 1C). The input design, represented by wd and lk, de-
termines whether the DL model considers spatial information with wd ×
wd grids and temporal data from the previous lk months to the current 
time. The DL model architecture was selected from the following eight 
CNN structures: DarkNet-19, DarkNet-53, DenseNet-201, GoogLeNet, 
MobileNet-v2, ResNet-18, ResNet-50, and ResNet-101 (Fig. 1D). The 
optimized hyperparameters included the mini-batch size, optimizer, and 
learning rate (Kandel and Castelli, 2020; Smith, 2018). Three optimizer 
types were compared: Stochastic Gradient Descent with Momentum 
(Ruder, 2016), Root Mean Square Propagation (RMSProp) (Hinton et al., 
2012), and Adam (Kingma and Ba, 2014). Other optimizing parameters 
were varied within predefined ranges: 3–11 (odd number) for the wd 
size, 1–12 (months) for the lk size, 64–256 for the mini-batch size, and 
0.0001–0.01 for the learning rate. The objective function for optimiza-
tion was the RMSE, which quantified the discrepancies between the HGS 
and DL outputs to minimize the RMSE value during model validation. 
The DL model was trained for 150 epochs (Fig. 1E, F). 

4.3. Exploratory model analysis 

An exploratory analysis was conducted to investigate the parametric 
sensitivity and prediction ability of the optimal DL model. EET with 
LH–OAT sampling has been used as a sensitivity analysis method 
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(Morris, 1991; Saltelli et al., 2008; Xu et al., 2016). This is because of its 
simplicity and computational efficiency, which require a smaller sample 
size than other methods (Campolongo et al., 2007; Pianosi et al., 2016). 
A brief description of the EET method is provided in Appendix D.1 of the 
Supplementary Information. In addition, we examined the capability of 
our DL model to predict long-term hydrological responses. Predicting 
future hydrological patterns in watersheds is crucial for effective man-
agement of water resource sustainability. The predictive performance 
was measured by comparing our model’s prediction results with those of 
the HGS model under a future climate change scenario (Fig. 1G). 

4.3.1. Sensitivity analysis of the optimal DL model 
The EE value (Eq. S4) in the EET method represent the change in the 

model output induced by a change in the input variable. We focused on 
analyzing the influence of time-dependent input variables as they vary 
over predictions of the present and future values. Rainfall and evapo-
transpiration exhibited temporal variability across the predictions of 
present and future values, whereas variables such as elevation and land 
cover remained static throughout simulations of the present and future 
conditions. In the EET analysis, we explicitly computed the EEs of 
rainfall and evapotranspiration from the current time (t) to the pre-
ceding 12 months (t-12) without considering static variables. Conse-
quently, we assessed the changes in groundwater head and surface water 
depth affected by temporal variations in rainfall and evapotranspiration. 
The range of the input variables is listed in Table 1, and the EET analysis 
was performed using the MATLAB toolbox for global sensitivity analysis 
developed by Pianosi et al. (2015). In the EET method, the sensitivities 
of the input variables are measured based on the mean and standard 
deviation of the EE values. The mean EEs represent the direct effect of 
the input variable on the hydrological condition estimations from our DL 
model, whereas the standard deviation of the EEs reflects the interaction 
effect between variables. In this study, the sensitivity rankings were 
determined according to the mean EE values in descending order. The 
variable with the highest mean EE represents the most sensitive input 
condition. 

4.3.2. Predicting hydrological responses to future climate scenarios 
Using the optimal DL model, we estimated the long-term hydrolog-

ical responses under future climate change impacts. This analysis 
investigated the ability of our model to predict regular patterns of future 
hydrological conditions within a watershed. For this analysis, input 
datasets were generated using simulated future hydrometeorological 
and hydrological conditions as well as present-day topographical and 
geographical information. Future hydrometeorological and hydrological 
data will include rainfall and potential evapotranspiration under a 
climate change scenario (i.e., representative concentration pathway 
(RCP) 2.6 (IPCC, 2013; Van Vuuren et al., 2011). These future data were 
derived from the long-term HGS model simulations (from 2011 to 2100) 
conducted by Lee et al. (2023). The projected climatic conditions are 
summarized in Table S2. Details of the long-term simulation, including 
the procedures and analysis, are thoroughly described by Lee et al. 
(2023). The topographical and geographical information and initial 
hydrological conditions were the same as those listed in Table 1. In this 
study, the predictive ability was assessed for two periods: 2041–2070 
(the 2050s) and 2071–2100 (the 2080s). 
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