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Abstract: Count datasets are traditionally analyzed using the ordinary Poisson distribution. However,
said model has its applicability limited, as it can be somewhat restrictive to handling specific data
structures. In this case, the need arises for obtaining alternative models that accommodate, for
example, overdispersion and zero modification (inflation/deflation at the frequency of zeros). In
practical terms, these are the most prevalent structures ruling the nature of discrete phenomena
nowadays. Hence, this paper’s primary goal was to jointly address these issues by deriving a
fixed-effects regression model based on the hurdle version of the Poisson–Sujatha distribution. In
this framework, the zero modification is incorporated by considering that a binary probability
model determines which outcomes are zero-valued, and a zero-truncated process is responsible
for generating positive observations. Posterior inferences for the model parameters were obtained
from a fully Bayesian approach based on the g-prior method. Intensive Monte Carlo simulation
studies were performed to assess the Bayesian estimators’ empirical properties, and the obtained
results have been discussed. The proposed model was considered for analyzing a real dataset, and its
competitiveness regarding some well-established fixed-effects models for count data was evaluated.
A sensitivity analysis to detect observations that may impact parameter estimates was performed
based on standard divergence measures. The Bayesian p-value and the randomized quantile residuals
were considered for the task of model validation.

Keywords: Bayesian inference; hurdle model; Monte Carlo simulation; overdispersion; Poisson–
Sujatha distribution; zero-modified data

PACS: 02.50.-r

MSC: 62E15; 62J20; 62F15

1. Introduction

The ordinary Poisson (P) distribution is often adopted for the analysis of count data,
mainly due to its simplicity and having computational implementations available for most
of the standard statistical packages. However, it is well-known that such a model is not
suitable to describe over/underdispersed counts. Apart from data transformation, the
most popular approach to circumvent such an issue is based on using hierarchical models
that can accommodate different overdispersion levels [1].

The negative binomial (NB) distribution (that may arise as a P mixture model by
using a gamma distribution for the continuous part) is undoubtedly the most popular al-
ternative to model extra-P variability. There is extensive literature regarding other discrete
mixed distributions that can accommodate different levels of overdispersion, for exam-
ple, the Poisson–Lindley [2], the Poisson–lognormal [3], the Poisson–inverse Gaussian [4],
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the negative binomial–Lindley [5], the Poisson–Janardan [6], the two-parameter Poisson–
Lindley [7], the Poisson–Amarendra [8], the Poisson–Shanker [9], the Poisson–Sujatha
(PS) [10], the quasi-Poisson–Lindley [11], the weighted negative binomial–Lindley [12] the
Poisson-weighted Lindley [13], the binomial-discrete Lindley [14], and the two-parameter
Poisson–Sujatha [15], among many others.

Unfortunately, there is a significant drawback regarding such mixture models: they
do not fit well when data present a modification in the frequency of zeros (typically
underestimates the data dispersion and the frequency of zero-valued outcomes). The most
common case in practice is the presence of an excessive number of zero-valued observations
and a skewed distribution of positive values. In this way, developing P-based two-part
models (zero-inflated/hurdle models) became necessary. Prominent works addressing this
task are [16–22].

Several authors have considered these approaches to analyze real data, and here
we point out a few. Ref. [23] have sought to deal with the excess of zeros on data from
recreational trips. Ref. [24] have shown that the modeling of migration frequency data
can be improved using zero-inflated Poisson models. Ref. [25] have exploited the apple
shoot propagation data, and they have addressed the modeling task by using several
zero-inflated regression models. In the social sciences, ref. [26] have considered the hurdle
version of the P model for the number of homicides in Chicago (State of Illinois, US).
Ref. [27] provided an application to private health insurance count data using ordinary
and zero-inflated Poisson regression models. Further applications of these models were
considered in quantitative studies about HIV-risk reduction [28,29], for the modeling of
some occupational allergic diseases in France [30], for the analysis of DNA sequencing
data [31], and for the modeling of several datasets on chromosomal aberrations induced by
radiation [32]. A Bayesian approach for the zero-inflated Poisson (ZIP) distribution was
considered by [33], and by [34] in a regression framework with fixed-effects.

Noticeably, most developed works are focused on the modeling of zero inflation,
but zero-deflated data are also frequently observed in practice. However, there are still
very few studies addressing this case [35], but this situation is often referred to in works
handling zero inflation. In this context, a more comprehensive approach is provided by
zero-modified models, which are flexible tools to handle count data with inflation/deflation
at zero when there is no information about the nature of such a phenomenon.

Some of the most relevant works about zero-modified and hurdle models are cited
in the following. Ref. [35] have introduced the zero-modified Poisson (ZMP) regression
model, and ref. [36] have considered such a model as an alternative for the analysis of
Brazilian leptospirosis notification data. The possible loss due to the specification of a
ZMP model for analyzing samples without zero modification was studied by [37] using
the Kullback–Leibler divergence. The hurdle version of the power series distribution was
presented and well discussed by [38], and ref. [39] have adopted a Bayesian approach
for the zero-modified Poisson model to predict match outcomes of the Spanish La Liga
(2012–2013). Besides, ref. [40] have proposed the zero-modified Poisson–Shanker regression
model, whose usefulness was illustrated through its application to fetal death notification
data, and ref. [41] have introduced the zero-modified Poisson–Lindley regression model
with fixed-effects under a fully Bayesian approach.

Accordingly, this paper aims to extend the works of [42,43] in the sense of devel-
oping a new fixed-effects regression model for count data based on the zero-modified
Poisson–Sujatha distribution (ZMPS). Ref. [42] have introduced and exploited the theo-
retical ZMPS distribution’s main statistical properties. On the other hand, ref. [43] have
proposed a new class of zero-modified models, whose baseline distributions are Poisson
mixtures, including the PS . The present paper also extends the works of [40,41] since
the ZMPS model differentiates from the zero-modified Poisson–Lindley and Poisson–
Shanker by the ability, for example, to describe better (by adjusting its shape parame-
ter) those discrete phenomena in which the probabilities of observing 0 s and 1 s are
low (see [43], Figure 2).
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Formally, a discrete random variable Y defined into N0 = {0, 1, . . .} is said to follow a
ZMPS distribution if its probability mass function (pmf) can be written as

P∗(Y = y; µ, p) = (1− p)δy + p P(Y = y; µ), y ∈ N0, (1)

where p is the zero-modification parameter and δy is an indicator function, so that δy = 1 if
y = 0 and δy = 0 otherwise. Additionally, µ ∈ R+ is the expected value of the ordinary
PS distribution, whose reparameterized pmf is given by

P(Y = y; µ) =
h3(µ)

h2(µ) + h(µ) + 2[
y2 + y[h(µ) + 4] +

[
h2(µ) + 3h(µ) + 4

]
[h(µ) + 1]y+3

]
, y ∈ N0,

where

h(µ) =
1

3µ

[
(s(µ)− µ + 1)− (µ− 1)(5µ + 1)

s(µ)

]
, (2)

with

s(µ) =
[

3µ
√

21µ4 + 84µ3 + 513µ2 + 96µ + 15 + 2µ
(

4µ2 + 33µ + 3
)
+ 1
]1/3

,

and µ = (θ2 + 2θ + 6)[θ(θ2 + θ + 2)]−1 for θ ∈ R+ (shape parameter). This parameteriza-
tion is particularly useful since our primary goal is to derive a regression model, in which
the influence of fixed-effects can be evaluated directly over the mean of a zero-modified
response variable. Unlike in zero-inflated models, here parameter p is defined on the
interval [0, P(Y > 0; µ)−1], and so the ZMPS model is not a mixture distribution since
p may assume values greater than 1. The expected value and variance of Y are given,
respectively, by E(Y) = λ= µp and V(Y) = ς2 = p[σ2 + (1− p)µ2], where σ2 ∈ R+ is the
variance of the PS distribution (see [43], Table 4).

The hurdle version of thePS distribution can be obtained by taking ω = p P(Y > 0; µ),
and so rewriting Equation (1) as

P∗(Y = y; µ, ω) = (1−ω)δy + ω P∗(Y = y; µ), y ∈ N0, (3)

for ω ∈ [0, 1] and where P∗(Y = y; µ) is the pmf of the zero-truncated Poisson–Sujatha
(ZT PS) distribution [44]. Noticeably, Equation (3) is only a reparameterization of the
standard ZMPS , and so one can conclude that these models are interchangeable. For
ease of notation and understanding, the acronym ZMPS will be used when we refer to
the hurdle version of the PS distribution.

The corresponding cumulative distribution function (cdf) of Y is given by

F∗(y; µ, ω) = 1− ω

P(Y > 0; µ)

{
yh(µ)

[
h2(µ) + (y + 6)h(µ) + 2

]
[h2(µ) + h(µ) + 2][h(µ) + 1]y+3 +

h4(µ) + 4h3(µ) + 10h2(µ) + 7h(µ) + 2

[h2(µ) + h(µ) + 2][h(µ) + 1]y+3

}
, y ∈ N0. (4)

Comparatively, the proposed model can be considered more flexible than zero-inflated
models as it allows for zero-deflation, which is a structure often encountered when handling
count data (see, for example, [45,46]). Besides, it can incorporate overdispersion that
does not come only from inflation/deflation of zeros, as one of its parts is dedicated
to describing the positive values’ behavior. In the regression framework that we have
developed, discrepant points (outliers) can be identified, and through a careful sensitivity
analysis, it is possible to quantify the influences of such observations. However, since the
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PS distribution accounts for different levels of overdispersion, its zero-modified version
is naturally a robust alternative, as it may accommodate discrepant points that would
significantly impact the parameter estimates of the ZMP model.

In this paper, the inferential procedures are conducted under a fully Bayesian
perspective—an adaptation of the g-prior method [47] for the fixed-effects parameters
is considered. The random-walk metropolis algorithm was used to draw pseudo-random
samples from the posterior distribution of the model parameters. Local influence measures
based on some well-known divergences were considered for the task of detecting influ-
ential points. Model validation metrics such as the Bayesian p-value and the randomized
quantile residuals are presented. Intensive Monte Carlo simulation studies were performed
to assess Bayesian estimators’ empirical properties; the obtained results are discussed, and
the overall performance of the adopted methodology was evaluated. Additionally, an
application using a real dataset is presented to assess the proposed model’s usefulness
and competitivity.

This paper is organized as follows. In Section 2, we present the fixed-effects regression
model based on the hurdle version of the PS distribution. In Section 3, we describe all the
Bayesian methodologies and associated numerical procedures considered for inferential
purposes. In Section 4, we discuss the results of an intensive simulation study, and in
Section 5, a real data application using the proposed model is exhibited. General comments
and concluding remarks are addressed in Section 6.

2. The ZMPS Regression Model

Suppose that a random experiment (designed or observational) is conducted with n
subjects. The primary response for such an experiment is described by a discrete random
variable Yi denoting the outcome for the i-th subject. The full response vector is given by
Y = (Y1, . . . , Yn), and we assume that the observed vector y is obtained conditionally to
fixed-effects, here denoted by β = (β1, β2). Assuming that Yi|β ∼ ZMPS(µi, ωi) holds
for all i, a general fixed-effects regression model for count data based on the ZMPS
distribution can be derived by rewriting Equation (3) as

P∗(Yi = yi; β) = (1−ωi)δyi + ωiP∗(Yi = yi; µi), yi ∈ N0, (5)

where µi ≡ µ(x1i, β1) and ωi ≡ ω(x2i, β2) are parameterized nonlinear functions. In this
framework, we have βᵀ

k = (βk0, . . . , βkqk
) (k = 1, 2) related to xᵀki = (1, x1

ki, . . . , xqk
ki ), where

xki is a vector of covariates that may include, for example, dummy variables, cross-level
interactions, and polynomials. The quantity q1 (q2) denotes the number of covariates
considered in the systematic component of a linear predictor for parameter µi (ωi). The
full regression matrices of model (5) can be written as Xk = (1n, Xk,n×qk

), where 1n is
the intercept column and the submatrix Xk,n×qk

is defined in such a way that its i-th row
contains the vector (x1

ki, . . . , xqk
ki ). The overall dimension of Xk is n× (qk + 1).

Now, we have to specify two monotonic, invertible, and twice differentiable link
functions, say g1 and g2, in which µi = g−1

1 (xᵀ1iβ1) and ωi = g−1
2 (xᵀ2iβ2) are well defined

on R+ and (0, 1), respectively. For this purpose, one may choose any suitable mappings g1
and g2 such that g−1

1 : R→ R+ and g−1
2 : R→ (0, 1). The logarithm link function, log(µi) =

xᵀ1iβ1, is the natural choice for g1. For g2, the popular choice is the logit link function,

logit(ωi) = log
(

ωi
1−ωi

)
= xᵀ2iβ2. (6)

The probit link function,
Φ−1(ωi) = xᵀ2iβ2, (7)

is also appropriate for the requested purpose. Another possible choice for g2 is

log[− log(1−ωi)] = xᵀ2iβ2, (8)



Entropy 2021, 23, 646 5 of 25

which corresponds to the complementary log–log link function. One can notice that these
link functions exclude the limit cases pi = 0 and pi = P(Y > 0; µi)

−1. The link Function (8)
is usually preferable when the occurrence probability of a specific outcome is considerably
high/low as it accommodates asymmetric behaviors on the unit interval, which is not the
case for link Functions (6) and (7). Besides, a more sophisticated approach considering
power and reversal power link functions was proposed by [48], and can also be used to
add even more flexibility when modeling parameter ωi.

We may refer to the proposed model as a “semi-compatible” regression model. The
term “compatible” alludes to “zero-altered,” which defines the class proposed by [49],
and extended by [50] in a setting including semiparametric zero-altered models that
accommodate over/underdispersion. Zero-altered models are similar to zero-modified
ones, but the compatibility arises from the linear predictors of µi and ωi being the same. In
our case, specifically, it is worthwhile to mention that identifiability problems may occur if
one considers a fixed-effects regression model derived directly from (3), with parameters µ
and p sharing covariates, even if β2 6= β1. Therefore, the adopted structure allows for more
flexibility and robustness as µ and ω may share covariates not necessarily with β2 = β1,
and so the only requirement for ensuring model identifiability is the linear independence
between covariates within linear predictors.

Given a set of covariates, the probability of a zero-valued count being observed for
the i-th subject is given by 1− g−1

2 (xᵀ2iβ2). Under the logistic regression model (6), β2l
(l = 1, . . . , q2) represents the direct change in the log-odds of Yi, it being positive per 1-unit
change in xl

2i, while holding the other covariates at fixed values. On the other hand, the
same not apply if one adopts the link Function (8) since eβ2l is not the odds ratio for the
l-th covariate effect, and so β2l does not have a straightforward interpretation in terms
of contribution to log-odds. Likewise, it is not possible to interpret the coefficients of the
probit model (7) directly, but one can evaluate the marginal effect of β2l by analyzing how
much the conditional probability of Yi being positive is affected when the value of xl

2i is
changed. The exact interpretation of β1l (l = 1, . . . , q1) is not direct in terms of the mean of
the hurdle model since the positive counts are modeled by a zero-truncated distribution
(ZT PS), and therefore, β1l represents the overall effect of xl

1i on the expected value µi
when yi > 0, while holding the other covariates at fixed values.

The proposed model has d = dim(β) = q1 + q2 + 2 unknown quantities to be es-
timated. A fully Bayesian approach will be considered for parameter estimation and
associated inference. The next section is dedicated to present details of such an approach.

3. Inference

In this section, we address the problem of estimating and making inferences about
the proposed model from a fully Bayesian perspective. Firstly, we derive the model like-
lihood function, and then, a suitable set of prior distributions is considered to obtain a
computationally tractable posterior density for the vector β. Beyond the primary distribu-
tional assumption that Yi|β ∼ ZMPS(µi, ωi) holds for all i, here we also assume that the
outcomes for different subjects are unconditionally independent.

Let Y be a discrete random variable assuming values on N0. Suppose that a random
experiment is carried out n times independently and, subject to xki for each i, a vector
y = (y1, . . . , yn) of observed values from Y is obtained. Considering model Formulation (5),
the likelihood function of β can be written as

L(β; y) =
n

∏
i=1

ωi

(
1−ωi

ωi

)δyi
[

P(Yi = yi; µi)

P(Yi > 0; µi)

]1−δyi

=
n

∏
i=1

g−1
2
(
xᵀ2iβ2

)[1− g−1
2
(

xᵀ2iβ2
)

g−1
2
(
xᵀ2iβ2

) ]δyi
P

[
Yi = yi; g−1

1
(
xᵀ1iβ1

)]
P
[
Yi > 0; g−1

1
(
xᵀ1iβ1

)]


1−δyi

,
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and so the corresponding log-likelihood function is given by

`(β; y) =
n

∑
i=1

(
1− δyi

)
log

P
[
Yi = yi; g−1

1
(

xᵀ1iβ1
)]

P
[
Yi > 0; g−1

1
(
xᵀ1iβ1

)]
+

n

∑
i=1

{
log
[

g−1
2
(
xᵀ2iβ2

)]
− δyi log

[
g−1

2
(
xᵀ2iβ2

)
1− g−1

2
(
xᵀ2iβ2

)]} (9)

= `1(β1; y) + `2(β2; y).

In this work, we will consider a log-linear model for parameter µi, that is, g1(µi) =
log(µi) = xᵀ1iβ1. The choice of g2 is left open and the notation ωi = g−1

2 (xᵀ2iβ2) will be
used when necessary. From Equation (9), one can easily notice that the vectors β1 and
β2 are orthogonal and that `1 depends only on the positive values of y. In this way, the
log-likelihood function of β1 takes the form

`1(β1; y) = ∑
j∈J1

log
{

y2
j + yj

[
h
(

exᵀ1j β1
)
+ 4
]
+
[

h2
(

exᵀ1j β1
)
+ 3h

(
exᵀ1j β1

)
+ 4
]}
−

∑
j∈J1

log
[

h4
(

exᵀ1j β1
)
+ 4h3

(
exᵀ1j β1

)
+ 10h2

(
exᵀ1j β1

)
+ 7h

(
exᵀ1j β1

)
+ 2
]
+ (10)

3 ∑
j∈J1

log
[

h
(

exᵀ1j β1
)]
− ∑

j∈J1

yj log
[

h
(

exᵀ1j β1
)
+ 1
]
,

where J1 = {j : yj > 0, yj ∈ y} is the finite set of indexes regarding the positive observa-
tions of y. Adopting this setup is equivalent to assuming that each positive element of
y comes from a ZT PS distribution. Here, we are extending the fact that estimating the
P parameter θ using the zero-truncated Poisson (ZT P) distribution results in a loss of
efficiency in the inference if there is no zero modification [35,37]. Now, the log-likelihood
function of β2 can be written as

`2(β2; y) =
n

∑
i=1

log
[

g−1
2
(
xᵀ2iβ2

)]
− ∑

j∈J2

log

 g−1
2

(
xᵀ2jβ2

)
1− g−1

2

(
xᵀ2jβ2

)
, (11)

where J2 = {j : yj = 0, yj ∈ y} is the finite set of indexes regarding the zero-valued
observations of y.

3.1. Prior Distributions

The g-prior [47] is a popular choice among Bayesian users of the multiple linear
regression model, mainly due to the fact of providing a closed-form posterior distribution
for the regression coefficients. The g-prior is classified as an objective prior method which
uses the inverse of the Fisher information matrix up to a scalar variance factor to obtain
the prior correlation structure of the multivariate normal distribution. Such specification is
quite attractive since the Fisher information plays a major role in determining large-sample
covariance in both Bayesian and classical inference.

The problem of eliciting conjugate priors for a GLM was addressed by [51]. Their
approach can be considered as a generalization of the original g-prior method. Still, its
application is restricted for the class of GLMs since the proposed prior does not have
closed-form for non-normal exponential families. Alternatively, ref. [52] have proposed
the information matrix prior as a way to assess the prior correlation structure between
the coefficients, not including the intercept since the regression matrix is centered as
to ensure that β0 is orthogonal to the other coefficients. This method uses the Fisher
information similarly to a precision matrix whose elements are shrunken by a fixed variance
factor. However, the authors have pointed out that such class of priors can only be
considered Gaussian priors if the Fisher information matrix does not depend on the vector
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β′ = (β1, . . . , βq). In this way, ref. [53] had considered a similar approach when they
proposed a class of hyper-g priors for GLMs, where the precision matrix is evaluated at the
prior mode, hence obtaining an information matrix that is β′ free.

The formal concept behind the information matrix prior is closely related to the unit
information prior [54], whose main idea is that the amount of information provided by a
prior distribution must be the same as the amount of information contained in a single
observation. Such an idea can be applied in the previously mentioned approaches by
simply considering the total sample size (n) as the variance factor. Ref. [52] have also
considered fixed values for the scalar variance factor. On the other hand, some works,
including [53,55,56] do consider prior elicitation and inference procedures for the variance
scale factor. Here, we will adopt a methodology based on the unit information prior idea
combined with the “noninformative g-prior” proposed by [57] for binary regression models.
Based on such an approach, it is possible to obtain a quite simple prior distribution for the
fixed-effects of the proposed model as βk ∼ Nqk

(0, n(X
ᵀ

kXk)
−1), where qk = qk + 1.

It is worthwhile to mention that, in cases where Xk is rank deficient (n < qk + 1) or
contains collinear covariates, it is highly advisable to compute the generalized inverse of
X

ᵀ

kXk otherwise the prior covariance matrix of βk may not be defined.
Analogously to Marin and Robert’s approach, we do not consider centered regression

matrices in the prior specification. Hence, we are able to include β10 in the proposed g-prior
but, in this case, the intercept is a priori correlated with the other coefficients (β11, . . . , β1q1).
The same applies for β20 and the vector (β21, . . . , β2q2).

3.2. Posterior Distributions and Estimation

Considering the outlined structure for the ZMPS regression model, the unnormal-
ized joint posterior distribution of the unknown vector β is given by

π(β; y) ∝ exp{`(β; y)}π(β). (12)

However, since β1 and β2 are orthogonal, we have that

π1(β1; y) ∝ exp{`1(β1; y)}π1(β1) and π2(β2; y) ∝ exp{`2(β2; y)}π2(β2), (13)

where `1 and `2 are given by (10) and (11), respectively. Naturally, in the discrete setting,
the use of proper (Gaussian) priors prevents π1 and π2 from being improper.

From the Bayesian point of view, inferences for the elements of βk can be obtained
from their marginal posterior distributions. However, deriving analytical expressions
for these densities is infeasible, mainly due to the associated log-likelihood function’s
complexity. In this case, to make inferences for βk, we must resort to a suitable iterative
procedure to drawn pseudo-random samples from their posterior densities. Hence, aiming
to generate N chains for βk, we will adopt the well-known random-walk metropolis (RwM)
algorithm [58,59]. For the posterior densities in (13), we consider a multivariate normal
distributions for the proposal (candidate-generating) densities in the algorithm. These
distributions will be used as the main terms in the transition kernels when computing the
acceptance probabilities. Hence, at any state t > 0, the MCMC simulation are performed
by proposing a candidate ψk for βk as

ψk|β
(t−1)
k ∼ Nqk

[
νβ

(t−1)
k , νS (t−1)

k

]
,

where ν = n(n + 1)−1. One can notice that transitions depend on the acceptance of pseudo-
random vectors generated with mean given by the actual state of the chain, which is
shrunken by the factor ν. Besides, at any state t > 0, the covariance matrix of the candidate
vector ψk can be approximated numerically by evaluating Sk = H−1

k at βk = νβ
(t−1)
k , where

Hk = −
∂2 log[πk(βk; y)]

∂βk∂βᵀ
k

.
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The procedure to generate pseudo-random samples from the approximate posterior
distribution of β is summarized in Algorithm A1 (see Appendix A). To run it, one has to
specify the size of chains to be generated (N) and the initial state vectors β

(0)
1 and β

(0)
2

beforehand. For a specific asymptotic Gaussian environment, [59] have shown that the
optimal acceptance rate should be around 45% for 1-dimensional problems and asymp-
totically approaches to 23.40% in higher-dimensional problems. We consider acceptance
rates varying between 23.40% and 32% as quite reasonable since the proposed model will
generally have at least four parameters to be estimated. Indeed, the higher the value of
n, the lower the acceptance rate in the RwM algorithm, which results in lower variability
of estimates.

The convergence of the simulated sequences can be monitored by using trace and
autocorrelation plots, and the run-length control method with a half-width test [60], the
Geweke z-score diagnostic [61], and the Brooks-Gelman-Rubin scale-reduction statistic [62].
After diagnosing convergence, some samples can be discarded as burn-in. The strategy to
decrease the correlation between and within generated chains is based on getting thinned
steps, and so the final sample is supposed to have size M � N for each parameter. A
full descriptive summary of the posterior distribution (12) can be obtained through Monte
Carlo (MC) estimators using the sequence {βt}M

t=1. We choose the posterior expected value
as the Bayesian point estimator for θ, that is,

β̂ =
1
M

M

∑
t=1

β(t), (14)

which is also known as the minimum mean square error estimator.
In the next section, we discuss the results of the Monte Carlo simulation studies

performed to assess the proposed Bayesian methodology’s performance. In Section 5, the
proposed model’s usefulness and competitivity are illustrated by using a real dataset. All
computations were performed using the R environment [63]. The executable scripts were
made available at the publisher’s website.

3.3. Posterior Predictive Distribution

In a Bayesian context, the posterior predictive distribution (ppd) is defined as the
distribution of possible future (unobserved) values conditioned on the observed ones.
Under the ZMPS distribution, the pmf of any observation w ∈ N0 (subject to the vectors
xᵀ1w and xᵀ2w of covariates) is given by

Pπ(Y = w) =
∫
Rd

P∗(Y = w; µw, ωw)π(β; y)dβ

=
∫
Rq1

P
(

Y = w; exᵀ1w β1
)

P
(

Y > 0; exᵀ1w β1
)
1−δw

π1(β1; y)dβ1 ×

∫
Rq2

g−1
2
(
xᵀ2wβ2

)[1− g−1
2
(

xᵀ2wβ2
)

g−1
2
(
xᵀ2wβ2

) ]δw

π2(β2; y)dβ2,

where δw = 1 if w = 0 and δw = 0 otherwise. Noticeably, the ppd has no closed-form
available, and therefore, an MC estimator for this quantity is given by

P̂π(Y = w) =
1

M2

M

∑
t=1

g−1
2

(
xᵀ2wβ

(t)
2

)1− g−1
2

(
xᵀ2wβ

(t)
2

)
g−1

2

(
xᵀ2wβ

(t)
2

)
δw

M

∑
t=1

bt(w), (15)
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where

bt(w) =


h3
(

exᵀ1w β
(t)
1

)
h4
(

exᵀ1w β
(t)
1

)
+ 4h3

(
exᵀ1w β

(t)
1

)
+ 10h2

(
exᵀ1w β

(t)
1

)
+ 7h

(
exᵀ1w β

(t)
1

)
+ 2
×

w2 + w
[

h
(

exᵀ1w β
(t)
1

)
+ 4
]
+

[
h2
(

exᵀ1w β
(t)
1

)
+ 3h

(
exᵀ1w β

(t)
1

)
+ 4
]

[
h
(

exᵀ1w β
(t)
1

)
+ 1
]w


1−δw

.

From Equation (15), one can easily estimate, for example, the posterior probability of
Y = 0 (subject to xᵀ10 and xᵀ20) as

P̂π

(
Y = 0; xᵀ10, xᵀ20

)
=

1
M

M

∑
t=1

g−1
2

(
xᵀ20β

(t)
2

)1− g−1
2

(
xᵀ20β

(t)
2

)
g−1

2

(
xᵀ20β

(t)
2

)
.

4. Simulation Study

The empirical properties of an estimator can be accessed through Monte Carlo simula-
tions. In this way, we have performed an intensive simulation study aiming to validade
the Bayesian approach in some specific situations. The simulation process was carried out
by generating 500 pseudo-random samples of sizes n = 50, 100, 200, and 500 of a variable
Y following a ZMPS distribution under the regression framework presented in Section 2.
For the whole process, it was considered a n× 2 regression matrix X1 = (1n, X1,n×1) in
which Xn×1 is a vector containing n generated values from a Uniform distribution on the
unit interval. Here, we have fixed X2 = X1. Moreover, we have assigned different values
for the vectors βᵀ

1 = (β10, β11) and βᵀ
2 = (β20, β21) in order to generate both zero-inflated

and zero-deflated artificial samples. The logarithm link function was considered for g1. For
g2, we have considered the link Functions (6)–(8) as a way to evaluate how these different
specifications affect the estimation of β.

Algorithm A2 (see Appendix A) can be used to generate a single pseudo-random real-
ization from the ZMPS distribution in the regression framework with covariate U (0, 1)
for µ and ω. The extension for the use of more covariates is straightforward. The process
to generate a pseudo-random sample of size n consists of running the algorithm as often as
necessary, say n∗ times (n∗ > n). The sequential search is a black-box algorithm and works
with any computable probability vector. The main advantage of such a procedure is its
simplicity. On the other hand, sequential search algorithms may be slow as the while-loop
may have to be repeated very often. More details about this algorithm can be found at [64].

Under the ZMPS distribution, the expected number of iterations (NI), that is, the
expected number of comparisons in the while condition, is given by

E(NI) = λ + 1 =
ωµ
[
h2(µ) + h(µ) + 2

]
[h(µ) + 1]3

h4(µ) + 4h3(µ) + 10h2(µ) + 7h(µ) + 2
+ 1,

where h(µ) is given by Equation (2).
We have considered four scenarios for each kind of zero-modification. Table 1 presents

the true parameter values that were considered in our study. For the zero-inflated (zero-
deflated) case, the samples were generated from the ZMPS distribution by considering
that pi ∈ (0, 1) (pi ∈ [1, P(Y > 0; µi)

−1]) for all i. Here, the regression coefficients were
chosen by taking into account that zero-inflated (zero-deflated) samples have, naturally,
proportion of zeros greater (lower) than expected under an ordinary count distribution and
therefore, the variable Yi (i = 1, . . . , n) was generated with mean far from zero (close to
zero). Table 1 also presents the range of parameters µi and pi in each scenario. The bounds
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were obtained by evaluating the linear predictors β10 + β11x and β20 + β21x at x = 0 and
x = 1 (limit values of the adopted covariate). Scenarios 1 and 2 of the zero-inflated case
were considered to illustrate the Bayesian estimators’ behavior when the proposed model
is used to fit (right) long-tailed count data.

Table 1. Actual parameter values for simulation of zero-modified artificial datasets.

Case Scenario Link β10 β11 β20 β21
Range Range

µi pi

I

1
Logit

1.50 3.00 −1.00 −1.00 (4.48; 90.02)
(0.12; 0.30)

Probit (0.02; 0.18)
CLL (0.13; 0.34)

2
Logit

1.50 3.00 −1.00 0.50 (4.48; 90.02)
(0.30; 0.38)

Probit (0.18; 0.31)
CLL (0.34; 0.45)

3
Logit

1.50 −1.50 −1.00 −1.00 (1.00; 4.48)
(0.23; 0.30)

Probit (0.04; 0.18)
CLL (0.24; 0.34)

4
Logit

1.50 −1.50 −1.00 0.50 (1.00; 4.48)
(0.30; 0.73)

Probit (0.18; 0.59)
CLL (0.34; 0.88)

D

1
Logit

−1.00 1.00 0.50 0.50 (0.37; 1.00)
(1.41; 2.30)

Probit (1.62; 2.56)
CLL (1.80; 2.99)

2
Logit

−1.00 1.00 1.50 −1.00 (0.37; 1.00)
(1.20; 3.02)

Probit (1.33; 3.45)
CLL (1.56; 3.66)

3
Logit

−1.00 −1.50 0.50 0.50 (0.08; 0.37)
(2.30; 9.64)

Probit (2.56; 11.09)
CLL (2.99; 12.31)

4
Logit

−1.00 −1.50 1.50 −1.00 (0.08; 0.37)
(3.02; 8.21)

Probit (3.45; 9.12)
CLL (3.66; 10.65)

I: inflation; D: deflation; and CLL: complementary log–log.

To apply the proposed Bayesian approach to each scenario, we have considered the
RwM algorithm for MCMC sampling. For each generated sample, a chain with N = 50,000
values was generated for each parameter, considering a burn-in period of 20% of the
chain size. To obtain pseudo-independent samples from the posterior distributions given
in (13), one out every 10 generated values were kept, resulting in chains of size M = 4000
for each parameter. Using trace plots and Geweke’s z-score diagnostic, the remaining
chains’ stationarity was revealed. When running the simulations, the acceptance rates
were ranging between 23.40% and 32%. The posterior mean (14) was considered as the
Bayesian point estimator, and its performance was studied by assessing its bias (B), its mean
squared error (MSE), and its mean absolute percentage error (MAPE). Besides, the coverage
probability (CP) of the 95% highest posterior density intervals (HPDIs) was also estimated.

Using the generated samples and letting γ = β10, β11, β20 or β21, the MC estimators
for these measures are given by

B̂γ̂ =
1

500

500

∑
j=1

(
γ̂j − γ

)
, M̂SEγ̂ =

1
500

500

∑
j=1

(
γ̂j − γ

)2, and M̂APEγ̂ =
1

500

500

∑
j=1

∣∣∣∣ γ̂j − γ

γ

∣∣∣∣.
The variance of γ̂ was estimated as the difference between the MSE and the square of

the bias. Moreover, the CP of the HPDIs was estimated by

ĈPγ =
1

500

500

∑
j=1

δj(γ),

where δj(γ) assumes 1 if the j-th HPDI contains the true value γ and 0 otherwise. We have
also estimated the below noncoverage probability (BNCP) and the above noncoverage prob-
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ability (ANCP) of the HPDIs. These measures are computed analogously to CP. The BNCP
and ANCP may be useful measures to determine asymmetrical behaviors as they provide
the probabilities of finding the actual value of γ on the tails of its posterior distribution.

Due to the massive amount of results, the obtained results were made available on
the publisher’s website as supplementary material. In our study, we have noticed that, as
expected, the parameter estimates became more accurate with increasing sample sizes since
the estimated biases and mean squared errors have decreased considerably as n increased.
The squared ratio between the mean squared error and the estimated variance approaches
1 as n increases. Although high MAPE values were obtained for some parameters (when
using small sample sizes), this does not compromise the overall estimation accuracy. For
example, when n = 100, we have obtained a estimated MAPE value of approximately
56% for β11 (see Table S25, Scenario S1, Supplementary Material). Taking into account
the true value of such parameter (1.00), we have that the estimates for β11 were ranging
mostly between 0.44 and 1.56, which do not represent a significant impact on the estimated
mean (µ). When (right) long-tailed count data are available, the CP of the HPDI for β11 is
considerably lower than the adopted nominal level (for small sample sizes) as its posterior
distribution tends to be more asymmetric towards higher values on the parameter space.
However, we have observed that the estimated CP of the HPDIs is converging to 95% in
both zero-modified cases, and the posterior distributions became more symmetric with
increasing sample sizes.

Considering the predefined scenarios, we conclude that our simulation study provides
favorable indications about the adopted Bayesian methodology’s suitability to estimate the
parameters of the proposed model. We believe that in a similar procedure with a different
set of actual values, the estimators’ overall behavior should resemble the results that we
have described here. Besides, the adopted methodology would also be reliable if one or
more than one covariates (possibly of other nature) were included in the linear predictors
of µi and ωi.

5. Chromosomal Aberration Data Analysis

In this section, the ZMPS regression model is considered for analyzing a real dataset
obtained from a cytogenetic dosimetry experiment that was first presented by [65]. In
this study, the response variable is the number of cytogenetic chromosomal aberrations
after the DNA molecule is treated with induced radiation. The dataset was obtained by
irradiating five blood samples from a healthy donor with different doses xi (i = 1, . . . , 5)
ranging between 0.1 and 1.0 Gy with 2.1 MeV neutrons in three different culture times
(48 h, 56 h, and 72 h), considering partial-body exposure-densely ionizing radiation. In the
following, ni cells were examined in each irradiated sample and the number of dicentrics
and centric ring aberrations yij (j = 1, . . . , ni) was recorded.

While [65] have used a t-test to analyze whether the averages of the relative number
of dicentrics plus centric ring aberration frequencies differed significantly between the
three different culture times, we are primarily interested in evaluating if the averages of
the number of dicentrics plus centric ring aberration differ significantly between doses of
ionizing radiation, considering data from culture times of 72 h.

The frequency distribution of the collected data is available in Table 2, along with
some descriptive statistics. From the observed dataset, there exist evidences that the
response variable is slightly overdispersed since y. = 0.131 < s2

. = 0.210 and s2
. /y. = 1.607.

Additionally, the number of aberrations appears to be heavily zero-inflated, as shown in
the left-panel of Figure 1. On the other hand, one can notice that, as the dose of ionizing
radiation increases, the number of observed zeros decreases. Still, the distribution becomes
more overdispersed since it naturally increases the number of aberrations.
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Table 2. Descriptive summary of the numbers of dicentrics and centric ring aberrations.

xi
yij

ni
yi si s2

i /yi0 1 2 3 4 5

0.1 2130 59 9 2 0 0 2200 0.038 0.224 1.316
0.3 1088 84 19 6 3 0 1200 0.127 0.449 1.591
0.5 875 88 30 7 0 0 1000 0.169 0.493 1.438
0.7 679 88 23 8 1 1 800 0.209 0.568 1.545
1.0 480 75 27 13 5 0 600 0.313 0.732 1.712
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Figure 1. Summary of the numbers of dicentrics and centric ring aberrations.

According to [32], when considering higher linear energy transfer radiations, the
incidence of chromosomal aberrations becomes a linear function of the dose because the
more densely ionizing nature of the radiation leads to an “one track” distribution of
damage. Such an aspect can be seen in the right-panel of Figure 1, which highlights the
linear behavior between the average number of aberrations and the doses. In this way, our
assumption is that Yij|xi ∼ ZMPS(µij, ωij), where parameters µij and ωij are specified as
linear dose models, that is,

log
(
µij
)
= β10 + β11xi and g2

(
ωij
)
= β20 + β21xi.

To fit the ZMPS regression model with dose as the only covariate, we have adopted
the same procedure used in the previous section. The link Function (7) was chosen to
relate ωij with the linear predictor β20 + β21xi and so we have the probit hurdle regression
model. In this framework, the coefficient β11 represents the effect of the dose of ionizing
radiation on the expected count µi when Yij > 0, and β21 indicates the effect of the dose
on the probability of aberrations to occur. We have considered the RwM for MCMC
sampling, generating a chain of size N = 50,000 for each parameter whereby the first
10,000 values were discarded as burn-in. The stationarity of the chains was revealed using
the Geweke z-score diagnostic of convergence. To obtain the pseudo-independent samples
from the posterior distributions given in (13), we have considered one value out of every
10 generated ones, resulting in chains of size M = 4000 for each parameter.

Table 3 presents the posterior parameter estimates and 95% HPDIs from ZMPS
fitted model. When obtaining the MCMC samples, the acceptance rate in the RwM al-
gorithm was approximately 32%. Besides, we have computed the number of effectively
pseudo-independent draws, that is, the Effective Sample Size (ESS) for each parameter.
Figures 2 and 3 depict the chains’ history (trace plots) and the marginal posterior distribu-
tions of the regression coefficients. The normality assumption of the generated chains is
quite reasonable, even with slight tails on the estimated densities. Additionally, there exists
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evidence of symmetry since the posterior means and medians are very close to each other.
For each parameter, the ESS was estimated at approximately half of M, indicating a good
mixing of the generated chains without computational waste.

Table 3. Posterior parameter estimates and 95% highest posterior density intervals (HPDIs) from ZMPS fitted model.

Parameter Mean Median Std. Dev. ESS
95% HPDI

Lower Upper

β10 −1.481 −1.479 0.192 1874.876 −1.868 −1.119
β11 0.935 0.937 0.279 1912.372 0.411 1.497
β20 −1.790 −1.789 0.044 1834.592 −1.873 −1.706
β21 1.062 1.063 0.074 1910.648 0.924 1.211
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Figure 2. Trace plots and marginal posterior distributions of parameters β10 and β11 from the ZMPS regression model.

A sensitivity analysis to verify the existence of influential points is presented in
Figure 4. We have estimated all divergence measures presented in Table A1 but, since
the obtained results led to the same conclusions, we are only reporting the KL and H
divergences and their calibration for each observation. Even being very conservative by
considering an observation whose distance has a calibration exceeding 0.65 as an influential
point, we do not have found evidence that any observation has influenced the estimation
of any coefficient of the ZMPS regression model significantly.
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Figure 3. Trace plots and marginal posterior distributions of parameters β20 and β21 from the ZMPS regression model.

For comparison purposes, identical Bayesian procedures were adopted to fit the P ,
the NB, the PS , the ZMP and the ZMNB regression models. To estimate the fixed
dispersion parameter (φ) of NB and ZMNB models, we have considered a noninforma-
tive inverse-gamma prior distribution with hyperparameters a = b = 1.0. For each fitted
model, we have estimated the measures presented in Appendix C. The model comparison
procedure is summarized in Table 4. One can notice that the zero-modified models have
performed considerably better with ZMPS outperforming all. These results are high-
lighting that the proposed model is highly competitive with well-established models in
the literature. This feature can be considered one of the most relevant achievements of the
ZMPS model since it has to deal with the positive observations using fewer parameters
than, for example, the ZMNB model.

In Table 4, we have also reported the Bayesian p-values as a way to evaluate the
adequacy of the fitted models. As expected, the P model is unsuitable to describe the
considered dataset, and the fit provided by the NB regression model is also highly ques-
tionable. For the zero-modified models, there is no indication of overall lack-of-fit, since
the posterior values of pB were estimated close to 0.50. Figure 5 depicts additional evi-
dence based on the RQRs for validating the fitted ZMPS regression. This residual metric
was computed as discussed in Appendix D, using Equation (4). One can notice that the
normality assumption of the residuals is easily verified by the behavior of its frequency
distribution (left-panel). Additionally, the half-normal probability plot indicates that the fit
of the ZMPS model was very satisfactory since all estimated residuals are lying within
the simulated envelope (right-panel).
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Figure 4. Sensitivity analysis for diagnosis of influential points.

Table 4. Comparison criteria and adequacy measures for the fitted models.

Model DIC EAIC EBIC NLMPL pB

P 4650.631 4652.624 4665.955 2325.750 1.000
NB 4340.938 4343.915 4363.912 2170.321 0.936
PS 4436.313 4438.312 4451.643 2218.355 0.578
ZMP 4323.300 4327.164 4353.826 2161.734 0.516
ZMNB 4321.668 4326.960 4360.288 2160.530 0.598
ZMPS 4320.539 4324.549 4351.212 2160.138 0.542

From the results displayed in Table 3, one can make some conclusions. Firstly, we
have observed that the HPDIs of parameters β11 and β21 do not contain the value zero,
which constitutes the dose of ionizing radiation as a relevant covariate to describe the
average number of chromosomal aberrations as well the probability of not observing at
least one aberration (p0). For example, the expected number of dicentrics and centric rings
in a cell that was exposed to 1.0 Gy is 0.363, and the probability of such aberrations not to
occur is p̂0 = Φ(1.790− 0.319) = 0.929. Therefore, based on the posterior estimates, the
components of the fitted ZMPS model can be expressed by

µ̂ij = exp{−1.481 + 0.935xi} and ω̂ij = Φ(−1.790 + 1.062xi),

where xi is the dose of ionizing radiation.
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Figure 6 present the Bayesian estimates, by dose, for the probability of not observing
at least one aberration (left-panel) and for parameter p (right-panel). Noticeably, inferences
about parameter p confirm the initial assumption that the analyzed sample has an excessive
amount of zeros.
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Figure 5. Frequency distribution and half-normal plot with simulated envelope for the randomized quantile residuals (RQRs).
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Figure 6. Posterior estimates of parameters p0 and p. The dashed red lines represent the 95% HPDIs.

Table 5 presents a general posterior summary of the models that were fitted to the
chromosomal aberration data. Here, parameter λ as estimated as n−1 ∑5

i=1 ∑ni
j=1 λ̂ij and

ς2 was estimated analogously. One can notice that the expected number of zeros (n̂0)
obtained by the P , the NB and the PS models are slightly lower than the observed n0,
while those provided by the zero-modified models are very close (or exactly equal) to 5252.
Through these measures, one can better understand how the fitted models are adhering
to the data since the nature of the observed counts should be well described regarding its
overdispersion level and the frequency and the average number of nonzero observations.

The goodness-of-fit of the fitted models can be evaluated by the χ2 statistic obtained
from the observed and expected frequencies. To compute such measure, we have grouped
cells with frequencies lower or equal than 5, resulting in 4 degrees of freedom. The obtained
statistics are also presented in Table 5. Figure 7 depict the positive expected frequencies
(left-panel) and the dose-response curves (right-panel) that were estimated by the zero-
modified models. Noticeably, the zero-modified models describe much better the data’s
behavior, especially the ZMNB and the ZMPS distributions.
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Table 5. Posterior parameter estimates and goodness-of-fit evaluation.

Model Parameter λ̂ ς̂2 n̂0 χ2 p-Value

P β̂10 = −2.97 0.131 0.131 5086 2343.773 <0.001
β̂11 = 1.95

NB
β̂10 = −3.02

0.133 0.232 5202 20.050 <0.001β̂11 = 2.07
φ̂ = 0.28

PS β̂10 = −2.99 0.132 0.157 5126 266.458 <0.001
β̂11 = 1.98

ZMP

β̂10 = −0.86

0.132 0.199 5251 16.456 0.002β̂11 = 0.82
β̂20 = −1.79
β̂21 = 1.06

ZMNB

β̂10 = −1.33

0.131 0.206 5251 7.255 0.123
β̂11 = 0.88
β̂20 = −1.79
β̂21 = 1.07
φ̂ = 1.51

ZMPS Table 3 0.132 0.210 5252 5.298 0.258

From the obtained results, one can conclude that despite the suitable fit provided by
the ZMNB regression model, the proposed model have adhered better to the chromo-
somal aberration data. This achievement can be regarded as extremely relevant since the
ZMNB model has an additional (dispersion) parameter to handle the non-zero obser-
vations. In contrast, the proposed model was proved highly competitive by its ability to
accommodate the data overdispersion and zero modification using fewer parameters.
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Figure 7. Posterior expected frequencies and dose-response curve fitted by the zero-modified models.

6. Concluding Remarks

This work aimed to introduce the ZMPS regression model as an alternative for the
analysis of overdispersed datasets exhibiting zero-modification in the presence of covari-
ates. Intensive Monte Carlo simulation studies were performed, and the obtained results
have allowed us to assess the empirical properties of the Bayesian estimators and then
conclude about the suitability of the adopted methodology to the predefined scenarios. The
proposed model was considered for analyzing a real dataset on the number of cytogenetic
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chromosomal aberrations, considering the dose of ionizing radiation as the covariate for
both model components. The response variable was identified as overdispersed and heav-
ily zero-inflated, which justified using the ZMPS regression model. The main conclusion
one can make from the fitted models is that the dose is statistically relevant to describe
either the probability of occurrence and the average incidence of aberrations. Besides, when
looking at the χ2 statistic and the posterior-based comparison criteria, we have noticed
that the proposed model has presented a better fit when compared to its competitors and
therefore, it can be considered an excellent addition to the set of models that can be used
for the analysis of overdispersed and zero-modified count data.
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ANCP Above noncoverage probability
B Bias
BNCP Below noncoverage probability
CDF Cumulative distribution function
CP Coverage probability
CPO Conditional predictive ordinate
CS Chi-square
DIC Deviance information criterion
EAIC Expected Akaike information criterion
EBIC Expected Bayesian information criterion
ESS Effective sample size
GLM Generalized linear model
H Hellinger
HPDI Highest posterior density interval
J Jeffrey
KL Kullback–Leibler
L1 Variational divergence
LMPL Log-marginal pseudo-likelihood
MAPE Mean absolute percentage error
MC Monte Carlo
MCMC Markov chain Monte Carlo
MSE Mean squared error
NB Negative binomial
NI Number of iterations
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P Poisson
PMF Probability mass function
PS Poisson–Sujatha
RQR Randomized quantile residuals
RwM Random-walk metropolis
ZIP Zero-inflated Poisson
ZMP Zero-modified Poisson
ZMPS Zero-modified Poisson–Sujatha
ZT P Zero-truncated Poisson
ZT PS Zero-truncated Poisson–Sujatha

Appendix A. Algorithms

Appendix A.1. Random-Walk Metropolis

Algorithm A1 Random-walk metropolis.

1: procedure RWM(N, β
(0)
1 , β

(0)
2 )

2: Set t← 1 and ν← n(n + 1)−1

3: while t 6 N do
4: Generate ψ1 ∼ Nq1

[νβ
(t−1)
1 , νS (t−1)

1 ] and ψ2 ∼ Nq2
[νβ

(t−1)
2 , νS (t−1)

2 ]

5: Set α1 ← exp{π1(ψ1; y)− π1(β
(t−1)
1 ; y)}

6: Set α2 ← exp{π2(ψ2; y)− π2(β
(t−1)
2 ; y)}

7: Set β
(t)
1 ← β

(t−1)
1 and β

(t)
2 ← β

(t−1)
2

8: Generate u1, u2 ∼ U (0, 1)
9: if u1 6 min{1, α1} and u2 6 min{1, α2} then

10: Set β
(t)
1 ← ψ1 and β

(t)
2 ← ψ2

11: end if
12: Set t← t + 1
13: end while
14: return {βt}N

t=1 = {βt
1, βt

2}N
t=1

15: end procedure

Appendix A.2. Sequential Search

Algorithm A2 Sequential search.

1: procedure SEQSEA(β10, β11, β20, β21)
2: Generate x, u ∼ U (0, 1)
3: Set µ← exp{β10 + β11x} and ω ← g−1

2 (β20 + β21x)
4: Set k← (1−ω) and y← 0
5: while u > k do
6: Set y← y + 1 and k← k + ω P∗(Y = y; µ)
7: end while
8: return y
9: end procedure

Appendix B. Influential Points

Identifying influential observations is a crucial step in any statistical analysis. Usually,
the presence of influential points impacts the inferential procedures and the subsequent
conclusions considerably. In this way, this subsection is dedicated to present some case dele-
tion Bayesian diagnostic measures that can be used to quantify the influence of observations
from each subject in a given dataset.
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The computation of divergence measures between posterior distributions is a useful
way to quantify influence. According [66], the ϕ-divergence measure between two densities
f and g for θ ∈ Θ is defined by

dϕ =
∫

Θ
g(θ)ϕ

[
f (θ)
g(θ)

]
dθ,

where ϕ is a smooth convex, lower semicontinuous function such that ϕ(1) = 0. Some
popular divergence measures can be obtained by choosing specific functions for ϕ. The
well-known Kullback–Leibler (KL) divergence is obtained by considering ϕ(z) = − log(z).
A symmetric version of the KL divergence, the Jeffrey (J) divergence, can be obtained by
specifying ϕ(z) = (z− 1) log(z) and the variational divergence (L1 norm) is obtained when
ϕ(z) = 0.50|z− 1|. In addition, the Chi-square (CS) divergence is obtained by considering
ϕ(z) = (z− 1)2 and the Hellinger (H) distance arises when ϕ(z) = 0.50(

√
z− 1)2. We refer

to [67] for a detailed study on several types of ϕ-divergence.
Let g(β) = π(β; yi) be the joint posterior distribution of β based only on the i-th

observation and let f (β) = π(β; yj
i ), where y−i= (y1, . . . , yi−1, yi+1, . . . , yn) is the response

vector without the i-th observation. After some algebra (see [68] for the KL divergence
case), one can verify that the ϕ-divergence corresponds to

dϕ = Eβ

ϕ

Eβ

[
P∗(Yi = yi; β)−1; y

]−1

P∗(Yi = yi; β)

; y

,

where Eβ[P∗(Yi = yi; β)−1; y]−1 is the conditional predictive ordinate (CPO) statistic [69]
for the i-th observation. Here, we are also not able to compute the inner expectation over β
analytically and so, an MC estimator for the CPOi is given by

ĈPOi =

[
1
M

M

∑
t=1

P∗
(

Yi = yi; β(t)
)−1

]−1

. (A1)

According to [70], the harmonic mean estimator (A1) is stable when most of the
individual log-likelihood values exceed -10. Using the estimated CPO, one can approximate
the local influence of a particular yi on the joint posterior distribution (12) as

d̂ϕ =
1
M

M

∑
t=1

ϕ

[
ĈPOi

P∗
(
Yi = yi; β(t)

)].

One can notice that, if π(β; y−i) = π(β; y), then there is no divergence caused by
observation yi. In practice, however, it may not be elementary to define a threshold value
for the divergence to decide about the magnitude of the influence [71]. A measure of
calibration for the KL divergence was proposed by [72]. The idea is based on the typical toy
binary example of tossing a coin once and observing its upper face. This experiment can be
described by P(Y = y; ρ) = ρy(1− ρ)1−y, y ∈ {0, 1}, where ρ ∈ [0, 1] is the probability of
success. Regardless of what success means, if the coin is unbiased, then P(Y = y; ρ) = 0.50.
Thus, the ϕ-divergence between a (possibly) biased and an unbiased coin is given by

dϕ(ρ) =
ϕ(2ρ) + ϕ[2(1− ρ)]

2
,

from which one can conclude that the divergence between two posteriors distributions
can be associated with the biasedness of a coin [67]. By analogy, this implies that predict
unobserved responses using π(β; y−i) instead of π(β; y) is equivalent to describe an
unobserved event as having probability ρi, when the correct probability is 0.50. Considering
some specific choices for ϕ, in Table A1 we present MC estimators that can be used to
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compute the local influence of each yi. Besides, we also present the expression of dϕ(ρ) for
each ϕ. For ease of notation, we assume f t

i = P(Yi = yi; β(t)).

Table A1. MC estimators for some ϕ-divergence measures and their calibration.

ϕ d̂ϕ dϕ(ρ) ρ̂ϕ

KLi
1
M

M
∑

t=1
log( f t

i )− log
(

ĈPOi

)
− 1

2 log[4ρi(1− ρi)]
1
2

[
1 +

√
1− e−2d̂i

]
Ji

1
M

M
∑

t=1

(
ĈPOi

f t
i
− 1

)
log

(
ĈPOi

f t
i

)
− (1−2ρi)

2 log
(

ρi
1−ρi

)
no closed-form

L1
i

1
2M

M
∑

t=1

∣∣∣ĈPOi− f t
i

∣∣∣
f t
i

1
2 |1− 2ρi | 1

2 + d̂i

CSi 1
M

M
∑

t=1

(
ĈPOi− f t

i

)2

( f t
i )

2 (1− 2ρi)
2 1

2

[
1 +

√
d̂i

]

Hi 1
2M

M
∑

t=1

(√
ĈPOi

f t
i
− 1
)2

1− 1√
2

(√
ρi +

√
1− ρi

)
1
2 +

[√
d̂i −

√
d̂3

i

]√
2− d̂i

KL: K; J: Jeffrey; L1: Variational; CS: Chi-Square; and H: Hellinger.

The function dϕ(ρ) is symmetric about 0.50 and increases as ρ moves away from 0.50.
In addition, infρ∈(0,1) dϕ(ρ) = 0, which is attained at ρ = 0.50 since dϕ(0.50) = ϕ(1) = 0.
Therefore, a general measure of calibration based on the ϕ-divergence can be obtained
by solving

2dϕ(ρ)− ϕ(2ρ)− ϕ[2(1− ρ)] = 0.

An estimator for the calibration measure (ρϕ) associated with each ϕ-divergence type
is also presented in Table A1. Clearly, depending on the form of ϕ, such an equation may
not have a closed-form, which is the case of the J divergence. Besides, one can notice that
ρi ∈ [0.50, 1] and so, for ρi � 0.50, the i-th observation may be considered an influential
point. For example, if ρi > 0.80 is considered a significative bias, then yi will be classified
as influential if d̂i > 0.223 (dϕ(0.80) ≈ 0.223) under the KL divergence or yet if d̂i > 0.051
(dϕ(0.80) ≈ 0.051) under the H divergence.

Appendix C. Model Comparison and Adequacy

There are several techniques for Bayesian model selection that are useful to compare
competing models. The most popular method is the deviance information criterion (DIC),
which was proposed to work simultaneously to measure fit and complexity of the model.
The DIC criterion is defined as

DIC = Eβ[D(β)] + $D = D(β) + $D ,

where D(β) = −2`(β; y) is the deviance function and $D = D(β)−D(β̂) is the effective
number of model parameters, with β̂ given by (14). A negative value for $D may suggest
that the log-likelihood function is non-concave, the prior distribution is misspecified, or the
posterior expected value is not a good estimator for β. On the other hand, when $D � d,
then there is an indication of overfitting with estimate β̂.

Noticeably, we are not able to compute the expectation of D(β) over β analytically. In
this case, an MC estimator for such a measure is given by

D̂(β) = − 2
M

M

∑
t=1

`
(

β(t); y
)

,

and so the DIC can be estimated by D̂IC = 2D̂(β)−D(β̂).
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The expected Akaike (EAIC) and the expected Bayesian (EBIC) information criteria
can also be used when comparing Bayesian models [73,74]. Using the approximation for
the expected value of D(β), these measures can be estimated by

ÊAIC = D̂(β) + 2d and ÊBIC = D̂(β) + d log(n).

Another widely used criterion is derived from the CPO statistic, which is based on
the cross-validation criterion to compare models. For the i-th observation, the CPO can
be estimated through Equation (A1). A summary statistic of the estimated CPO’s is the
log-marginal pseudo-likelihood (LMPL) given by the sum of the logarithms of ĈPOi’s.
Regarding model comparison, we have that the lower the values of DIC, EAIC, EBIC, and
NLMPL (negative LMPL), the better the fit.

In addition to comparing, researchers are often interested in verifying the adequacy
of the fitted models. An effective way to evaluate model suitability is based on the use
of measures derived from the ppd. For instance, if any observation is extremely unlikely
relative to the ppd, the obtained fit’s adequacy might be questionable. Ref. [75] proposed a
widespread discrepancy measure between model and data. In our case, we need a slightly
adapted version of such a measure, which is given by

T(y, β) = −2
n

∑
i=1

log[P∗(Yi = yi; β)].

The Bayesian p-value (posterior predictive p-value), proposed by [76], is defined as

pB = P[T(yr, β) > T(y, β); y],

where yr denotes the response vector that might have been observed if the conditions
generating y were reproduced. This predictive measure can be empirically estimated
as the relative number of times that T(yr, β̂) exceeds T(y, β̂) out of B simulations. In
general, the model fit becomes suspect if the discrepancy is of practical relevance, and the
associated Bayesian p-value is close either to 0 or 1 [75]. A large (small) value of pB , say
greater than 0.95 (lower than 0.05), indicates model misspecification (lack-of-fit), that is, the
observed behavior would be unlikely to be seen if we replicate the response vector using
the fitted model.

Appendix D. Residual Analysis

The residual analysis plays an essential role in the task of validating the results
obtained from a regression model. In general, residual metrics are responsible for indicating
departures from the underlying model assumptions by quantifying the portion of data
variability that the fitted model is not explaining. Assessing a regression model’s adequacy
using residual metrics is a common practice nowadays due to the availability of statistical
packages providing diagnostic tools for well-established models. However, deriving
appropriate residuals is not always an easy task for non-normal models that accommodate
overdispersion. In this way, we will consider a popular residual metric proposed by [77],
the randomized quantile residuals (RQRs), which can be straightforwardly used in our
context to assess the appropriateness of the proposed model when fitted to real data.

For obvious reasons, we focus on the definition of RQRs for discrete random variables.
In this case, the RQR associated with the i-th observation is defined as ri = Φ−1(ui), where
Φ denotes the cdf of the standard normal distribution and ui is a Uniform random variable
defined on (ai, bi], with ai = limy↑yi F(yi) and bi = F(yi), where F(yi) is the cdf of the
current model. In our case, we may obtain an MC estimator for the RQR as r̂i = Φ−1(ui),
with ui ∼ U (limy↑yi F̂∗(yi), F̂∗(yi)]. Here, F̂∗(yi) ≡ F∗(yi; µ̂i, ω̂i) is an estimate for the
probability of Yi 6 yi using cdf (4), where µ̂i and ω̂i depend on the fitted model as
µ̂i = log(xᵀ1i β̂1) and ω̂i = g−1

2 (xᵀ2i β̂2).
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The primary assumption for this metric is that r̂i ∼ N (0, 1) must hold, whichever the
variability degree of µ̂i and ω̂i. In this case, after model fitting, one has to evaluate if these
residuals are normally distributed around zero, which can be made through adherence tests
and by using graphical techniques as histograms and half-normal probability plots. An
excellent alternative for checking whether RQRs are consistent with the fitted model is the
inclusion of simulated envelopes in their half-normal plot. Thus, if a significant subset of
estimated residuals falls outside the envelope bands, then the fitted model’s adequacy must
be questioned, and further investigation on the corresponding observations is necessary.
Ref. [78] provides an algorithm for obtaining simulated envelopes for a half-normal plot.
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