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Background: Androgen alopecia (AGA), the most common type of alopecia worldwide,
has become an important medical and social issue. Accumulating evidence indicates that
long noncoding RNAs (lncRNAs) play crucial roles in the progression of various human
diseases, including AGA. However, the potential roles of lncRNAs in hair follicle stem cells
(HFSCs) and their subsequent relevance for AGA have not been fully elucidated. The
current study aimed to explore the function and molecular mechanism of the lncRNA
AC010789.1 in AGA progression.

Methods: We investigated the expression levels of AC010789.1 in AGA scalp tissues
compared with that in normal tissues and explored the underlying mechanisms using
bioinformatics. HFSCs were then isolated from hair follicles of patients with AGA, and an
AC010789.1-overexpressing HFSC line was produced and verified. Quantitative real-time
polymerase chain reaction (qRT-PCR) and Western blotting were performed to verify the
molecular mechanisms involved.

Results: AC010789.1 overexpression promoted the proliferation and differentiation of
HFSCs. Mechanistically, we demonstrated that AC010789.1 overexpression promotes
the biological function of HFSCs by downregulating miR-21-5p and TGF-β1 expression
but upregulating the Wnt/β-catenin signaling pathway.

Conclusion: These results reveal that overexpression of AC010789.1 suppresses AGA
progression via downregulation of hsa-miR-21-5p and TGF-β1 and promotion of the Wnt/
β-catenin signaling pathway, highlighting a potentially promising strategy for AGA
treatment.
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INTRODUCTION

Alopecia, a common disorder occurring worldwide, characterized
by hair loss, can be caused by multiple factors, such as heredity,
hormonal disorders, immune inflammation, malnutrition,
environmental factors, mental disorders, and aging (Ho and
Shapiro, 2019). Androgen alopecia (AGA) is the most
common type of alopecia and has become an important
medical and social issue due to its high incidence; increasingly
young onset age; and associated psychological problems, such as
depression, anxiety, and emotional disorders (Bas et al., 2015;
Molina-Leyva et al., 2016; Katzer et al., 2019; Ding et al., 2020).
Currently, finasteride and minoxidil are the only therapeutic
drugs approved by the Food and Drug Administration for
AGA treatment (Chen et al., 2020a). Finasteride, a specific
inhibitor of type II 5α reductase, inhibits the metabolic
conversion of testosterone to highly active dihydrotestosterone,
reducing the effect of active androgens on hair follicles (Spinucci
and Pasquali, 1996). However, finasteride is associated with a risk
of sexual dysfunction and depression during treatment (Motofei
et al., 2020). Minoxidil treats AGA by predominantly promoting
hair growth but can cause side effects, such as contact dermatitis,
skin irritation, and dizziness during treatment, and on treatment
cessation, alopecia generally recurs (Goren et al., 2017; Jimenez-
Cauhe et al., 2019). Hair transplantation is the gold standard for
AGA treatment, but the limited number of active hair follicles in
the donor site makes it impossible to apply to large areas of
baldness (Chouhan et al., 2019a; Chouhan et al., 2019b). Hence,
new methods for the treatment of AGA need to be developed
urgently.

The three phases of periodic hair follicle growth are resting,
growth, and degenerative periods, and cessation of this
regeneration cycle is the main mechanism contributing to
AGA (Baker and Murray, 2012). Previous studies report
that the periodic growth of hair follicles depends on the
hair follicle stem cells (HFSCs) located in the bulge area of
the hair follicle (Cotsarelis et al., 1990; Fu and Hsu, 2013).
HFSCs are a group of adult stem cells with self-renewal ability
that specifically express surface markers such as CD34 and
CK15 (Morris et al., 2004; Owczarczyk-Saczonek et al., 2018).
In normal conditions or during wound repair, HFSCs in the
bulge area activate and differentiate into various hair follicle
cell types for hair follicle regeneration (Oshima et al., 2001;
Yang et al., 2017). However, there is evidence that the scalp
hair follicles in patients with AGA are impaired in HFSC
activation, thereby preventing their differentiation into hair
follicle precursors. Garza et al. (2011) found that, although
patients with AGA had a similar quantity of hair follicles in the
alopecia scalp area as in nonalopecia areas, the HFSCs in the
alopecia areas were in a static state and did not actively
differentiate into hair follicle precursors. Thus, activation of
HFSC proliferation and differentiation may be an effective
breakthrough for the treatment of AGA.

Long noncoding RNAs (lncRNAs), a type of noncoding RNA
over 200 nt in length, have attracted considerable interest in
recent years. Functional data suggest that they play essential
regulatory roles in multiple biological processes, such as cell

development, differentiation, disease, subcellular localization,
and cell structure maintenance (Yao et al., 2019). Intriguingly,
genome analyses comparing AGA scalp tissues with adjacent
normal tissues (defined as 5 cm from themargin of the AGA areas
with a follicle density >325/cm2) in patients with AGA found a
large number of differentially expressed lncRNAs, indicating that
the dysregulation of lncRNA expression profiles may be involved
in AGA progression (Chew et al., 2016; Bao et al., 2017).
Moreover, several lines of evidence demonstrate a novel
lncRNA regulatory mechanism in promoting hair follicle
regeneration. Zhu et al. (2020) demonstrate that
overexpression of lncRNA H19 can directly downregulate the
expression of Wnt pathway inhibitors, including DKK1,
Kremen2, and sFRP2, which activates Wnt signaling, thereby
maintaining the hair follicle regeneration potential of dermal
papilla cells (DPCs). Likewise, Lin et al. (2020a); Lin et al. (2020b)
found that lncRNA XIST targets miR-424 and PCAT1 targets
miR-329 to activate Wnt and hedgehog signaling, respectively,
and maintain the regeneration characteristics of DPCs. To date,
many molecular mechanisms of DPC-mediated hair follicle
regeneration have been investigated. However, the role of the
potential connection between lncRNAs and HFSCs in AGA has
not been fully elucidated.

The current study aimed to explore the potential function of
the lncRNA AC010789.1 in AGA progression. We demonstrate
that AC010789.1 expression was downregulated in AGA scalp
tissues, and overexpression of AC010789.1 promoted the
proliferation and differentiation of HFSCs. Mechanistically,
overexpression of AC010789.1 was shown to delay AGA
progression by interacting with miR-21 and activating Wnt/β-
catenin signaling. Therefore, this study provides insights into the
mechanisms underlying AC010789.1 regulation of AGA
progression to provide a new theoretical and experimental
basis for the prevention and treatment of AGA.

MATERIALS AND METHODS

Tissue Collection and Ethics Statement
Hair follicle tissues extracted from patients with AGA were
obtained from the Shanghai East Hospital affiliated with the
Tongji University School of Medicine, and informed consent
was obtained from all patients. Ethical approval was obtained
from the Shanghai East Hospital Ethics Committee. Tissue
specimens were snap-frozen and stored in liquid nitrogen until
further use.

Microarray Data Acquisition
Gene expression microarray data sets (GSE84839 and GSE36169)
were downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo). The GSE84839
data set was based on the GPL21827 platform (Agilent-079487
Arraystar Human LncRNA microarray V4) and included three
pairs of male AGA scalp tissues and adjacent normal tissues. The
GSE36169 data set was based on the GPL96 platform (Affymetrix
Human Genome U133A Array) and contained AGA and
adjacent normal scalp tissues from five individuals. The
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lncRNA and mRNA expression data in the AGA and adjacent
normal tissues were downloaded and used for this study.

Differential Analysis of lncRNA and mRNA
Expression
Differential analysis of lncRNA and mRNA expression between
AGA and adjacent normal scalp tissues was performed using the
GEO2R analysis tool. The platform data were converted using R
language software and standardized using the limma array
function within the R package (http://www.bioconductor.org/).
A p-value < .05, and a base-2 logarithm of fold change (log FC) <
−1 or >1 were used as selection criteria to screen differentially
expressed lncRNAs and mRNAs (Xiong et al., 2020).

Functional and Pathway Enrichment
Analysis
Database for Annotation, Visualization, and Integrated Discovery
(DAVID) v6.8 (https://david.ncifcrf.gov/) provides a
comprehensive annotation tool to help investigators better
clarify the biological function of the submitted genes (Dennis
et al., 2003). In this study, DAVID v6.8 was used for gene
ontology (GO) annotation and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis. GO
annotation analysis revealed biological processes (BPs),
cellular components (CCs), and molecular functions (MFs) of
the genes. Statistical significance was set at p < 0.05. Then,
XTalkDB (http://www.xtalkdb.org/home), a database that
documents scientific literature supporting crosstalk between
pairs of signaling pathways, was used to explore the
relationship between pathways.

Integrated Analysis of Interaction Network
GeneMANIA (http://genemania.org/) is a data set that provides a
series of functional association information to identify the
relation between genes of the submitted set in terms of their
genetic interactions, pathways, expression patterns, localization,
and protein domain similarity. In this study, protein-protein
interaction (PPI) networks were analyzed using the
GeneMANIA data set, and Cytoscape (version 3.7.2) was used
to visualize the PPI networks.

Isolation and Cultivation of HFSC
Isolation of HFSCs was performed as previously described (Aran
et al., 2020). Follicular unit extraction was performed to collect
and isolate hair follicle tissues from 20 patients with AGA under a
stereomicroscope. A needle was used to separate the hair shaft
and papilla, and only the bulge areas were reserved. The bulge
areas were treated with dispase II (2.5 mg/ml, Sigma,
United States) and collagenase I (1 mg/ml, Gibco,
United States) for 60 min, and 0.25% trypsin-ethylene diamine
tetra acetic acid (EDTA; Gibco, Grand Island, NY, United States)
for 15 min. The obtained cells were cultured in a keratinocyte
serum-free medium (K-SFM, Gibco) in a 5% CO2 humidified
incubator at 37°C, and the medium was changed every 2–3 days.
The third passage (P3) of HFSCs was characterized by

immunofluorescence with an anti-K15 antibody (Santa Cruz
Biotechnology, TX, United States) and was used for follow-up
studies.

Cell Proliferation Assay
Cell Counting Kit 8 (CCK8) assays (Beyotime Biotechnology
Company, Jiangsu, China) and 5-ethynyl-2 deoxyuridine
(EdU) assays (RiboBio, Guangzhou, China) were performed
to assess the cell proliferation ability. For CCK8 assays, cells
were seeded at approximately 2×103 cells/well in 96-well
plates, and cell attachment was allowed for 12 h. Then, a
10 μl CCK8 test solution was added to each well at 24, 48,
72, and 96 h, and the cells were incubated in a humidified
incubator with 5% CO2 at 37°C for 2 h at each time point to
evaluate the cell growth viability. The optical density (OD) was
measured at 450 nm with a microplate reader (Tecan, Thermo
Scientific, United States). For EdU assays, the experiments
were performed according to the manufacturer’s instructions
(Xiong et al., 2019). Then, the cells were observed under a
fluorescence microscope (Zeiss HLA100, Shanghai, China)
and analyzed by using ImageJ software (Bethesda, MD,
United States). The data shown are representative of three
independent experiments.

Quantitative Real-Time Polymerase Chain
Reaction
Total RNA was isolated from tissues or cells using Trizol®
Reagent (Life Technologies, United States) and reverse
transcribed into cDNA using a cDNA synthesis kit (Thermo
Scientific) according to the manufacturer’s instructions. qRT-
PCR was performed as previously reported (Xiong et al., 2019).
Melt curves were established for the reactions, and the
normalized fold expression was calculated using the 2−ΔΔ Ct

method. The primer sequences are listed in Table 1.

Western Blotting
The cells from each sample were collected and lysed in
radioimmunoprecipitation (RIPA) buffer (Thermo
Scientific), followed by centrifugation at 1,200×g for 10 min
and subsequent collection of the supernatant. Western blotting
was performed as previously described (Xiong et al., 2019).
The primary antibodies were GAPDH (1:20,000, Proteintech,
China), Lgr5 (1:1,000, Abcam, United States), TGF-β1 (1:
1,000, Santa Cruz Biotechnology, United States), and β-
catenin (1:1,000, Cell Signaling Technology, United States),
and the secondary antibody was horseradish peroxidase-
conjugated goat antimouse (1:10,000, Abcam,
United States). Protein expression was observed and
visualized by chemiluminescence using an Alpha Imager
scanner (Tecan, Thermo Scientific).

Statistical Analysis
All data are expressed as the mean ± standard deviation, and
statistical significance was determined using Student’s t-test. All
statistical analyses were performed using SPSS (version 17.0).
Statistical significance was set at p < 0.05.
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RESULTS

AC010789.1 Expression is Downregulated in
Patients With AGA
To investigate the role of lncRNAs in AGA, we used the gene
expression microarray data set GSE84839, which included the
data of three pairs of male scalp AGA and adjacent normal
tissues. Analysis using the screening criteria of p < 0.05 and |log

FC| > 1 revealed a total of 4,939 differentially expressed lncRNAs
(4,239 upregulated and 700 downregulated). A volcano map was
used to show the distribution of all differentially expressed
lncRNAs (Figure 1A). AC010789.1, whose expression was
significantly reduced in AGA scalp tissues compared with
adjacent normal tissues, was selected for further analysis. To
validate the results from the GSE84839 data set, we examined the
expression level of AC010789.1 in clinical AGA scalp and

TABLE 1 | Primers used for qRT-PCR.

Gene Forward primer (59-39) Reverse primer (59-39)

GAPDH AGAAGGCTGGGGCTCATT TGCTAAGCAGTTGGTGGTG
AC010789.1 TGCATCCCTGGCAATACTCAG GGAGTGCTGTGCATTCATTGG
U6 CGATACAGAGAAGATTAGCATGGC AACGCTTCACGAATTTGCGT
hsa-miR-21-5p GCAGTAGCTTATCAGACTGATG AGTGCGTGTCGTGGAGTCG
TGF-β1 ATGGAGAGAGGACTGCGGAT GTAGTGTTCCCCACTGGTCC
K6hf TTGTAGCCCTGAAAAAGGACG CAGCTCTGCATCAAAGACTGAG
WNT10b CATCCAGGCACGAATGCGA CGGTTGTGGGTATCAATGAAGA
DKK-1 GAGTACTGCGCTAGTCCCAC TTTGCAGTAATTCCCGGGGC

FIGURE 1 | AC010789.1 is downregulated in patients with AGA, and its overexpression promotes proliferation and differentiation of HFSCs. (A) Volcano plot of the
GSE84839 microarray data set. (B) AC010789.1 was downregulated in scalp tissues compared with adjacent normal tissues of AGA patients. n = 6 (C) The HFSCs
highly express K15. HFSCs were stained with green fluorescence, and all nuclei were stained with blue fluorescence. Scale bars indicate 100 μm. (D) The AC010789.1
overexpression HFSC cell lines were successfully constructed. (E–I)Overexpression of AC010789.1 increased cell abilities of differentiation and proliferation. Scale
bars indicate 100 μm n = 3 *p < 0.05, **p < 0.01 and ***p < 0.001.
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adjacent normal tissues. The results showed that AC010789.1
expression was indeed downregulated in the AGA scalp tissues of
patients (Figure 1B). These results strongly indicate that
AC010789.1 expression is significantly downregulated in AGA
scalp tissues and might be an essential predictive factor for
patients with AGA.

Overexpression of AC010789.1 Promotes
Proliferation and Differentiation of HFSCs
HFSCs were isolated from normal hair follicle tissues, and
immunofluorescence was performed to detect the hair follicle
stem cell marker K15. As shown in Figure 1C, the HFSCs
displayed a high expression of K15. To better understand the
biological effects of AC010789.1 on AGA development, we
constructed an AC010789.1 overexpression plasmid, which
was subsequently transfected into HFSCs. The qRT-PCR
results in Figure 1D show that AC010789.1 was successfully
overexpressed, and the resulting HFSC line (AC010789.1-OE)
was used for further study. The qRT-PCR analysis showed that
overexpression of AC010789.1 significantly upregulated the
expression of HFSC differentiation markers K6HF and Lgr5

(Figures 1E,F). Subsequently, CCK8 and EdU assays revealed
that AC010789.1 upregulation also resulted in increased cell
proliferation (Figures 1G–I). Taken together, these
experiments reveal that AC010789.1 has important functions
in regulating the proliferation and differentiation of HFSCs.

AC010789.1 Interacts With miR-21 to
Participate in AGA Progression
LncRNAs can act as miRNA sponges to regulate downstream
targets. Therefore, we predicted putative candidate AC010789.1-
binding miRNAs using RNAhybrid v2.2 and identified hsa-miR-
21-5p as a potential candidate (Figure 2A). Next, we
demonstrated that the expression level of hsa-miR-21-5p
negatively correlated with that of AC010789.1 in AC010789.1-
OE samples (Figure 2B). Hence, we considered hsa-miR-21-5p to
be a potential target of AC010789.1.

To further evaluate the mechanism by which AC010789.1
interacts with hsa-miR-21-5p in the pathogenesis of AGA, we
analyzed the gene expression microarray data set GSE36169,
which contained data of AGA and adjacent normal scalp
tissues from five individuals. Analysis using the same

FIGURE 2 | AC010789.1 interacts with miR-21 to participate in AGA progress and exploration on the pathogenesis of AGA. (A) RNAhybrid v2.2 showed the
putative binding sites of miR-21-5p on AC010789.1. (B) Relative expression of miR-21-5p in AC010789.1-OE. n = 6 (C) Volcano plot of the GSE36169 microarray data
set. (D) Venn diagram of upregulated and downregulated DEGs among the mRNA expression profiling sets GSE36169 and hsa-miR-21-5p targeted genes. *p < 0.05,
**p < 0.01 and ***p < 0.001.
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screening criteria described above revealed a total of 198
differentially expressed genes (DEGs; 68 upregulated and 300
downregulated), which were represented on a volcano map
(Figure 2C). Subsequently, we used the databases miRWalk
and miRDB to predict the target genes of hsa-miR-21-5p and
Venn diagram software to identify the genes that were common
to both sets of analyses (Figure 2D). A total of 11 common genes
(four upregulated and nine downregulated) were detected
(Table 2).

GO Annotation and KEGG Pathway
Enrichment Analysis of DEGs
To further explore the pathogenesis of AGA, we performed GO
and KEGG enrichment analyses to further reveal the enrichment
status of the DEGs in terms of their MFs, BPs, CCs, and pathways.
With regard to BPs (Figures 3A,E), the upregulated DEGs were
mainly involved in GO:0050776 (regulation of immune
response), GO:0030199 (collagen fibril organization), and GO:

0006954 (inflammatory response), and the downregulated DEGs
were mainly involved in GO:0008544 (epidermis development),
GO:0001942 (hair follicle development), and GO:0007010
(cytoskeleton organization). In terms of CCs (Figures 3B,F),
the majority of upregulated DEGs were components of GO:
0005576 (extracellular region), GO:0005615 (extracellular
space), and GO:0072562 (blood microparticles), and the
downregulated DEGs were mainly components of GO:0005882
(intermediate filament), GO:0045095 (keratin filament), and GO:
0005615 (extracellular space). For the MFs (Figures 3C,G), the
upregulated DEGs were mainly involved in GO:0031720
(haptoglobin binding), GO:0004252 (serine-type endopeptidase
activity), and GO:0048407 (platelet-derived growth factor
binding), and the downregulated DEGs were mainly involved
in GO:0005198 (structural molecule activity), GO:0005509
(calcium ion binding), and GO:0008013 (beta-catenin
binding). KEGG pathway analysis was used to explore
pathway enrichment of the DEGs (Figures 3D,H). The most
upregulated DEGs were significantly enriched in hsa05143
(African trypanosomiasis), hsa05144 (malaria), and hsa05150
(Staphylococcus aureus infection), and the downregulated
DEGs were mainly enriched in hsa05144 (malaria), hsa04151
(PI3K-Akt signaling pathway), and hsa04350 (TGF-beta
signaling pathway).

Comprehensive Analysis of the Common
DEGs
Next, the PPI networks of the common DEGs were analyzed
using GeneMANIA, and the 20 most relevant genes were
identified. GPM6B, SOX10, MBP, PIM2, CDH19, PMP2,
GPM6A, PTPRN, MAG, TNFRSF17, ENPP6, ENPP2, SP2,
ITGAV, SPI1, PIGO, CD79A, ENPP7, PIGG, and ENPP5 were
primarily associated with the PPI network of the upregulated

TABLE 2 | Common genes crossed by DEGs and hsa-miR-21-5p target genes.

Gene name Regulated

ENPP4 Upregulated
JCHAIN Upregulated
PLP1 Upregulated
P2RY14 Upregulated
LEF1 Downregulated
BNC2 Downregulated
SPOCK1 Downregulated
THBS1 Downregulated
TIMP3 Downregulated
VSNL1 Downregulated
FGF18 Downregulated

FIGURE 3 | GO annotation and KEGG pathway enrichment analysis of the DEGs through the DAVID database. (A,E) The category of “biological process” of
upregulated DEGs and downregulated DEGs, respectively. (B,F) The category of “cellular component” of upregulated DEGs and downregulated DEGs, respectively.
(C,G) The category of “molecular function” of the predicted TG of upregulated DEGs and downregulated DEGs, respectively. (D,H) The category of “KEGG” of
upregulated DEGs and downregulated DEGs, respectively.
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common genes (Figure 4A), and COL6A1, GABRD, MLLT10,
MFAP5, SGK1, RAI14, DDX17, HOXC4, MMP14, ADH1B,
VAV2, EFNA5, PLA2G15, RAB31, PCK1, HOXA10, NRP1,
ZKSCAN5, MBTPS2, and PRRX1 were primarily associated
with the PPI network of the downregulated common genes
(Figure 4B). Furthermore, all the common DEGs and their 20
most relevant network genes were analyzed by GO and KEGG
enrichment analysis. For BP (Figure 4C), most of the genes were
involved in GO:0002040 (sprouting angiogenesis), GO:0035987
(endodermal cell differentiation), and GO:0001525
(angiogenesis). For CC (Figure 4D), the genes were mainly
components of GO:0005886 (plasma membrane) and GO:
0031012 (extracellular matrix). With regard to MF
(Figure 4E), a majority of the genes were involved in GO:
0003705 (transcription factor activity, RNA polymerase II
distal enhancer sequence-specific binding), GO:0019911
(structural constituent of myelin sheath), and GO:0002020
(protease binding). KEGG pathway enrichment analysis results
showed that hsa04151 (PI3K-Akt signaling pathway) and

hsa05221 (acute myeloid leukemia) were the most significantly
enriched pathways of the genes (Figure 4F).

AC010789.1 Targets the Wnt/β-Catenin
Signaling Pathway to Regulate AGA
Progression
According to the results of KEGG pathway enrichment analysis, a
majority of the enriched pathways were highly associated with
Wnt/β-catenin signaling (Figures 5A,B). Thus, we analyzed the
mRNA and protein expression levels of several key genes of the
Wnt/β-catenin pathway, including DKK-1, TGF-β1, Wnt10b,
and β-catenin in AC010789.1-OE. The results showed that the
expression of DKK-1 and TGF-β1 was significantly
downregulated, whereas the expression of Wnt10b and β-
catenin was significantly upregulated in AC010789.1-OE
compared with control cells (Figures 5C–F). These data
suggest that AC010789.1 may participate in AGA progression
by regulating the Wnt/β-catenin pathway.

FIGURE 4 | Comprehensive analysis of the common DEGs. (A) PPI network of the upregulated common DEGs. (B) PPI network of the downregulated common
DEGs. (C) The category of “biological process” of the common DEGs and their most relevant genes. (D) The category of “cellular component” of the common DEGs and
their most relevant genes. (E) The category of “molecular function” of the common DEGs and their most relevant genes. (F) The category of “KEGG” of the common
DEGs and their most relevant genes.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 7827507

Xiong et al. AC010789.1 Delays Androgenic Alopecia Progression

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


DISCUSSION

AGA is an androgen-dependent genetic hair loss disorder
characterized by progressive microencapsulation of hair follicles
and continuous shortening of the hair follicle growth period
(Randall et al., 2000; Rathnayake and Sinclair, 2010). It is
currently the most common clinical type of alopecia and can
seriously affect a patient’s appearance, mental health, and social
behavior. The most common first-line treatments for AGA
currently include finasteride and minoxidil, but their application
is hindered by limited efficacy, the need for long-term treatment,
and inevitable complications. Hair transplant surgery, which
involves hair follicle redistribution, is an effective method to
improve the appearance of patients; however, as hair follicles
cannot be regenerated, AGA patients with large areas of
alopecia often have insufficient donor site hair follicles (Rogers,
2015). Therefore, it is necessary to explore the potential molecular
mechanisms of AGA onset, progression, and hair follicle
regeneration to design more effective treatments.

Several studies indicate that lncRNAs play essential roles in the
occurrence and progression of various diseases and that they
could be used as new diagnostic and treatment markers. For
example, Wang et al. (2018) report that lncHOXA-AS2 promotes

the progression of various human tumors by inducing
epithelial–mesenchymal transition by directly inhibiting Bax
expression, promoting c-Myc and Bcl-2 expression, and
activating the Akt-MMP signaling pathway. Accumulating
evidence now indicates that the deregulation of the expression
of lncRNAs is strongly correlated with the onset and development
of AGA (Bao et al., 2017; Zhu et al., 2020). In this study, we used
the GSE84839 microarray data set from the GEO database and
found that AC010789.1 was expressed to a lower level in AGA
scalp tissues than in adjacent normal tissues, which was verified
using clinical AGA samples. This suggests that low expression of
AC010789.1 is associated with the progression of AGA.

HFSC aging, characterized by a reduction in stemness signatures
and a concomitant increase in epidermal commitment, leads to a
progressive miniaturization of hair follicles and ultimately, to the
hair loss characteristic of AGA (Matsumura et al., 2016). Recently,
accumulating evidence indicates that activating HFSCs could be
an effective treatment for AGA. Zhang et al. (2020) found that
vascular endothelial growth factor significantly reduced 5α-
dihydrotestosterone-induced HFSC apoptosis by inhibiting the
PI3K-Akt pathway, thereby delaying the progression of AGA.
Kubo et al. (2020) used fisetin to induce a telogen-to-anagen
transition in hair follicles by inducing the proliferation of HFSCs,

FIGURE 5 | AC010789.1 targets with Wnt/β-catenin signaling pathway to participate in AGA progress. (A) The pathway interaction networks with Wnt/β-catenin
signaling pathway. (B)KEGGmap ofWnt/β-catenin signaling pathway. (C) ThemRNA expression levels of DKK-1, TGF-β1, andWnt10b in AC010789.1-OE. n = 9 (D–F)
The protein expression levels of TGF-β1 and β-catenin in AC010789.1-OE. n = 3. *p < 0.05, **p < 0.01 and ***p < 0.001.
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thus promoting hair growth. Therefore, we hypothesized that
AC010789.1 may promote hair growth by promoting the
proliferation and differentiation of HFSCs. In the current study,
we successfully isolated K15-positive HFSCs from hair follicles of
patients with AGA and constructed an AC010789.1-overexpressing
HFSC line. K6HF and Lgr5 are shown to be particularly good
markers of hair differentiation and proliferation (Roh et al., 2004;
Chen et al., 2020b), and we found that the expression of bothmarker
genes as well as the cell proliferation rate were significantly higher in
AC010789.1-OE than in the control group, indicating an important
role of AC010789.1 in regulating HFSC functions.

Emerging evidence indicates that a large number of lncRNAs
participate in a variety of biological functions by interacting with
miRNAs and regulating their target genes (Huang, 2018). In this
study, we found that AC010789.1 interacts with miR-21 to
participate in the progression of AGA. Many reports show that
miR-21 plays an essential role in the regulation of several diseases
(Lakhter et al., 2018; Wang et al., 2020). To further explore how the
interaction between AC010789.1 and hsa-miR-21-5p regulates the
pathogenesis of AGA, the GSE36169 microarray data were
downloaded, and the genes targeted by hsa-miR-21-5p were
identified. A total of 198 AGA-related DEGs, including 11
common genes intersecting with hsa-miR-21-5p target genes,
were identified by differential analysis with adjacent normal
controls. GO annotation enrichment analysis was performed to
explore the biological functions of the AGA-associated DEGs. The
upregulated DEGs were primarily enriched in the BP category of
immune and inflammatory responses. Previous studies show that an
abundance of immune inflammatory cells in the bulge area of the
hair follicle leads to the deregulation of the hair follicle
microenvironment, thus impairing the normal function of HFSCs
and resulting in alopecia (Wang and Higgins, 2020). Interestingly,
the downregulated DEGs were directly related to hair follicle
development (GO:0001942) and the hair cycle (GO:0042633).
Subsequently, we extended the PPI network of the common
genes and performed annotated enrichment analysis. Notably, the
most downregulated common genes and their most relevant
network genes were enriched in angiogenesis. Vascularization is
closely related to hair growth (Gentile and Garcovich, 2019). The
vascular system plays a vital role in maintaining the HFSC
microenvironment, and angiogenesis helps to increase the blood

supply of DPCs and promote hair growth. These findings enhance
our understanding of the pathogenesis of AGA and the potential
mechanism of interaction between AC010789.1 and miR-21-5p to
delay the progression of AGA.

The TGF-β1 and Wnt signaling pathways are the most crucial
pathways for maintaining a quiescent niche and regulating the
proliferation and differentiation of HFSCs (Yang and Peng, 2010;
Ge et al., 2019). Previous studies report that TGF-β1 promotes
telogen-to-anagen transition in hair follicles, whereas the
transition from anagen to telogen is significantly delayed in
the hair follicles of TGF-β1 knockout mice (Foitzik et al.,
2000; Daszczuk et al., 2020). The Wnt signaling pathway is
the main regulatory pathway of biological development and a
key driving factor for stem cells in most tissues (Nusse and
Clevers, 2017). In the hair follicle, the Wnt signaling pathway
plays a key role in starting the hair follicle cycle by initiating the
proliferation response of HFSCs in the bulge area; HFSCs treated
with Wnt pathway activator can quickly enter the proliferation
period (Greco et al., 2009; Hawkshaw et al., 2020). Moreover,
Leirós et al. (2017) found that Wnt pathway inhibitors (DKK-1)
impair the differentiation of HFSCs, and the addition of promoters
(Wnt10b) can reverse this effect in AGA. In addition, miR-21 is
closely related to the Wnt/β-catenin signaling pathway.
Previous studies reveal that inhibiting the expression of miR-21
can lead to upregulation of the Wnt/β-catenin pathway, thereby
promoting cell activity (Hao et al., 2019; Liu et al., 2019). A recent
study also reveals that lncRNAGAS5 competitively combined with
miR-21 to regulate the epithelial–mesenchymal transition of
human peritoneal mesothelial cells via activation of Wnt/β-
catenin signaling (Fan et al., 2021). In this study, we conducted
a comprehensive pathway analysis of the DEGs, common genes,
and the genes most closely related in the PPI network to help us
understand the molecular mechanisms underlying AGA
progression. In line with our results, we found that the
upregulated DEGs were highly enriched in the TGF-β signaling
pathway, and a majority of the pathways were highly correlated
with the Wnt/β-catenin signaling pathway. Further analysis
showed that AC010789.1 overexpression induced the
upregulation of Wnt10b and β-catenin, and downregulation of
DKK-1 and TGF-β1. In summary, our results suggest that
AC010789.1 regulates Wnt/β-catenin pathway activation,

FIGURE 6 | A schematic diagram shows how AC010789.1 delays AGA progression by targeting microRNA-21 and the Wnt/β-catenin signaling pathway.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 7827509

Xiong et al. AC010789.1 Delays Androgenic Alopecia Progression

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


thereby enhancing the proliferation and differentiation of HFSCs
and participating in AGA progression.

In summary, our data shows that AC010789.1 overexpression
delayed AGA progression through the downregulation of hsa-
miR-21-5p and promotion of the Wnt/β-catenin signaling
pathway (Figure 6). Our findings provide a novel insight into
the mechanism by which AC010789.1 promotes the proliferation
and differentiation of HFSCs, which sheds light on the future
development of lncRNA-based AGA therapies.
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