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Abstract: Climate change and food security are critical topics in sustainable agricultural development.
The climate-smart agriculture initiative proposed by the Food and Agriculture Organization of the
United Nations has attracted international attention. Smart agriculture (SA) has since been recognized
as an influential trend contributing to agricultural development. Therefore, encouraging farmers
to adopt digital technologies and mobile devices in farming practices has become a policy priority
worldwide. However, the literature on the psychological factors driving farmers’ intentions to adopt
SA technologies remains limited. This study investigated how farmers’ knowledge and attitudes
regarding SA affect their adoption of smart technologies in Taiwan. A total of 321 farmers participated
in a survey in 2017 and 2018, and the data were used to construct an ordinary least squares regression
model of SA adoption. This study provides a preliminary understanding of the relationship between
psychological factors and innovation adoption of SA technologies in a small-scale farming economic
context. The findings suggest that policymakers and research and development institutes should
concentrate on improving market access to established and critical SA technologies.
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1. Introduction

Climate change and food security have become critical topics in sustainable agricultural
development. The Food and Agriculture Organization of the United Nations proposed the climate-smart
agriculture (CSA) concept, which has attracted international attention for its innovative use of
technology in addressing agricultural challenges [1,2]. The objectives of CSA are threefold: sustainably
increase food productivity, increase the adaptive capacity of farming systems, and increase climate
change mitigation where possible [3–5]. Smart agriculture (SA) emphasizes the roles and applications
of innovative technology in agricultural practices.

The SA strategy focuses on the use of digital technology to create precision farming solutions,
especially when combined with the application of information and communication technologies and
other new interconnected equipment and techniques. The internet of things (IoT), drones, robots,
big data, cloud computing, and artificial intelligence are all new resources that are expected to be
applied to novel farming practices [6]. The integration of precision farming systems and digital
technology has become the most prevalent trend in agricultural development, contributing to fewer
inputs, higher yields, and less damage in agricultural production. Digitized agriculture has become a
mainstream trend in numerous countries [7–10].

Several similar but inconclusive concepts were used in different studies, such as agriculture 4.0,
precision agriculture, smart farming, digital agriculture, virtual agriculture, big data in agriculture,
IoT in agriculture, and interconnected agriculture [11,12]. These emerging concepts have slight
differences in terms of the emphasis on specific technological applications. Most of these concepts share
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common traits and values in incorporating new and intelligent technologies into farming practices
and introducing resource use efficiency approaches that minimize production costs, reduce farming
risks, and increase productivity [13]. The inventory of the European smart agricultural knowledge and
innovation systems (Smart-AKIS) program indicates that SA is mainly related to three interconnectable
new technology categories: farm management information systems, precision farming, and agricultural
automation. For instance, smartphone application software has been extensively used for remote
monitoring and controlling of farming equipment. A similar phenomenon is observed in plant factories,
which have employed IoT, big data, sensing and monitoring techniques, and automatic environmental
control systems [7]. Therefore, agribusiness and small-scale farmers can benefit from the application of
new technologies.

Taiwan’s agricultural sector is characterized by small-scale holdings and has been identified as a
global disaster hotspot (e.g., typhoons and floods) [14]. The Agriculture 4.0 Project was launched by
the Council of Agriculture (COA) of Taiwan in 2017 in compliance with Industry 4.0 development and
climate change risks. In the pilot project, an attempt was made to introduce advanced technologies,
such as intelligent devices, sensing techniques, robots, IoT, and big data analysis to improve agricultural
productivity. The government of Taiwan has invested approximately TWD 4.5 billion in upgrading
agricultural technologies. The project was renamed the Smart Agriculture Project in 2018. The SA Project
aimed to overcome the restrictions of natural resources and shortages in human labor resources by
facilitating the intelligent production and digital marketing of agricultural businesses [15]. The principal
strategies of the SA Project were threefold. First, the COA selected ten pilot agribusinesses as the
prioritized targets for the first stage of SA promotion. The agribusinesses targeted were those for moth
orchids, seedlings, mushrooms, rice, agricultural facilities, aquaculture, poultry, traceable agricultural
products, dairy, and offshore fisheries. Second, the agricultural research and development (R&D)
institute employed cross-domain technological innovations to create digital agri-services, value chains,
and communication models between producers and consumers, such as IoT-based environmental
control modules, labor-saving carrying equipment, and marketing management information platforms.
Third, the next generation of farmers should satisfy requirements for the use of smart agricultural
development because trained farmers are the foundation of SA development [16,17].

Human resource development is a key factor in developing SA; thus, encouraging farmers and
agribusinesses to adopt innovative digital technologies and intelligent mobile devices in their farming
practices is becoming a policy priority in Taiwan. Therefore, the COA and National Taiwan University
collaborated to create and design a series of SA training programs to develop human resources in
smart agriculture. The educational objectives of the SA training program were to confer trainees with a
positive attitude and practical competences, and to enhance their SA-related knowledge. Four types
of training courses were offered, comprising of indoor lectures providing general SA education,
on-site visits and training, international visits and exchanges, and individual tailor-made technical
assistance provided by SA service teams for each pilot SA industry [17]. However, the literature on
the psychological factors and individual characteristics that drive farmers’ intentions to adopt SA
technologies remains limited. Therefore, this study investigated the associations among SA-related
knowledge, attitudes, and adoption behaviors. Moreover, we assessed the effect of farmers’ knowledge
and attitudes regarding smart agriculture on their adoption of SA technologies.

The following research problems regarding SA knowledge, attitude, and adoption were addressed.
What types of SA technology are crucial for farming practices and are better understood by farmers?
What are the driving factors in SA adoption behaviors? To what extent do sociodemographic variables,
knowledge, and attitude affect the adoption of SA technologies?

Studies have focused on the effects of psychological factors on individual behaviors, such as
social learning theory, the theory of reasoned action, and the theory of planned behavior [18,19].
Few studies on agriculture have identified associations between farming practices, attitudes, and other
psychological determinants [13,20]. Furthermore, the theory of planned behavior, an extension of the
theory of reasoned action, has been extensively applied and tested in various fields [21]. The theory
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of planned behavior identifies hierarchical relations between various beliefs and attitudes affecting
behavior. The educational goals of agricultural training programs are multifaceted; such programs
are expected to improve the target group’s knowledge level and change their attitudes and adoption
behaviors [13,22]. This study employed a comprehensive knowledge–attitude–practice (KAP) model
based on the previous literature, to further investigate the relationships in the KAP model of participants
in the SA training course. Based on the KAP model, we hypothesized that SA knowledge and perceived
importance were positively correlated and that both the SA knowledge and importance perception
had a positive effect on the adoption of smart agriculture technologies.

2. Data and Measures

2.1. Data and Samples

The data used in this study were drawn from a survey of trainees of the SA training program
conducted in the summers of 2017 and 2018. The training program was sponsored by the COA in
Taiwan. All participants were asked to complete the survey through face-to-face interviews as a
reference for training course planning. The sample characteristics are presented in Table 1. Among the
321 respondents, 79.1% were men, the average age was 42.61 years old, and 15.3% and 58.6% graduated
from senior high school or below and college, respectively. Furthermore, 12.8%, 22.7%, and 64.5%
of respondents were principal operators, hired staff of agribusinesses, and self-employed farmers,
respectively. The average farm size was 3.9 hectares, the annual turnover was <TWD 0.2 million,
TWD 0.2–1 million, TWD 1–5 million, and >TWD 5 million in 25.9%, 28.3%, 26.8%, and 19.0% of
cases, respectively.

Table 1. Descriptive statistics of sample characteristics (n = 321).

Variables Frequency (Mean) % SD a

Gender
Male 254 79.1

Female 67 20.9

Age (years) b 42.61 11.22

Edu level
Senior high or below 49 15.3
College/University 188 58.6

Graduated or above 84 26.2

Farmer type
Owner or operator of Agribusiness 41 12.8

Hired staffs in Agribusiness 73 22.7
Self-employed 207 64.5

Farm size (hectare) b 3.92 13.57

Annual turnover (TWD)

0.2 million or below 83 25.9
0.2–1 million 91 28.3
1–5 million 86 26.8

5 million or above 61 19.0

Note: a SD, standard deviation. b Age and farm size are presented as means and SDs.

The main purpose of this study was to explore the knowledge, attitudes, and practices of SA
trainees. The questionnaire design was developed based on previous research, as discussed in the
literature review section. The dependent variable was SA adoption, which refers to the self-reported
adoption level of SA technology in farming practices. To ensure the dependent variable measurements
were valid and reliable, photographs of common SA technologies were presented in the interview.
Respondents were thus provided with a framework from which to rate the adoption level of the SA
technology from 0 (the lowest adoption) to 100 (the highest adoption).

The principal independent variables in this study were the levels of knowledge and the perceived
importance of each type of SA technology. The Smart-AKIS inventory of SA technologies [7]
indicates that abundant farming facilities and equipment for smart technology have been developed in
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Taiwan, including IoT devices, wireless sensors, monitoring equipment with automated climate data
acquisition (climate sensing and monitoring), biological image detection and recognition equipment
(image recognition), cloud and big data analysis services (big data), mobile phone apps for farm
management, robotic farming machines, spraying and aerial photography drones, and automatic
environmental control systems.

Respondent knowledge of eight types of SA technologies was assessed. Reference answers were
as follows: “Never heard of it (=1)”, “Heard of it but do not know much about it (=2)”, “Have a general
understanding of it (=3)”, “Understand it well and can explain it to others (=4)”. The same scale was
used to measure respondents’ perceptions of the importance of adopting SA technology. The level of
perceived SA importance was measured by asking “To what extent do you think that SA technology is
important for improving the management of your farm?”

All responses were scored on a 4-point Likert scale, with a larger score indicating a higher degree of
knowledge and perceived importance (1 = not important at all to 4 = very important) of SA technology.
The sociodemographic variables measured were gender, age (in years), education level, and farmer
type. Moreover, the farm features recorded were farm size (in hectares) and average annual turnover.

2.2. Statistical Analysis

The primary purpose of this study was to investigate the effect of psychological factors on the
adoption behavior of SA technology, after individual sociodemographic and farm characteristics were
controlled for. The empirical analysis was performed in two steps. First, this study explored the
associations between farmers’ knowledge, perceived importance, sociodemographic characteristics,
and adoption of SA technology behavior. The second stage of the analysis focused on investigating the
effects of exogenous determinants on farmers’ adoption of SA technology behaviors. The following
equation is the SA adoption function, which was used to calculate the relationship between the adoption
level and SA knowledge, SA perceived importance, and sociodemographic and farm characteristics.
The corresponding ordinary least squares (OLS) regression equation is specified as follows:

SA_Adoptioni = α0 + β′Knowli + γ′Impi + λ′Zi + ν′Ri + εi (1)

where SA_Adoptioni is individual i’s self-reported score for SA adoption behavior; Knowli is the SA
knowledge score of individual i; Impi is the SA perceived importance score for individual i; Zi is a set
of sociodemographic characteristics; and Ri represents a set of farming features. The random error
term εi is assumed to be normally distributed, and α0, β′ , γ′ , λ′, ν′ are the coefficients to be estimated.
The β′ and γ′ coefficients are of particular interest because they represent the effect of SA knowledge
and perceived importance on SA adoption. All analyses were performed using the SPSS software
version 22.0 (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion

3.1. Association between SA Knowledge, Importance and Adoption

The descriptive statistics of the knowledge, importance, and adoption level of SA technologies are
illustrated in Table 2. The average self-reported score of SA adoption was 40.22, which corresponds to
farming mechanization using a combustion engine or electricity. The mean total SA importance score
was 25.87. Among all individual SA items, the SA technologies rated most important were, in order,
automatic environmental control systems (3.24), farm management apps (3.35), and cloud and big
data analysis services (3.33). These results indicate that automatic environmental control systems and
farm management apps were the most familiar technologies to respondents and were perceived as
being the most important smart technologies. The mean total knowledge score was 22.45. The three
most well-known new SA technologies were, in order, automatic environmental control systems (3.04),
spraying and aerial photography drones (2.93), and farm management apps (2.90).
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Table 2. Descriptive statistics of smart agriculture (SA) knowledge, importance and adoption (n = 321).

SA Technology
SA Importance SA Knowledge

Mean SD a Rank Mean SD a Rank

Total adoption score 40.22 20.82 - - - -
Automatic control system 3.24 0.74 1 3.04 0.81 1

Apps 3.35 0.57 2 2.90 0.96 3
Big data 3.33 0.59 3 2.68 0.94 7

IoT 3.27 0.52 4 2.75 0.81 5
Image recognition 3.23 0.58 5 2.59 0.97 8

Sensing and monitoring 3.22 0.57 6 2.71 0.93 6
Robotic 3.12 0.63 7 2.85 0.83 4
Drones 3.10 0.65 8 2.93 0.84 2

Note: a SD, standard deviation.

The correlations between different indicators of SA knowledge, attitudes, and practices were
investigated. Significant and positive associations were observed between all the KAP indicators.
Tables 3 and 4 present the means, standard deviations (SDs), and correlation coefficients between
individual SA technologies. The results of the correlation between SA knowledge and adoption
behavior are presented in Table 3. The individual coefficients range from 0.582 to 0.738. All the
SA knowledge indicators were significantly and positively correlated with each ther, as expected.
The knowledge level of individual SA technologies was also significantly correlated with SA adoption.
The three highest correlation coefficients were, in order, farm management apps (r = 0.306), cloud and
big data analysis services (r = 0.296), and biological image detection and recognition techniques
(r = 0.286). The results of the correlation matrix support the hypothesis of a positive relationship
between SA knowledge and SA adoption behavior, which is consistent with the findings of studies on
innovation adoption [2].

Table 3. Correlation matrix of the SA knowledge and adoption (n = 321).

SA Knowledge 1 2 3 4 5 6 7 8 9

1. IoT 1
2. Climate sensing and monitoring 0.644 ** 1
3. Image recognition 0.590 ** 0.722 ** 1
4. Big data 0.666 ** 0.712 ** 0.762 ** 1
5. Apps 0.638 ** 0.657 ** 0.691 ** 0.717 ** 1
6. Robotic 0.583 ** 0.610 ** 0.582 ** 0.632 ** 0.610 ** 1
7. Drones 0.600 ** 0.568 ** 0.632 ** 0.649 ** 0.667 ** 0.662 ** 1
8. Automatic system 0.597 ** 0.602 ** 0.638 ** 0.695 ** 0.645 ** 0.645 ** 0.738 ** 1
9. SA adoption score 0.251 ** 0.219 ** 0.286 ** 0.296 ** 0.306 ** 0.249 ** 0.224 ** 0.270 ** 1

Note: ** denotes significant differences at a p value < 0.01.

Table 4. Correlation matrix of the SA importance and adoption (n = 321).

SA Importance 1 2 3 4 5 6 7 8 9

1. IoT 1
2. Climate sensing and monitoring 0.458 ** 1
3. Image recognition 0.320 ** 0.571 ** 1
4. Big data 0.537 ** 0.509 ** 0.505 ** 1
5. Apps 0.442 ** 0.589 ** 0.556 ** 0.667 ** 1
6. Robotic 0.367 ** 0.385 ** 0.422 ** 0.436 ** 0.470 ** 1
7. Drones 0.319 ** 0.344 ** 0.488 ** 0.418 ** 0.402 ** 0.530 ** 1
8. Automatic system 0.481 ** 0.383 ** 0.375 ** 0.524 ** 0.426 ** 0.355 ** 0.407 ** 1
9. SA adoption score 0.129 * 0.166 ** 0.016 0.132 * 0.184 ** 0.148 ** 0.106 0.266 ** 1

Note: ** denotes significant differences at a p value of <0.01; * denotes significant differences at a p value of < 0.05.

Similar results were revealed in the correlation matrix of SA importance and adoption behavior.
Table 4 presents the correlation coefficients among the SA importance variables, which ranged from 0.319
to 0.667. All the SA importance indicators were positively and significantly correlated with each other.
Most SA importance variables were significantly correlated with SA adoption. However, the correlation
coefficients of the SA importance variables and SA adoption were lower than the coefficients of SA
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knowledge and SA adoption. The highest coefficient was 0.266 (automatic environmental control
system). Furthermore, our results did not reveal a significant relationship between SA adoption and the
perceived importance of image recognition techniques and drone technology. Because some correlations
were nonsignificant, the SA importance hypotheses of SA adoption were only partially supported.

3.2. Effects of SA Knowledge and Importance on SA Adoption

Estimated results for the OLS multiple regression model of SA adoption are reported in Table 5.
The adjusted R-square statistic indicated that 25.3% of the variation in SA adoption is explained by
this regression model. Moreover, the F-value (10.02) of overall significance was below the significance
level of 0.001. These results indicate that knowledge of SA, perceived importance of SA technologies,
sociodemographic characteristics, and farm characteristics have a significant influence on SA adoption.

Table 5. Estimation results of the ordinary least squares (OLS) regression (Dependent variable: SA
adoption, n = 321).

Variable Coefficient s.e. t-Value

Total_Knowledge 0.93 ** 1.50 4.97
Total_Importance 0.81 * 2.54 2.56

Socio-demographic characteristics
Male 3.66 * 2.52 1.45
Age 0.23 0.10 2.42

University 2.65 2.95 0.90
Graduated or above −0.26 3.35 −0.08

Farming features
Operator 6.75 * 3.24 2.08

Hired staffs 8.52 ** 2.56 3.33
Farm size (ha) 0.15 * 0.08 1.99

Turnover_0.2–1 million 8.83 ** 2.77 3.19
Turnover_1–5 million 15.75 ** 2.87 5.48

Turnover_5 million and above 17.32 ** 3.15 5.491
Intercept −24.43 10.31

Note: s.e. stands for standard error. The reference group for educational level is “Senior high or below”;
farmer type is “Self-employed farmer”; annual turnover is <TWD 0.2 million. ** p < 0.01; * p < 0.05.

As illustrated in Table 5, SA knowledge and perceived importance were determined to be positively
related to SA adoption. For example, a 1% increase in SA knowledge level was determined to increase
the SA adoption score by 0.932% among respondents. Similarly, a 1% increase in SA importance level
was determined to increase the SA adoption level by 0.811%. Our findings indicated that participants
in the SA training program with higher levels of SA knowledge and perceived importance would
adopt more innovative technologies in their farming practices. These findings are consistent with
previous studies [23] that reported that knowledge and perceptions of SA technologies are critical
determinants of innovation adoption behavior.

The relationships between other determinants and SA adoption behavior were also briefly
discussed. The farm characteristics significantly affected the adoption level of SA technologies.
For example, farmers working in the agribusiness sector exhibited higher adoption levels of SA
technologies than self-employed farmers, as was expected [24]. Furthermore, the size and annual
turnover of the farm were positively associated with SA adoption. These findings indicate that larger
farm size or volume of business may enhance farmers’ investments in SA technologies. This finding
accords with those of previous studies [13,25,26] that reported a positive relationship between farm
size or revenue and innovation adoption. Most sociodemographic characteristics were not significantly
associated with SA adoption, except age, which was positively correlated with SA adoption.
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4. Conclusions

This study investigated SA-related knowledge, attitude, and adoption among farmers in Taiwan.
The sociodemographic characteristics of the respondents were collected, and the effects on the adoption
of SA technologies were determined. Survey data from 321 farmers who participated in the SA
training program were collected. The results revealed significant and positive correlations between
SA knowledge, perceived importance, and adoption behavior. Of the eight SA technologies, the
automatic environmental control systems were the most well-understood and were perceived as being
the most important, whereas biological image detection and recognition techniques were ranked as the
least understood. SA knowledge and perceived importance significantly affected the adoption of SA
technologies. Therefore, lower adoption levels of SA technologies may be attributed to inadequate
information, missing knowledge, lack of awareness of the technologies, and lack of perceived practical
value. We thus recommend the intensification of R&D and SA technologies, such as IoT and big data
analysis, to satisfy farmer requirements under current farming conditions and management.

These findings provide policymakers and agricultural educators with important insights that can
be used to more accurately target interventions that promote or facilitate the adoption of SA technologies.
Furthermore, these findings suggest that agricultural R&D institutes should concentrate on improving
market access for established and valuable SA technologies. Additionally, providing systematic training
courses related to the applications of IoT and big data in agriculture may enable farmers to engage more
effectively in SA practices. However, the research limitations should be considered when these findings
are being interpreted. First, KAP strengthens the theoretical foundation of this study, however, it also
limits its depth. Agriculture policy, organizational support, computer efficacy, perceived effectiveness,
perceived usefulness, and trust toward SA ventures should be considered in future models. Second,
in methodologies used to analyze the collected data, the mediating role of attitude on the relationship
between knowledge and practice could have been investigated. Furthermore, the moderating effects of
gender and prior experience could have also been examined.
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