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Abstract

Formation of adventitious roots in plants is a common response to hypoxia caused by flood-

ing. In tobacco, after one week of root hypoxia treatment, plants produced twice as many

adventitious roots as the aerated plants, but their maximum length was reduced. Hypoxia

severely reduced net photosynthesis, transpiration rates, and photosynthetic light

responses. Relative transcript abundance of the examined aquaporins in lateral roots was

reduced by hypoxia, but in adventitious roots it remained unchanged. This apparent lack of

an effect of root hypoxia on the aquaporin expression likely contributed to maintenance of

high hydraulic conductance in adventitious roots. Lateral roots had lower porosity compared

with adventitious roots and the expression of the ACS (1-aminocyclopropane-1-carboxylate

synthase) gene was induced in hypoxic lateral roots, but not in adventitious roots, providing

additional evidence that lateral roots were more affected by hypoxia compared with adventi-

tious roots. ATP concentrations were markedly lower in both hypoxic lateral and adventi-

tious roots compared with aerated roots, while the expression of fermentation-related

genes, ADH1 (alcohol dehydrogenase 1) and PDC1 (pyruvate decarboxylase 1), was higher

in lateral roots compared with adventitious roots. Since root porosity was greater in adventi-

tious compared with lateral roots, the results suggest that the improved O2 delivery and sta-

ble root aquaporin expression in adventitious roots were likely the key factors helping

flooded tobacco plants maintain high rates of root hydraulic conductance and, consequently,

shoot gas exchange.

Introduction

Frequency of floods is predicted to increase globally due to the climate changes [1]. As O2

diffusion rate is extremely low in water compared to air, prolonged flooding can lead to O2

deprivation and reductions of growth and survival in terrestrial plant species [2]. Root O2 defi-

ciency (hypoxia) limits respirational ATP synthesis and results in an energy crisis and toxicity
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due to a transition to glycolysis and fermentation [3]. Tobacco plants are susceptible to injury

from flooding [4,5] with chlorosis and inhibition of leaf expansion reported in plants exposed

for two days to waterlogging [6]. In field-grown tobacco, an inhibition of stem growth and a

decrease of water potential occurred within six days following a flooding event [7].

Faced with hypoxia, plants need to reprogram transcription [8], and curtail energy-con-

suming processes such as DNA and protein synthesis and cell division [2]. Numerous hyp-

oxia-responsive proteins and genes that have been identified by the application of proteomic

approach and microarrays are associated with sugar metabolism, glycolysis, fermentation and

hormonal regulation [9–12]. Alcohol dehydrogenase (ADH) and pyruvate decarboxylase

(PDC) are the two key enzymes in fermentation and are commonly induced by hypoxia and

anoxia in plants and fungi [13–15]. High activities of ADH and PDC are associated with

improved survival of plants under low O2 conditions, mainly due to their involvement in

alleviating energy crisis. [3]. However, the increase in fermentation may also lead to the accu-

mulation of toxic end products, such as ethanol and acetaldehyde [8]. Genes encoding 1-Ami-

nocyclopropane-1-Carboxylate (ACC) synthase (ACS) are also induced under O2 deficiency

[16,17]. ACS catalyzes a regulatory step in endogenous ethylene synthesis, which is a major

biochemical process in response to hypoxia [18].

Hydraulic adjustments are among the early responses of plants to flooding [19]. This is

often manifested as wilting due to the loss of balance between water loss and uptake [20,21].

Aquaporins, including plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic pro-

teins, nodulin26-like intrinsic proteins, small basic intrinsic proteins, and the uncategorized

intrinsic proteins, are membrane intrinsic proteins that can rapidly respond to various abiotic

and biotic stresses including O2 deprivation [19,22]. The inhibition of aquaporin gating and

root hydraulic conductivity in flooded plants may be regulated by cellular acidosis caused by

the shift from respiration to fermentation [23], and depletion of ATP required for the phos-

phorylation of some aquaporins [20]. X-ray structure confirmed that the protonation of a con-

served histidine residue under low pH during flooding resulted in the closed conformation of

aquaporins [24]. In addition to regulating plant hydraulics, aquaporins are involved in the

transport of other small molecules including CO2 [25,26], NH3 [27] and O2 [28] . Under flood-

ing, transcription of Arabidopsis aquaporin NIP2;1 was induced [29], and shown to be a trans-

porter of lactic acid that is produced by fermentation [30].

Plants vary in their flooding tolerance and adopt different survival strategies. These strate-

gies include fast shoot elongation to escape from submergence [31] and development of suber-

ized barriers in roots to reduce radial O2 loss [32,33]. Adventitious roots (ARs), are often

induced in flooded plants. They may be placed close to the surface in some plants and usually

have low gas diffusive resistance [34–36]. Six days of root hypoxia induced about twice as

many ARs compared with aerated tobacco plants [37]. ARs promote internal diffusion of O2

from shoots to roots and elevate respiratory ATP production in roots [38]. Different types of

biotic and abiotic stresses other than flooding can induce AR formation including wounding

[39] and exogenous hormonal treatments [40]. Ethylene and other phytohormones have been

implicated in the regulation of AR formation [21,37,41]. Different hormones may interact

with each other in AR formation, but it still remains elusive how plants manage this complex

regulation network in AR formation [42].

Formation of ARs has been highlighted as one of the most important adaptive traits under

flooding in numerous species [43]. However, more evidence is still needed to evaluate the

functional traits of ARs contributing to hypoxia tolerance. It was previously demonstrated that

adventitious roots had higher hydraulic conductivity than similarly-sized lateral roots in

flooded tamarack (Larix laricina) [44]. However, it remains unclear whether the high hydrau-

lic conductivity of adventitious root is associated with aquaporin activities. In the present

Gene expression in adventitious roots of root-hypoxic tobacco
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study, hydroponically grown tobacco plants were subjected to root hypoxia to shed more light

on the processes in hypoxia-induced ARs that facilitate water transport. It was hypothesized

that root hydraulics and ATP production under hypoxia can be enhanced by the formation of

ARs. Root porosity, ATP contents and transcript profiles of hypoxia-responsive genes were

compared between ARs and existing LRs. Transcription profiling of PIPs in ARs was also com-

pared to LRs to examine potential significance of various PIPs in the responses of roots to

hypoxia.

Materials and methods

Growth conditions and hypoxia treatment

Tobacco seeds were germinated and seedlings were grown in horticultural soil a controlled

growth room with 18 h photoperiod, 22/18˚C (day/night) temperature, 400 μmol m-2 s-1 pho-

tosynthetic photon flux density, 350 μmol mol−1 CO2 and 50% relative humidity. After 3

weeks of growth, plants were transferred to 40-L plastic tubs (~ 60×40×20 cm) containing 50%

strength modified aerated Hoagland’s solution [45]. Thirty-two plants were randomly selected

and grown in four tubs (8 plants in each tub). After one week, 16 plants in two tubs were sub-

jected to hypoxia by flushing nitrogen gas (99.998%, Praxair, Danbury, CT, USA) through the

solution to reach a dissolved O2 level of ~ 2 mg L-1 and then leaving the solution stagnant. The

other 16 plants in two tubs were well-aerated with air pumps and served as control (dissolved

O2 concentration of ~ 8 mg L-1).

Gas exchange and photosynthetic light responses

After two days and one week of treatments, gas exchange was measured with the Li-Cor LI-

6400XT portable photosynthesis system equipped with the 2×3 cm2 red-blue light chamber

(Li-Cor, Lincoln, NE, USA). Six plants in each treatment and three middle-position fully

expanded leaves on each plant were randomly selected. Net photosynthetic rate (Pn), transpira-

tion (E) and stomatal conductance (gs) were measured. Air flow rate was set to 400 μmol s-1,

photosynthetic photon flux density (PPFD) was 400 μmol m-2 s-1, and reference CO2 concen-

tration was 400 μmol mol-1. An automated program of LI-6400XT was used to determine pho-

tosynthetic light responses starting at PPFD of 1500 μmol m-2 s-1, followed by 1200, 1000, 800,

500, 300, 200, 100, 50, 20 and 0 μmol m-2 s-1. Three plants in each treatment were randomly

selected and net photosynthesis was auto-logged when it reached a steady rate. A modified

rectangular hyperbole model was employed to estimate light saturated Pn (Pm), light saturation

point (Im) and light compensation point (Ic) [46].

Root hydraulic conductance (Kr)

A high–pressure flow meter (HPFM, Dynamax Incorporated, Houston, TX, USA) was used to

measure tobacco root Kr as previously described [47,48]. Shoots were excised about 2 cm

above the root collar, and the roots were connected to the HPFM. Roots were kept in treatment

solutions during the measurements. Water was forced into roots at increasing pressures (0 to

0.5 MPa) and linear regression between applied pressure and flow rate was used to obtain a

slope of the relationship which represented Kr.

Number, dry mass and maximum length of ARs

After one week of treatment, number of ARs was counted and the maximum length of ARs

was measured with a ruler. Dry mass of ARs was determined after drying the roots in an oven

at 85˚C.

Gene expression in adventitious roots of root-hypoxic tobacco
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Root porosity

Root porosity in lateral (LR) and adventitious (AR) roots was estimated with the pycnometer

method based on Archimedes’ principle [49] after one week of treatment using the following

equation:

Porosity ð%Þ ¼ 100� ðMh � MrþwÞ=ðMw þMr � MrþwÞ

where Mw is mass of the water filled pycnometer, Mr is mass of roots, Mr+w is mass of pycnom-

eter with roots and water and Mh is mass of pycnometer with homogenized roots [49].

Root ATP concentration

LRs and ARs were sampled and ground in liquid nitrogen after one week of hypoxia treatment.

ATP concentration was determined with the ENLITEN ATP Assay Kit (Promega, Madison,

WI, USA) by measuring bioluminescence and quantified with a standard curve using ATP

standard (Promega). Luminescence signal was detected using a microplate reader (Fluostar

Optima, BMG Labtech, Ortenberg, Germany) as previously described [28].

RNA transcription profiling

After two days and one week of treatment, LRs and ARs from 6 plants in each treatment were

sampled. The samples were quickly frozen and kept in liquid nitrogen before being transferred

to the –80˚C freezer. The samples were ground with a mortar and pestle in liquid nitrogen.

Total RNA was extracted with a Plant RNeasy extraction kit (Qiagen, Valencia, CA USA). First

strand of cDNA was synthesized from 1μg total RNA using a Reverse Transcription Kit (Qia-

gen). Quantitative RT-PCR was employed to analyze relative RNA expression using the 2–ΔCt

method. The relative transcript abundance of PIPs was normalized against geometric mean of

the CT value of two reference genes, NtEF1-α (AF120093) and L25 (L18908) [50]. Transcripts

levels of NtPIP1;1 (AF440271), PIP1;2 (= AQP1, AF024511), PIP1;3 (U62280), PIP1;4
(DQ914525) and PIP2;1 (AF440272) were analyzed. These aquaporins were selected because

of their sequence availability in the public database and earlier studies showing their functional

importance [25,28]. NtADH1 (alcohol dehydrogenase 1, X81853.1) and PDC1 (pyruvate decar-
boxylase 1, X81854.1) were selected as hypoxic indicators. Relative transcript abundance of

ACS (X65982.1) was also determined since it encodes an enzyme catalyzing a rate-limiting

step in ethylene synthesis [51]. Gene-specific primers are described in S1 Table.

Statistical analysis

Means (n = 3–6) and standard errors (SE) were calculated. Paired t-test was performed to com-

pare AR formation and Kr between aerated and hypoxic roots (α = 0.05). In all other compari-

sons, one-way ANOVA followed by Tukey’s test was performed to compare means (α = 0.05).

Three out of four replications of PDC1 relative transcript abundance of aerated LRs were too

low to be detected and consequently only the relative transcript abundance of PDC1 of aerated

ARs, hypoxic LRs and hypoxic ARs were compared in Tukey’s test.

Results

Leaf gas exchange and photosynthetic light responses

After one week of treatment, the leaves of hypoxic plants showed no signs of chlorosis or wilt-

ing. Pn of hypoxic plants decreased by over 50% and 70% compared with aerated plants after

Gene expression in adventitious roots of root-hypoxic tobacco
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two days and one week of treatment, respectively (Fig 1A). Hypoxic plants also showed a

decrease of more than 70% in E and gs on the two treatment days (Fig 1B and 1C).

Hypoxia treatment profoundly affected photosynthetic light responses (Fig 1D). Both two

days and one week of hypoxia treatments resulted in significant declines of Ic and Im (Table 1).

Pm of hypoxic plants also showed a significant decrease compared with aerated plants after one

week of treatment (Table 1).

AR formation and root porosity

After one week of treatment, root mortality was observed in the lower part of hypoxic roots.

Formation of ARs was induced by hypoxia around the stem base (Table 2). Hypoxic plants had

over two-fold higher AR number compared with aerated plants. However, the maximum

length of ARs in hypoxic plants was significantly lower compared with aerated plants

(Table 2). Hypoxia treatment did not affect the total dry mass of ARs (Table 2).

Fig 1. Net photosynthesis (Pn, A), transpiration rates (E, B), stomatal conductance (gs, C) and photosynthetic

light responses (D) of well-aerated tobacco plants and plants subjected to root hypoxia treatment for two days

and one week. Means ± SE (n = 5 or 6 for Pn, E and gs. and n = 3 for photosynthetic light responses) are shown.

Different letters above the bars indicate statistically significant differences determined by the Tukey’s test after one-way

ANOVA (P� 0.05). Aerated after two days (open triangles), hypoxia after two days (open circles), aerated after one

week (black triangles), and hypoxia after one week (black circles).

https://doi.org/10.1371/journal.pone.0212059.g001

Table 1. Comparison of estimated light-saturated photosynthesis (Pm, μmol CO2 m-2 s-1), light saturation point (Im, μmol m-2 s-1) and light compensation point (Ic,

μmol m-2 s-1) in photosynthetic light responses of tobacco plants subjected to aeration and hypoxia treatment for two days and one week.

Aerated DAY2 Hypoxia DAY2 Aerated DAY7 Hypoxia DAY7

Pm 11.47 ± 0.82 a 7.39 ± 0.79 a 17.85 ± 0.87 b 8.76 ± 1.2 a

Im 1045.99 ± 84.98 a 683.54 ± 40.39 b 1129.38 ± 52.12 a 551.66 ± 103.49 b

Ic 28.69 ± 2.55 a 19.7 ± 0.11 b 26.34 ± 1.94 a 14.524 ± 3.68 b

Means ± SE (n = 3) are shown. Different letters indicate statistically significant differences determined by the Tukey’s test after one-way ANOVA (P� 0.05)

https://doi.org/10.1371/journal.pone.0212059.t001
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Root air space was estimated by the root porosity test after one week of treatment. Hypoxia

lead to a 13% increase of porosity in ARs and a slight decrease of porosity in LRs (Fig 2A). The

porosity of hypoxic ARs was higher by over 50% compared with hypoxic LRs. The porosity of

aerated ARs was higher by over 25% compared with aerated LRs.

Kr and root ATP concentration

There was no significant difference in Kr between hypoxic roots and aerated roots after one

week of treatment (Fig 2B).

After two days of treatment, hypoxia resulted in a significant decrease of ATP concentra-

tion in both ARs and LRs (Fig 2C). ATP concentration of hypoxic LRs and ARs decreased by

about 60% and 40%, respectively, compared with aerated roots (Fig 2C). After one week of

treatment, no significant difference in ATP concentration between hypoxic and aerated roots

was detected.

Table 2. Number, maximum length, and dry mass of adventitious roots (ARs) in aerated and hypoxia treatment

for one week.

ARs

Aerated Hypoxic

Number 14 ± 1.51 28.17 ± 2.27�

Maximum length 5.77 ± 0.46� 3.53 ± 0.18

Dry mass 0.059 ± 0.012 0.038 ± 0.007

Means ± SE are shown (n = 6 for number and maximum length, and n = 8 for dry mass of ARs). Asterisks indicate

significance between aerated and hypoxic ARs determined by the t-test (P� 0.05).

https://doi.org/10.1371/journal.pone.0212059.t002

Fig 2. Root porosity of adventitious (ARs) and lateral roots (LRs) (A) and hydraulic conductance (Kr, B) of

tobacco plants subjected to aerated or root oxygen deprivation (hypoxia) treatments for one week, and ATP

concentration of ARs and LRs (C) after two days and one week of treatment. Means ± SE (n = 4–6 for porosity test,

n = 6 for Kr and n = 3 for ATP assay) are shown. Different letters above the bars indicate statistically significant

differences determined by the Tukey’s test after one-way ANOVA (P� 0.05).

https://doi.org/10.1371/journal.pone.0212059.g002
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RNA expression profiling in roots

Hypoxia resulted in significant decreases of PIP1;1 and PIP1;3 relative transcript abundance in

LRs after two days of treatment (Fig 3A). However, relative transcript abundance in ARs remained

unchanged (Fig 3A). Relative transcript abundance of ACS,ADH1 and PDC1 in LRs were sharply

induced by hypoxia (Fig 3B). Hypoxic ARs also showed significantly higher ADH1 relative tran-

script abundance compared with aerated ARs, however, ACS remained unchanged (Fig 3B).

After one week of treatment, relative transcript abundance of PIP1;2, PIP1;4 and PIP2;1 in

hypoxic LRs were significantly lower compared with the aerated LRs, whereas relative tran-

script abundance of PIP1;1 and PIP1;3 showed no change (Fig 3C). In contrast, hypoxia did

not result in significant changes of PIP relative transcript abundance in ARs (Fig 3C). Relative

transcript abundance of ACS, ADH1 and PDC1 exhibited similar trends as on day two (Fig

3D). A sharp increase of ACS, ADH1 and PDC1 expression was triggered in LRs by hypoxia

(Fig 3D). Hypoxic ARs showed no changes in relative transcript abundance of the ACS, ADH1
and PDC1 compared with aerated ARs (Fig 3D).

Discussion

O2 deficiency is a challenging environmental factor that produces complex responses in plants.

Following two days and one week of treatment, gas exchange in tobacco was sharply reduced

Fig 3. Relative transcript abundance of well-aerated tobacco plants and plants subjected to root hypoxia treatment

for two days (A and B) and one week (C and D). Relative transcript abundance of plasma membrane intrinsic proteins

(PIPs, A and C), 1-aminocyclopropane-1-carboxylate synthase (ACS), alcohol dehydrogenase 1 (ADH1) and pyruvate
decarboxylase 1 (PDC1) (B and D) is shown. Means ± SE are shown (n = 4–6). PDC1 expression of LRs aerated after two

days is not shown because of un-determined values. Different letters above the bars indicate statistically significant

differences determined by the Tukey’s test after one-way ANOVA (P� 0.05).

https://doi.org/10.1371/journal.pone.0212059.g003
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by hypoxia. Hypoxia also increased the number of ARs but with a similar biomass as in aerated

plants. ARs showed different response patterns to hypoxia compared with the LRs in terms of

the transcript profiles of PIPs and hypoxia-responsive genes, which may partially contribute to

maintaining Kr of hydroponically-grown tobacco plants.

Stomatal conductance, which is regulated by hydraulic and (or) chemical signals, is the

main limiting factor for leaf carbon assimilation [52]. The decline in Pn after two days and one

week of hypoxia was likely due to the stomatal closure, which was reflected by the decreased E.

The decrease in stomatal opening, as demonstrated by lower gs, was likely responsible for the

reductions in photosynthetic light responses, which showed that Pn of hypoxic plants was satu-

rated at a significantly lower light intensity. Reduced gs of hypoxic leaves limits internal CO2

concentration used for carbon assimilation. Root hypoxia also reduced Ic, the light intensity at

which the rate of total photosynthesis is balanced by the rate of respiration suggesting that root

hypoxia inhibited leaf respiration in addition to photosynthesis. However, hypoxic plants

maintained positive Pn at similar rates on days two and seven, which demonstrates relative tol-

erance of tobacco plants of hypoxic conditions.

One week of root hypoxia did not influence Kr in hydroponically grown tobacco. Effects of

O2 deprivation on root hydraulics varies between plant species and experimental conditions.

While some studies reported reduced Kr in response to O2 deficiency [53,54], other studies

showed no effect [44,55]. In contrast to Kr, hypoxia resulted in a significant decrease of E in

the present study. E and Kr are frequently strongly linked in plants [56], but this relationship

may also be affected by other factors including leaf to root ratio [57]. Root growth is typically

reduced more than leaf growth under hypoxic conditions [58]. In the present study, leaves of

hypoxic plants showed no chlorosis and wilting, but root mortality was observed. Thus, even

though Kr remained unchanged under hypoxic conditions, the increasing transpiration

demand, as a result of leaf growth, may still lead to decreased E in the present study. The diur-

nal changes of root hydraulic conductivity were also found to be independent of transpiration

in flooded Zea mays [59]. More likely, the signal triggering hydraulic adjustment either does

not originate in the stomata or is impaired by the secondary changes caused by hypoxia.

It appears that the number of ARs, not its overall length and dry mass, was the overriding

factor in maintaining root Kr in hypoxic tobacco plants. Even though root porosity was similar

in aerated and hypoxia treatments, the number of ARs was increased by hypoxia. The forma-

tion of ARs is an important adaptation to low O2 conditions in some plants [2,34]. In the pres-

ent study, hypoxia induced the formation of over twice as many ARs compared with aerated

tobacco plants, but their length was reduced by hypoxia. Similar results were previously

reported in tobacco and the authors concluded that the formation of short ARs cannot func-

tionally replace the primary root system which contributed to the relative intolerance of

tobacco to O2 deficiency [37]. However, in the present study, Kr in hypoxic plants showed no

change compared with aerated plants. Additionally, Pn and E of hypoxic plants showed no fur-

ther decrease after one week of hypoxia compared with two days of treatment. These results

indicate that the ARs were effective in maintaining root water transport. The roles of hypoxia-

induced ARs are not limited to replacing existing roots. ARs induced by hypoxia had higher

porosity than the LRs and could conduct more air from shoots to roots and the rhizosphere

(radial O2 loss, ROL). ROL of ARs may have a profound influence on rhizosphere aeration

and nutrient availability in plants under O2 deficiency [60]. Thus, the numerous short ARs

induced by hypoxia in this study could potentially affect tobacco rhizosphere aeration and

contribute to the survival and functioning of the root system under hypoxia.

Decreased root hydraulic conductivity of anoxic Arabidopsis has been linked to aquaporin

closure [23], and a structure-based protonation mechanism under O2 deprivation conditions

has been demonstrated [23,24]. In addition to aquaporin gating analysis, aquaporin gene

Gene expression in adventitious roots of root-hypoxic tobacco
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expression patterns can reveal the importance of various aquaporins in plant responses to O2

deficiency [19]. Although transcripts may not be translated under certain conditions and post-

translational regulation can modify the function of aquaporins, transcriptional responses can

shed light on the translational potential of cells experiencing O2 deficiency [61]. Microarray

analysis showed that aquaporin expression was downregulated in O2 deficient Arabidopsis
[29] and Persea americana [62]. Here, the relative transcript abundance of PIPs in ARs was

compared with LRs. After two days of hypoxia, relative transcript abundance of PIP1;1 and

PIP1;3 decreased in LRs but showed no change in ARs. One week of hypoxia resulted in

decreased relative transcript abundance of PIPs in LRs except PIP1;1 and PIP1;3, while hypoxic

ARs showed unchanged expression of PIPs on day seven. These results indicate that the rela-

tive transcript abundance of PIPs in ARs was less affected by hypoxia, which may contribute to

hydraulic adjustment. In addition to regulating water transport, PIPs impact other physiologi-

cal processes. Tobacco PIP1;2 has been reported to be permeable to CO2 [25]. CO2 can accu-

mulate in roots of plants growing in stagnant water due to its low diffusion rate in water and

high concentrations of CO2 can cause cell acidification [60]. Thus, the down-regulation of

PIP1;2may lead to decreased efflux of CO2 in cells and intensify cell acidification. Interest-

ingly, expression of PIP1;1 and PIP1;3 in LRs showed different responsive patterns compared

with the other examined PIP genes under hypoxia. Further research is needed to shed more

light on the biological roles of PIP1;1 and PIP1;3 in tobacco. Tobacco PIP1;3 has been shown

to be potentially involved in the O2 transmembrane transport [28]. Although the experimental

set-up of the two experiments are similar, the objective of this study was mainly comparing the

differences between ARs and LRs under hypoxic conditions. However, unlike the present

study, it was reported that the relative transcript abundance of tobacco PIP1;3 was upregulated

by root hypoxia [28]. The reason for the difference may be that in the present study LRs and

newly formed ARs were sampled separately rather than the whole root. Additionally, gene

expression patterns in response to abiotic stresses may vary between different developmental

stages [63]. Tobacco plants were exposed to root hypoxia three weeks after germination in the

present study while plants were subjected to root hypoxia two weeks after germination in the

study of Zwiazek et al. [28], which may also contribute to the differences in results. Since ARs

were less affected by hypoxia than LRs in terms of PIP transcription, ARs can likely more

actively participate in root water uptake under hypoxic conditions. In fact, ARs induced by

hypoxia in Larix laricina were shown to have higher hydraulic conductivity than the existing

roots [44]. However, it should be emphasized that both transcriptional and post-transcrip-

tional regulation may affect aquaporin abundance and functions and several studies have

shown the lack of correlation between aquaporin mRNA and protein abundance [64–66]. It

remains to be determined whether the changes in transcript abundance observed in the pres-

ent study are functionally significant.

Phytohormones, especially ethylene, are involved in the regulation network in response to

O2 deficiency, including the initiation and regulation of ARs [67,68]. In this study, transcript

profiling showed that more ACS transcripts were induced in hypoxic LRs than ARs, which

could result in the accumulation of ACC in hypoxic LRs. ACC, an ethylene synthesis precur-

sor, is induced in flooded roots while the conversion of ACC to ethylene needs the presence of

O2 [69]. The transport of ACC from stressed roots to other tissues serves as a signal and causes

the formation of ARs in aerated shoots [51]. Both ADH and PDC were frequently reported to

be up-regulated in O2 deficient tissues [13,62]. In this study, transcripts of tobacco ADH1 and

PDC1 were sharply up-regulated in hypoxic LRs, while ARs showed much lower expression.

Despite the inefficiency of ethanolic fermentation, the activities of ADH and PDC are essential

to plants under low O2 conditions to meet the energy demand [3]. However, the accumulation

of end products of fermentation is toxic [3]. In the present study, two days of hypoxia resulted
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in a significant decline of ATP concentrations in both ARs and LRs. Although hypoxic ARs

did not differ from hypoxic LRs in ATP concentration, hypoxic ARs maintained markedly

lower levels of ADH and PDC transcripts compared with LRs. This suggests that the better aer-

ation of ARs reduced their dependence on inefficient and toxic fermentation compared with

LRs under low O2 conditions.

In conclusion, the formation of short ARs was induced by hypoxia in hydroponically

grown tobacco plants. Although, the length of ARs was reduced in hypoxic plants, it appears

that they were likely more effective in facilitating O2 diffusion into the roots and maintaining

low level of fermentation and high Kr. PIP expression patterns likely reflect the metabolic sta-

tus in roots and may also be related to gas transport. Stable PIP transcripts of ARs under hyp-

oxic conditions may be indicative of an active role of ARs in root water transport under

hypoxic conditions.
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