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Filamin C: a novel component of the KCNE2 interactome 
during hypoxia 
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Abstract 
Aim: KCNE2 encodes for the potassium voltage-gated chan-
nel, KCNE2. Mutations in KCNE2 have been associated 
with long-QT syndrome (LQTS). While KCNE2 has been 
extensively studied, the functions of its C-terminal domain 
remain inadequately described. Here, we aimed to elucidate 
the functions of this domain by identifying its protein interac-
tors using yeast two-hybrid analysis.
Methods: The C-terminal domain of KCNE2 was used as bait 
to screen a human cardiac cDNA library for putative inter-
acting proteins. Co-localisation and co-immunoprecipitation 
analyses were used for verification. 
Results: Filamin C (FLNC) was identified as a putative inter-
actor with KCNE2. FLNC and KCNE2 co-localised within 
the cell, however, a physical interaction was only observed 
under hypoxic conditions.
Conclusion: The identification of FLNC as a novel KCNE2 
ligand not only enhances current understanding of ion 
channel function and regulation, but also provides valuable 
information about possible pathways likely to be involved in 
LQTS pathogenesis.
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Long-QT syndrome (LQTS) is a cardiac repolarisation disorder 
with an estimated global prevalence of 1:2 000 to 1:7 000.1,2 
It is characterised by a prolonged QT interval on a surface 
electrocardiogram (ECG), with symptoms including syncope, 
cardiac arrest and sudden death.1,3,4 Occasionally, sudden cardiac 
death may be the first and only manifestation of LQTS.5,6 

To date, different types of LQTS (LQT1–LQT13), classified 
according to the primary disease causal gene, have been 
identified, with more than 700 mutations leading to disease 
pathogenesis.7,8 Yet a large number of patients with clinically 
diagnosed LQTS have no mutations within any of the known 
LQTS causal genes,9-11 and numerous patients, despite carrying 
the same disease-causing mutation, display variable phenotypic 
expression and disease penetrance.12 To complicate matters 
further, LQTS can also be acquired through the use of certain 
prescribed medications, such as antipsychotics, antidepressants 
and antibiotics,13,14 adding to the growing challenge of clinical 
management and treatment of affected individuals. 

The LQT type 6 (LQT6) causal gene, KCNE2 encoding for 
the potassium voltage-gated channel subfamily E member 2 
(KCNE2) protein,15 has been implicated in the development 
of inherited, acquired and sporadic forms of LQTS.13,16-18 This 
protein consists of an extracellular N-terminal, a transmembrane 
and intracellular C-terminal domain. It comprises the beta-
(β) subunits of ion channel complexes and co-assembles with 
many different alpha- (α) subunits, including the frequently 
studied human Ether-à-go-go-related (HERG) channel protein 
encoded for by the potassium voltage-gated channel, subfamily 
H (eag-related), member 2 (KCNH2) gene.15,17,19 In combination 
with KCNE2, properties of the different ion channel currents 
are modulated,20 assisting in cardiac pacemaker activity and 
repolarisation to ensure adequate myocardial recharging and the 
maintenance of a regular rhythm.15,21-23

A unique quality of many cardiac ion channels, including 
those containing KCNE2 and HERG, is their ability to adapt 
to hypoxic conditions. Hypoxia, defined as the decrease in 
available oxygen, causes changes in the electrical characteristics 
of ion channels and has been reported to predispose individuals 
to fatal arrhythmias.24-27 Additionally, hypoxic conditions affect 
the expression, folding, maturation and trafficking of various 
channels.28-30 In a recent study, it was noted that the expression 
of genes from the KCNE family (including KCNE2) could be 
affected by hypoxia in the heart.31 It has been observed that 
acute ischaemic hearts of rats after myocardial infarction show 
increased expression of KCNE proteins, attributable to hypoxia.31

The intricacy of processes causing and modifying cardiac 
arrhythmias highlights the importance of identifying the protein 
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macromolecular complexes and pathways involved. Taking 
into consideration the relevance of KCNE2 in the context of 
ion channel regulation and LQTS, this study aimed to identify 
interactors with this β-subunit; specifically focusing on its 
cytoplasmic C-terminal domain, for which functional roles 
remain inadequately described. 

Using yeast two-hybrid analysis, we identified filamin C 
(FLNC) as a KCNE2-interacting protein. FLNC and its paralogs, 
filamin A (FLNA) and filamin B (FLNB), act as scaffolding 
proteins and have been implicated in a number of cellular stress 
responses,32-38 including several hypoxia-related effects.35–38 For 
this reason, co-localisation and co-immunoprecipitation (Co-IP) 
analyses for verification of this interaction were conducted both 
under normoxic and hypoxic conditions. 

Here, we show that, under normoxic and hypoxic conditions, 
FLNC and KCNE2c co-localised within the cell. However, 
FLNC and KCNE2 only co-immunoprecipitated under hypoxic 
conditions, suggesting that while these two proteins are located 
in close proximity to one another within the cell, it is only 
under conditions of cellular stress that a physical interaction 
between the two exists. The data presented here provide evidence 
to suggest that KCNE2 may play a role in hypoxia-induced 
arrhythmias.

Methods

KCNE2 construct
A fragment encoding the C-terminal of KCNE2 gene (amino acid 
72-123) was amplified from human genomic DNA by means of 
polymerase chain reaction (PCR). The PCR reaction employed 
KCNE2 C-terminal-specific primers with two restriction enzyme 
sites (NdeI and EcoR1) (Table 1) for subsequent cloning into 
the CLONTECH yeast two-hybrid (Y2H) bait vector, pGBKT7 
(pGBKT7-KCNE2), in-frame with the GAL4-DNA binding 
domain (GAL4BD). The integrity of the sequence and the 
conservation of the GAL4 domain reading frame of the resulting 
construct were verified via sequencing.

Yeast two-hybrid (Y2H) library screen
The Saccharomyces cerevisiae strain, AH109 (BD Biosciences, 
Clontech, USA), was transformed with the pGBKT7-KCNE2 
construct and mated with the S cerevisiae strain, Y187, which 
was pre-transformed with a MATCHMAKER human cardiac 
cDNA library (BD Biosciences, Clontech, USA). Subsequently, 
the library screen was conducted according to manufacturer’s 
recommendations.

The prey plasmids, from colonies expressing the three essential 
reporter genes (HIS3, ADE2 and MEL1), were isolated from 
the diploid yeast cells and were retransformed into S cerevisiae 
strain Y187 to analyse their ability to activate the reporter genes 
when mated with heterologous baits (Table 2). Prey peptides 
showing specific interaction with the KCNE2 C-terminal domain 
were sequenced and the in-frame open reading frame (ORF) 
sequences were analysed using BLASTN and BLASTP against 
public databases (http://ncbi.nlm.nih.gov/blast).

Cell culture 
The H9C2 rat-derived cardiac myoblasts (American Typer 
Culture Collection, USA) were grown in Dulbecco’s modified 
Eagle medium (DMEM, Lonza, CHE) containing 10% foetal 
bovine serum (FBS, Biochrom, GER) and 1% penicillin/
streptomycin (Pen/Strep, Biochrom, GER) until they reached 
80% confluency. For co-localisation, 10 000 cells were seeded 
onto glass cover slips in each well of a six-well plate (8-cm2 
culture dishes) and incubated until 80% confluency was reached, 
while for Co-IP, cells were grown in 175-cm2 flasks until 
they reached 80% confluency. Differentiation medium (DMEM 
containing 1% horse serum and 1% Pen/Strep) was subsequently 
added to each well of the six-well plate and the 175-cm2 flasks. 
Cells were differentiated for 10–14 days. 

For hypoxia induction, the differentiation medium was 
removed and replaced with Esumi buffer (138.6 mM NaCl, 12 
mM KCl, 1 mM MgCl2, 1 mM CaCl2.H2O, and 4 mM Hepes, 
pH 6.2).39 Culture dishes and flasks were then placed in a 
chamber where a hypoxic environment was created by flushing 
the system with a 1% O2 gas mixture at a flow rate of 20 l/min, 
for approximately four minutes. The cells were then incubated in 
the hypoxic chamber at 37°C for two hours. 

For Co-IP experiments, 5 ml of pre-warmed trypsin was 
used to detach the cells from the growth surface of the flasks. 
The cells were then centrifuged at 4ºC for three minutes at 2 500 
rpm. The supernatant was discarded and the pellet resuspended 
in 1 ml of phosphate-buffered saline (PBS) and re-pelleted at 9 
000 rpm for two minutes. The PBS was removed and the cells 
were then lysed with ice-cold lysis buffer (50 mM Hepes, 5 M 
NaCl, 0.5 M EDTA, 1% Triton X-100, 1 M Na3VO4) containing 
protease inhibitor cocktail tablets [one tablet EDTA-free protease 
inhibitor cocktail tablet per 20 ml lysis buffer and 1 mM 
phenylmethylsulfonylfluoride (PMSF) (Sigma-Aldrich, USA)].

Approximately 0.5 ml of ZROB05 Ceria zirconium oxide 
beads (0.5 mm diameter) (Next Advance Inc, USA) was added 
to the suspension and it was placed in a Bullet blender® (Gentaur, 
GBR) for one minute. The blending step was repeated three 
times at five-minute intervals. The cells were then pelleted by 
centrifugation at 9 000 rpm for two minutes, after which the 
supernatant was collected. A Bradford assay was used for protein 

Table 1. Nucleotide sequences of primers used  
to amplify the C-terminal of KCNE2

Primer Sequence (5’-3’) Ta (°C)

KCNE2-
forwardNde1

5’ - ACTGCAGAACATATGCTCAAATCCAAGAGA-
CGG - 3’ 50

KCNE2-
reverseEcoR1

5’ - ACTGCAGAAGAATTCCTATCAGGGGAA-
CATTTTGAAC - 3’ 51

°C: degrees Celsius; Ta: annealing temperature; KCNE2: potassium voltage-
gated ion-channel subfamily E member 2. 
The bold text represents a tag, which facilitates restriction enzyme digestion, 
while the underlined sequences correspond to the Nde1 and EcoR1 restriction 
enzyme sites, respectively. The short italic sequence (CTA) symbolises the stop 
codon, and the remaining text represents the sequence of the primer, which will 
anneal to the DNA in the PCR amplification reaction. 

Table 2. S cerevisiae bait strains

S cerevisiae bait strains Plasmid type

AH109 pGBKT7-KCNE2 Positive control plasmid

AH109 pGBKT7 Non-recombinant plasmid

AH109 pGBKT-53* Control bait plasmid

AH109 pGBKT7-WFS1 Negative control plasmid

*The pGBKT7 vector containing the human p53 gene. KCNE2: potassium 
voltage-gated ion-channel subfamily E member 2; WFS1: Wolfram syndrome 1.
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concentration determination,40 to ensure equivalent amounts of 
protein per sample were subjected to sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) analysis.

Co-localisation
For co-localisation experiments, the differentiation media 
and Esumi buffer was removed from the differentiated H9C2 
rat-derived cardiomyocytes on the glass cover slips and the cells 
were rinsed with PBS. The cells were permeabilised with methanol 
for five minutes at –20°C and fixed with 4% paraformaldehyde 
for five minutes at room temperature. The cells were then washed 
three times with PBS for 10 minutes and blocked in 1% BSA for 
one hour at room temperature. Following the blocking step, the 
cells were again washed three times with PBS for 10 minutes and 
incubated at 4°C overnight with rabbit anti-KCNE2 (Abcam, 
Biocom Biotech, RSA, 1:50) and goat anti-FLNC (Santa Cruz 
Biotechnology Inc, USA, 1:50) primary antibodies diluted in 
1% BSA. 

The cells were then washed three times with PBS for 10 
minutes and stained with Alexa 488 donkey anti-rabbit (Jackson 
ImmunoResearch Laboratories Inc, USA, 1:500) and Cy3 
donkey anti-goat (Jackson ImmunoResearch Laboratories Inc, 
USA, 1:500) secondary antibodies in PBS for 90 minutes in the 
dark at room temperature. Afterwards, the cells were washed 
three times with PBS for 10 minutes, and Hoechst H-33342 
was added for nuclear staining [Sigma-Aldrich (Pty) Ltd, RSA, 
1:200; 10 mg/ml], followed by a 10-minute incubation at room 
temperature. 

Subsequently, the cover slips with the stained cells were mounted 
onto glass slides using Mowiol (Jackson ImmunoResearch 
Laboratories Inc, USA) containing n-propylgallate as the 
anti-fade reagent and kept at 4°C in the dark until viewing. 
Samples were acquired using the Carl Zeiss Confocal LSM 
780 Elyra S1, equipped with a LSM780 GaAsP detector, using 
a Plan Apochromat 63×/1.4 Oil DIC M27 or an alpha Plan-
Apochromat 100×/1.46 oil DIC objective (Central analytical 
facility, Cell Imaging Unit, Stellenbosch University, RSA). The 
samples were excited with a 488-nm and 561-nm laser under-
utilisation of a MBS 488/561 beam splitter. 

Images were acquired through z-stacking with an increment 
of 0.3-µm step width, and projected as maximum-intensity 
projections using ZEN software (black edition, 2011). Thresholds 
were determined using appropriate control images acquired for 
cells individually stained (single-stain) for KCNE2 and FLNC, 
respectively. The background was adjusted for all acquired 
images using images of cells only stained with secondary control 
antibodies.

Co-immunoprecipitation
Cells were harvested and the lysates were pre-cleared with 
protein G agarose beads (KPL Inc, USA) for 30 minutes at 4°C. 
The pre-cleared lysates (150 µg/total protein) were incubated 
with 1 µg of either rabbit polyclonal anti-KCNE2 (Santa Cruz 
Biotechnology Inc, USA) or goat polyclonal anti-FLNC (Santa 
Cruz Biotechnology Inc, USA) antibody rotating overnight at 
4°C. 

To capture the protein complexes, 60 µl of protein G agarose 
beads were added to the lysate and incubated for an additional 

hour rotating at 4°C. The complexes were then washed three 
times, each time removing the supernatant after centrifugation 
and adding fresh lysis buffer that contained protease inhibitors 
and PMSF. Proteins were eluted by addition of 1× SDS-PAGE 
sample buffer [95% Laemmli sample buffer (Bio-Rad Laboratories 
Inc, USA), 5% β-mercapto-ethanol], denatured for five minutes 
at 95°C and separated using 4–15% SDS-PAGE gels for Western 
blot analysis. Two negative controls, a non-relevant antibody 
control (HA-probe; Santa Cruz Biotechnology Inc, USA) and 
a protein G agarose control (without antibody) were included in 
all Co-IP experiments

Western blot analysis
Following co-IP, proteins were separated on 4–15% SDS-PAGE 
gels and transferred to a polyvinylidene difluoride (PVDF) 
membrane (Thermo Scientific, USA) by means of the iBlot® 
system (Invitrogen, USA). Membranes were blocked with 
5% fat-free powdered milk, supplemented with Tris-buffered 
saline Tween-20 (TBST, 0.01% Tween-20), for one hour at 
room temperature. Membranes were then incubated at 4°C 
overnight with the appropriate primary antibodies (Santa Cruz 
Biotechnology Inc, USA, 1:200 anti-KCNE2; 1:1 000 anti-
FLNC), diluted with 5% milk in TBST. 

Subsequently, the membranes were washed with TBST 
and incubated for one hour at room temperature with the 
corresponding horseradish peroxidase (HRP) conjugated 
secondary antibodies (Santa Cruz Biotechnology Inc, USA, 
1:2 000 donkey anti-rabbit; 1:2 000 donkey anti-goat), diluted 
with 5% milk in TBST. Following incubation with the secondary 
antibody, the membranes were washed for 30 minutes at room 
temperature. 

The SuperSignal® West Pico chemiluminescence substrate 
kit (Thermo Scientific, USA) was then used according to the 
manufacturer’s instructions and the membranes were exposed for 
two minutes to CL-Xposure™ autoradiography film (Thermo 
Scientific, USA). The autoradiography film was developed using 
an Amersham hyperprocessor automatic autoradiography film 
processor (Amersham Pharmacia Biotech UK Ltd, UK) prior 
to final analyses. 

Results

FLNC as a novel interactor with KCNE2 under 
hypoxic conditions
The Y2H screen identified FLNC (GenBank: NP_001449.3) as 
a KCNE2 (GenBank: NP_751951.1) interactor with the binding 
regions located between amino acids 2637–2725 of FLNC and 
amino acids 72–123 of KCNE2. These 88 amino acids of FLNC 
are positioned at the end of the C-terminal domain, shown to be 
involved in self-dimerisation.32

Imaging analysis revealed a strong co-localisation signal 
between KCNE2 and FLNC at the cell membrane, filamentous 
structures and the cytoplasm of differentiated H9C2 rat-derived 
cardiomyocytes under normoxic conditions (Fig. 1a–h), while the 
co-localisation of these two proteins was mainly restricted to the 
cytoplasm under conditions of hypoxia (Fig. 1i–p). When the cells 
were subjected to hypoxic stress, the pattern of co-localisation, 
relative to that during normoxia, changed considerably at the 
plasma membrane (Fig. 1i–p), where decreased co-localisation 
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of these proteins was observed. Following hypoxic stress, the 
internal cellular structure became disrupted and the filaments 
and cytoskeleton showed clear signs of disarray (Fig. 1i–p). The 
less well-defined signal appearance of co-localisation seen in Fig. 
1l and p may be attributable to this disarray.

While co-localisation analysis provided convincing evidence 
that KNCE2 and FLNC are located in close proximity to one 
another within the cell, this does not necessarily mean that they 
physically interact. For this reason, Co-IP analysis was used to 
determine whether a physical interaction exists between the two. 
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Fig. 1. �Fluorescent imaging and co-localisation analysis of KCNE2 and FLNC in differentiated H9C2 cardiomyocytes under normoxic 
and hypoxic conditions. (a–h) Co-localisation under normoxic conditions. (i–p) Co-localisation under hypoxic conditions. (a, e, 
i, m) KCNE2 labelled with the rabbit polyclonal anti-KCNE2 primary antibody and a donkey anti-rabbit Alexa 488 secondary 
antibody (green). (b, f, j, n) FLNC labelled with the goat polyclonal anti-Filamin C primary antibody and donkey anti-goat Cy3 
secondary antibody (red). (c, g, k, o) Overlay images of a–b, e–f, i–j and m–n, respectively with Hoechst H-33342 nuclear 
staining (blue). (d, h, l, p) Co-localisation of KCNE2 and FLNC generated from merged images (white). Arrows in d and h 
indicate the ordered filamentous structure in the cardiomyocytes under normoxic conditions (blue). Arrows in l and p indi-
cate the disordered filamentous structure in the cardiomyocytes under hypoxic conditions (blue). Micrographs are shown as 
maximum-intensity projections based on z-stack image frames. Co-loc: co-localisation; FLNC: filamin C; KCNE2: potassium 
voltage-gated ion-channel subfamily E member 2. Scale bar 10 µm.
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Under normoxic conditions, reciprocal Co-IP experiments failed 
to show any physical interaction between KCNE2 and FLNC (Fig. 
2a, b). However, during hypoxia an interaction between KCNE2 
and FLNC was observed (Fig. 2c, d). These findings suggest that 
the induction of stress is essential to the interaction and one could 
speculate that hypoxia-induced conformational changes of FLNC 
are necessary for the KCNE2–FLNC interaction.

Discussion 
This study identified a novel protein–protein interaction between 
the cytoplasmic C-terminal domain of KCNE2 and FLNC 
during conditions of acute hypoxia. To date, the intracellular 
C-terminal domain residues of KCNE2 have been implicated in 
modulating HERG current density,13,41 current deactivation rates,41 
and phosphorylation-dependant channel degradation.19 However, 
studies elaborating on specific regulatory roles for this domain 
remain scarce, highlighting the importance of the current findings.

The interactor identified in this study, FLNC, is located in 
the cytoplasm at the Z-line of the sarcomere and functions 
in the cytoskeleton, where it is involved in crosslinking actin 
filaments into networks and anchoring membrane proteins.32,42 
This filamin and its main paralogs, FLNA and FLNB, act as 
scaffolding proteins and have been implicated in a number of 
cellular stress responses,32-34,43-46 including several hypoxia-related 
effects.33,34,45,46 FLNC specifically, is predominantly expressed in 
muscle tissue and is associated with cardiac abnormalities such 
as desminopathy, characterised by muscle weakness, conduction 
blocks, arrhythmias and chronic heart failure, frequently resulting 
in sudden cardiac death.35,36 

Filamins also play an important part in cell signalling 
by disrupting existing interactions or by the introduction of 
novel interactions.32,37,38,47 Interestingly, there are several reports 
detailing interactions of filamin family members with ion 
channel subunits.48-50 Particularly noteworthy is a previously 
descibed association in neuronal tissue between FLNC and 
the potassium voltage-gated channel subfamily D member 2 
(KCND2),48 the α-subunit of the Kv4.2 channel. That study 
proposed that FLNC mediates the direct link between KCND2 
and the actin cytoskeleton and showed that this interaction is 
essential for the generation of appropriate current densities.48 

Both neuronal and cardiac tissue contain voltage-gated ion 
channels responsible for controlling the excitability of neurons 
and cardiomyocytes. These channels allow for communication 
between cells in these tissues.51-53 Furthermore, a KCNE2–
KCND2 interaction has been described, implicating KCNE2 in 
the regulation of the rapidly inactivating KCND2 α-subunit.54,55 

A common theme in the observation of the ion channel 
interactions with filamin is the ability of filamin to influence 
membrane localisation.48-50 For FLNC, this process has also been 
shown to involve other actin-binding and auxiliary ion channel 
proteins.56

In the present study, the C-terminal of FLNC, specifically 
amino acids 2637–2725 (GenBank: NP_001449.3), bound to 
the cytoplasmic C-terminal domain of KCNE2, exclusively 
during conditions of hypoxic stress. This finding is consistent 
with a number of other studies, indicating that the C-terminal 
region of filamins is involved in protein interactions.57 The 
FLNC amino acid residues defined to interact with KCNE2 
in this investigation correspond to a domain that is responsible 
for protein dimer formation and is important for actin filament 
bundling and cross-linking activities.58,59 

The introduction of hypoxic stress is known to have profound 
effects on the cell.60 These include the disruption of ionic 
homeostasis, mitochondrial dysfunction resulting in impaired 
ATP production, induction of cell death by apoptosis or necrosis, 
and the generation of reactive oxygen species (ROS).61 Excess 
ROS leads to cardiac cell damage and post-ischaemic contractile 
dysfunction by attacking virtually all cellular components.62 
This results in the degradation of intracellular proteins, rupture 
of cellular membranes (including the sarcolemma), as well as 
intracellular calcium ion overload,63 however, it has been show 
that cells remain viable even after extended periods of hypoxic 
stress.64 In addition to this, the actin cytoskeleton is also severely 
compromised and may therefore be a driving force for novel 
interactions. Additionally, Kesner et al. indicated that stress-
induced conformational changes in filamins could have a direct 
effect on existing interactions or may influence the presence of 
novel interactions.47 

Co-localisation analysis revealed that KCNE2 and FLNC 
co-localise under both normoxic and hypoxic conditions. 
However, no physical interaction could be confirmed between 
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Fig. 2. �Western blots of Co-IP of KCNE2 and putative interactor FLNC in differentiated H9C2 cardiomyocytes. Reciprocal Co-IP 
reactions were performed for each interaction. (a–b) Co-IP under normoxic conditions. (c–d) Co-IP under hypoxic condi-
tions. FLNC: filamin C; IP: immunoprecipitate; KCNE2: potassium voltage-gated ion-channel subfamily E member 2; kDa: 
kilo Dalton; Neg: negative control; Prot G: protein G agarose control; WB: Western blot. Note: The Western blot revealed a 
larger-than-expected predicted molecular weight band for KCNE2 (50 kD versus 14–20 kDa) (c). This is likely due to previ-
ously described protein modifications and/or protein interactions of KCNE2.19,77-80
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these two proteins during normoxic conditions using Co-IP 
assays. Therefore, these findings suggest that the induction of 
stress is essential to the interaction. Given that hypoxic stress 
compromises the integrity of  the cellular membranes and 
that FLNC has also been shown to interact with the actin 
cytoskeleton, it is tempting to speculate that during this time of 
cellular stress, the interaction between FLNC and KNCE2 may 
be an attempt by the cell to restore cellular membrane integrity, 
thereby promoting cellular survival during these conditions. 

If this is the case, one could further speculate that mutations 
in the genes encoding for KCNE2 or FLNC, or both, which 
weaken or abrogate their interaction could result in the cell being 
unable to restore membrane integrity, which could lead to acute 
myocardial ischaemic arrhythmogenesis. Furthermore, it may 
be that hypoxia-induced conformational changes of FLNC are 
necessary for the novel KCNE2–FLNC interaction.

During hypoxia, the pattern of co-localisation changed and 
the differentiated H9C2 cardiomyocytes showed signs of internal 
structural disruption. Both KCNE2 and FLNC displayed 
reduced localisation at the surface membrane (Fig. 1i, j, m, n), 
while the intracellular co-localisation signal was intensified. 
Hypoxic conditions are known to initiate extensive variations in 
gene expression, alter protein sub-cellular localisation, and cause 
the attenuation of membrane protein translation.65-67 

Furthermore, these findings are consistent with reports that 
the HERG α-subunit, known to bind KCNE2,16 showed reduced 
membrane localisation during hypoxia.30,68 The reason for the 
observed decrease of these proteins at the membrane requires 
further investigation; however, it is interesting to note that both 
KCNE2 and filamins have been implicated in processes involving 
the internalisation of membrane proteins.19,69,70 Additionally, 
given the evidence of filamins aiding channel localisation,69,70 
and the increase in KCNE2 gene expression during hypoxia,31 
it would be intriguing to investigate if  this interaction serves a 
compensatory role to try to restore internally localised channels 
to the membrane. 

The role of cytoskeletal components, including actin-binding 
proteins, in ion channel function and regulatory processes is 
a rapidly expanding field of study. Evidence supports their 
significant contribution towards channel trafficking and 
activity at the plasma membrane itself.71-73 Furthermore, there 
are numerous studies linking the dysfunction of cytoskeletal 
proteins with conduction defects and arrhythmias.72,73 

This study is the first to identify the cytoskeletal protein, 
FLNC, as a constituent of an ion channel macromolecular 
complex, specifically forming part of the KCNE2 interactome. 
This observation was only valid during conditions of hypoxia, 
although it remains to be seen if  other stimuli can elicit the 
same association. Together, FLNC and KCNE2 most likely 
modulate KCNE2-containing channels, especially pertaining to 
their surface expression. 

Conclusion 
It has long been known that all cells have the ability to 
adapt and respond to hypoxic conditions in order to prevent 
the harmful effects of oxygen deprivation.74 In cardiac cells, 
potassium channels play a central role in this adaptation. 
However, inadequate adaptive responses may lead to serious 
cellular damage and cardiac arrhythmias. This has previously 

been shown in the cardiovascular system where lack of oxygen 
contributes to cardiac arrhythmia.75,76 

This study identified and validated FLNC as an interactor 
with KCNE2 under conditions of hypoxia. This finding points 
towards new insight and understanding into the mechanisms 
in which KCNE2 functions, and could contribute to our 
understanding of the interactome in cardiovascular conditions 
such as LQTS. Through identification of  novel KCNE2 
interacting proteins, new genes can be included in searches for 
causal and modifying effects of novel arrhythmia disorders. 
These findings ultimately advocate intriguing possibilities that 
might lead to new therapeutic avenues being discovered. 
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