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Abstract

Background: DNA methylation plays a key role in developmental processes, which is reflected in changing
methylation patterns at specific CpG sites over the lifetime of an individual. The underlying mechanisms are
complex and possibly affect multiple genes or entire pathways.

Results: We applied a multivariate approach to identify combinations of CpG sites that undergo modifications
when transitioning between developmental stages. Monte Carlo feature selection produced a list of ranked and
statistically significant CpG sites, while rule-based models allowed for identifying particular methylation changes in

these sites.

Our rule-based classifier reports combinations of CpG sites, together with changes in their methylation status in the
form of easy-to-read IF-THEN rules, which allows for identification of the genes associated with the underlying sites.

Conclusion: We utilized machine learning and statistical methods to discretize decision class (age) values to get a
general pattern of methylation changes over the lifespan. The CpG sites present in the significant rules were
annotated to genes involved in brain formation, general development, as well as genes linked to cancer and

Alzheimer's disease.
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Background

DNA methylation is an important epigenetic mechanism
modifying mammalian genomes. It plays a major role in
several biological phenomena, such as X chromosome
inactivation, imprinting, regulation of gene expression,
development, cell differentiation, and the onset and pro-
gression of multiple diseases. The predominant form is
cytosine methylation (5mC) at CpG dinucleotides. These
CpG sites are located nonrandomly in the genome, tend-
ing to occur within high density clusters of CpGs
(islands). Around 70 % of all CpG dinucleotides are
methylated [1-4]. CpG islands constitute around 60 %
of human promoters and are predominantly unmethy-
lated, while the sites in the remaining 40 % are often
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hypermethylated [5, 6]. DNA methylation patterns are
known to be tissue specific [7], and it has been shown
that one of the effects of DNA methylation is to contrib-
ute to transcriptional silencing, where proteins bind dir-
ectly to methylated DNA and recruit co-repressor
complexes [8], triggering the formation of repressive
chromatin.

There are several studies that show that changes in
DNA methylation are not confined to early develop-
ment, but rather occur over the entire life span of an or-
ganism, resulting in distinct age-related methylation
profiles [9-12]. While this global ‘epigenetic clock’ corre-
lates strongly with chronological age and could thus be
used to evaluate or exclude age-related factors in ana-
lyses of neurodevelopmental or neurodegenerative disor-
ders, the specific genes or networks that depend on this
clock for their regulation remain largely unknown. Since
the changes in methylation patterns are complex and
likely involve multiple genes in a combinatorial manner,
in this study our goal was to explore how a non-linear
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multivariate machine learning approach, capable of ana-
lyzing multiple CpG sites simultaneously, would inter-
pret the data without any a priori hypothesis such as the
direction or trajectory in which the changes in methyla-
tion occur.

We thus applied a rule-based approach to a public
methylation dataset profiled from the prefrontal cortex
of the brain [13], for which we first examined changes
across all age boundaries. After applying Monte Carlo
Feature Selection [14] to rank the CpG sites by signifi-
cance, we identified five distinct age groups, with
marked transitions between them. We then used RO-
SETTA [15], which implements rough sets theory [16],
to construct rule-based models based on the identified
CpG loci.

Methods

Data preprocessing

The data set used in this work, Numata et al. [13],
comprises DNA methylation data from 108 samples,
taken from individuals ranging from fetal to 84 years
old, designed to study the dependence of methylation
on age and gender. Genomic DNA has been taken
from dorsolateral prefrontal cortex. Illumina’s Infi-
nium HumanMethylation27 BeadChip was used to
profile the DNA methylation level at 27,578 CpG
dinucleotides.

We removed sites from the dataset if they fulfilled one
or more of the following conditions: (a) CpG sites fall on
chromosome X; (b) Potentially nonspecific or poly-
morphic probes present on Infinium HumanMethyla-
tion27 BeadChip; or (c) CpG sites with standard
deviation of beta values <0.02 to remove uninformative
sites. Beta values, which were measured from a popula-
tion of cells and are therefore reported as average on a
scale from O to 1, were discretized into: (a) unmethylated
if the chip reports a beta value of 0.2 or lower; (b) meth-
ylated if the beta value is 0.8 or higher; and (c) inter-
mediate if the beta value is between 0.2 and 0.8.
Discretizing the beta values was motivated by Bibikova,
Le, Barnes et al. [17], who divided the beta values into
the three groups “methylated”, “hemimethylated”, and
“unmethylated”, proposing the threshold values 0.2 and
0.8 based on the overall distribution of beta values (see
Additional file 2: Figure S1).

Table 1 A fragment of a decision table
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Decision tables and selecting significant CpG sites

We constructed decision tables as follows (see Table 1
for an example): each row represents a sample with the
values of the characterized features of that sample in the
columns. Here, features are the selected CpG sites with
their methylation levels as measured by the chip. The
last column holds the decision class the sample
belongs to.

We constructed 61 separate binary decision tables
(also referred as two-class decision tables) by iteratively
dividing the samples into two groups: (1) younger than a
given age, or (2) older than or equal to a given age. Since
there were very few samples older than 60, we stopped
the cuts at the age of 60. In order to find the CpG sites
that significantly contribute to classifying the samples to
the age classes, we applied Monte Carlo Feature Selec-
tion (MCEFS) [14] to compute a normalized relative im-
portance (RI-norm) score for each feature. MCEFS
compensates for any imbalanced number of objects in
each class.

Constructing classifiers

Figure 1 illustrates a schematic overview of the method.
The significant CpG sites for each age were extracted
from the relevant decision table. Since the number of
samples in different age classes was different, we ran a
100-fold under-sampling to avoid the bias of classifica-
tion towards classes with more samples. In under-
sampling, a new decision table is created, consisting of
the samples of the smallest group, plus a randomly se-
lected subset of samples (equal to the number of sam-
ples in the smallest group) from the other groups. This
process was repeated 100 times.

We then created rule-based models using ROSETTA
[15] for each under-sampled decision table, and com-
bined the results into one model for each age class.
ROSSETA implements rough set modeling [16, 18], the
models of which are output in the form of human-
readable IF-THEN rules, which describe the relation be-
tween the CpG sites and the decision. The rules are ei-
ther comjunctive, consisting of a conjunction of
conditions, such as:

IF cg26158194=methylated AND cgl12078929=
intermediate

THEN ‘olderThan50’

SamplelD/CpGID CpGl1 CpG2 CpGN Class

Samplel methylated intermediate unmethylated youngerThanO
Sample2 intermediate methylated methylated olderThan0
Sample108 unmethylated methylated unmethylated youngerThan0

The rows show the samples and the columns show the value for each property (feature). The last column contains the decision (class) to predict
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Fig. 1 Summary of the analytical processes

Accuracy=0.95, support=21

Or singleton, having only one condition, such as:

IF cgl0608341=unmethylated THEN ‘younger
ThanO "’

Accuracy = 1, support = 30

Each rule can be read as: if the condition(s) in the IF
part is (are) satisfied for a sample, the model predicts it
to be a member of the decision class (the THEN part of
the rule). The reported accuracy shows the ratio of cor-
rectly classified objects to all classified objects to a spe-
cific class, based on the model confusion matrix. The
support value shows the number of samples that satisfy
the condition(s) (the IF part).

ROSETTA outputs a list of rules that are independent
of each other, ie. if multiple sites, or combinations
thereof, act as “predictors”, it reports all of them. This,
in turn, allows for interpreting the set of CpG sites used
in the rules as being subject to changes in methylation
at each specific age. To avoid over-fitting of the data, we
computed the statistical significance for each rule
using a hyper-geometric distribution and Bonferroni-
correction, discarding rules with p > 0.05.

We used the web based tool Ciruvis [19] to identify inter-
actions among rule conditions, i.e. rules that use the same
CpG sites, ranked by strength - the sum of accuracies
multiplied by support for all the rules in which it appears.
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standard deviation of beta values for CpG sites over life span
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Fig. 2 Histogram of standard deviation (SD) of beta values for all the CpG sites after discarding the sites located on the X chromosome or
located on nonspecific or polymorphic probes
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Fig. 3 The number of significant CpG sites plotted for all two-class decision tables
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Discretization into age groups
We computed the Jaccard distance between all two-class
decision tables based on the number of overlaps (inter-
section) between the significant features obtained for
each individual two-class decision table, i.e. given two
Significant Features for Age sets SFA; and SFA; for
decision classes i and j, the distance is computed as:
distance(SFA;, SFA;) = 1 — ((SFA; n SFA;)/
(SFA; U SFA;))

Annotation of sites and rules

We annotated the CpG sites using Annovar [20], allow-
ing for identifying the genomic region in which a CpG
site was located, using the tags exonic, intronic, UTR5,
UTR3, intergenic, splicing (variant is within 2-bp of a
splicing junction), and upstream (variant overlaps 1-kb
region upstream of transcription start site). Functional
annotation for the genes and the biological processes
they are involved in was obtained from GeneCards
(http://www.genecards.org).

Results and discussion

Informative CpG sites

In the Numata et al. dataset [13], methylation levels
measured by the Illumina Infinium HumanMethyla-
tion27 BeadChip are reported as beta values, i.e. the
methylation averaged over the cell population that was
sampled, at 27,600 CpG dinucleotide sites. Of these, we
first removed 1086 sites located on chromosome X to
avoid sites in pseudo-autosomal regions on chromosome
Y in male participants. We next removed 770 poly-
morphic loci, and 2626 loci located on non-uniquely
mapped probes (both according to the chip manifest
file). For the remaining sites, we computed the standard
deviation of beta values, and discarded sites that showed
little variation in methylation throughout age, by apply-
ing a cutoff of 0.02 (Fig. 2), resulting in around 11,000
CpG sites.

Discerning CpG sites over age
For any given age, we next binned the samples into two
categories, either below or above this age, and repeated
the process 61 times for ages 0 to 60. We then applied
Monte Carlo Feature Selection (MCFS) to the respective
two-class decision table to determine the set of CpG
sites that significantly (p < 0.05) contribute to the classi-
fication. The number of such sites decreased as age in-
creases (Fig. 3), indicating that fewer sites are able to
discern between samples at higher age and implying that
changes in methylation are generally more pronounced
at early ages and decrease with age.

We next examined the union of all significant CpG
sites, 283 in total (Additional file 1), for functional
categories. In this file, the coding is “0” for the sites not
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to be significant to discerning the age category, and “1”
for the sites that are significant, marking genes also
found by Numata et al. [13] in bold. Genes overlapping
with these sites are involved in various developmental,
proliferation and differentiation processes, but also in
brain or neuron specific functions and diseases, as
expected. A total of 51 CpG sites only contributed to the
classification of age 0 (discerning fetus from after birth
samples), consistent with the trend that was reported in
the original study [13]. The specific genes associated
with these include ARTN, KMO, KCNAI10, SNRK,
SLC1A7, HAAO, FEV;, CHRD, SPON2, HESX1, OTOF
ELAVL4 and SULTIC2, which are involved in brain and/
or neuron specific processes, as well as SLCIA7, which
is implicated in schizophrenia and other mental illnesses
(http://www.genecards.org). The site annotated to a 5’
UTR region of this gene showed an increase of methyla-
tion level from intermediate to methylated as age in-
creases. A site that changed from unmethylated in fetus
to intermediate in adulthood was located upstream of
FEV, a gene implicated in the pathophysiology of psychi-
atric disorders such as depression, anxiety and eating
disorders. Another site showing the same pattern is lo-
cated in an intron of SPON2, which codes for a protein
promoting adhesion and outgrowth of hippocampal em-
bryonic neurons, as well as a site in the 5" untranslated
region of HESXI, which codes for a transcriptional re-
pressor protein in the developing forebrain. We further
identified genes involved in the regulation of processes
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Fig. 4 Hierarchical clustering of the significant CpG sites obtained
from running MCFS on all two-class decision tables. The distance
between every two significant CpG sets is based on the number of
overlapping sites



http://www.genecards.org/
http://www.genecards.org/

Torabi Moghadam et al. BMC Bioinformatics (2016) 17:393

Page 6 of 10

Table 2 Confusion matrix for the rule-based classifier with four decision classes. The number of samples in each class is shown in

parenthesis

Observed class Classified as
Fetus Age 0-4 Age 5-27 Age 28 plus Accuracy per class
Fetus (30) 30 0 0 0 100 %
Age 0-4 (12) 0 12 0 0 100 %
Age 5-27 (21) 0 2 13 6 62 %
Age 28 plus (45) 0 1 1 43 95.5 %
Model accuracy 90 %

such as cell migration, cell differentiation and cell pro-
gression, namely SI00A1, ARHGAP25 and LIMS?2.

There were 13 sites exclusive to classifying age 1,
which were associated with the genes MSXI, MYLS,
MPG, ACTN3, NAGS, DYDC1-DYDC2, SCN4B, HYDIN,
TST, LFT, CTSZ, EMP3 and NET1. There were fewer
sites involved in classifying older ages (50 years and
above), located in genes such as ANKI, HOXAY,
TMEM61, ATP8A2, TEX264 and TINAGLI. Several
CpG sites were involved in classification of a wide range
of ages, some of which covered well-defined intervals.
For example, the sites associated with NPTX2 (up-
stream), CHRNB4 (intron), RAB42 (intron) and ESRP2
(exon) were reported as significant for all ages between
19 and 60.

Classification into age intervals

Using the Jaccard distance as a measure for the similar-
ity between the calculated significant CpG sites for each
age above 0, we computed a full distance matrix and
applied hierarchical clustering in R (hclust function with
the ‘complete’ method, Fig. 4). There are three distinct
groups comprising age 0 to 4, age 5 to 27, and age 28 to
60, with the latter exhibiting sub-groups within their re-
spective clades. The overall topology also reflects the
trend observed earlier, in that age groups become
broader with increasing age, Following this clustering,
we constructed a four-class decision table based the
classes: ‘fetus, ‘Age 0-4; ‘Age 5-27 and ‘Age28plus’.
MCES identified 71 significant CpG sites on this set, on
which we trained a classifier using ROSETTA. The
resulting model had an accuracy mean of 90 % (expected
NULL model accuracy: 25 %), as measured by 10-fold
cross-validation.

Analysis of the rule models

The model consisted of a set of rules that classify samples
to a decision class according to the values of the signifi-
cant features (see Methods). For further analyzing these
rules, we first filtered by significance (p <0.05), accuracy
(>75 %), and support (at least half the size of the support
set). The top five most significant rules for each of the age
classes are listed in Additional file 2. We tested the sites in

each rule against a multivariate linear regression model,
and highlighted the rules not significant in the regression
in red. As expected, all singleton rules show significance
in linear regression, whereas more than half of the con-
junctive rules do not. Table 2 lists the confusion matrix,
indicating that the classification power for fetus and age
0—4 is higher than the other groups. The fetus class com-
prised all of the singleton rules (see Methods), which is
consistent with marked methylation level changes at birth,
where single CpG sites are indicative for this transition
(Fig. 5). By contrast, the majority of rules classifying the
older age groups comprise were conjunctive, i.e. contain-
ing a combination of sites (Fig. 6).

While the classifier for age 0—4 contained conjunctive
rules with perfect classification power on the data set,
the rule accuracy dropped for both the Age 5-27 and
age 28+ classes, while the number of conjuncts
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IF cg18486150=intermediate AND cg24691453=methylated THEN Age28plus
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increased, indicating that the changes in methylation be-
come less dramatic and have thus less power to discern
the samples by learning from their methylation patterns.
When examining the direction in which methylation
changes, we found that 81 % of the fetus rules showed a
pattern of lower-to-higher methylation when transition-
ing into the next group. The associated CpG sites were
linked to genes involved in cellular development, growth
and proliferation, and neuronal related pathways and
mechanisms. For example, the site (¢g00563926), located
within the TGFBR3 gene, whose decreased expression
has been observed in various cancers [21], showed a
methylation level increase from below 0.2 in fetus to 0.4
in adulthood. A similar pattern was observed for
¢g22930187, upstream of ARTN, which is a member of
the glial cell-derived neurotrophic factor family of
ligands, as was the site cg08965143 upstream of TP53I3,
a gene induced by the tumor suppressor P53, which
increased in methylation levels to 0.5 in adulthood (see
Table 3 for top 10 singleton rules classifying fetus sam-
ples). Sites showing the reverse pattern were associated
with PLEK, PIK3C2B, RD3, KCNAI10O, ACAP3 and
GPR37L1 genes.

The ¢g00548268 site was annotated to the upstream
region of NPTX2. This gene encodes neuronal pentraxin
II (or neuronal activity-regulated pentraxin, Narp),
which is involved in neuritic outgrowth, synapse remod-
eling and the aggregation of neurotransmitter receptors
at synapses [21]. The NPTX2 gene is reported to be

Table 3 List of 10 significant singleton rules classifying fetus
samples

Rule

IF cg01561916(HAAO_upstream) = unmethylated THENfetus’
IF cg11618577(KRTCAP3_exonic) = unmethylated THENfetus’
IF cg18669381(ARHGEF19_UTR5) = unmethylated THENfetus’
IF cg04716261(ACTRT2_upstream) = unmethylated THENfetus'
IF cg16302441(POMC_upstream) = unmethylated THENfetus’
IF cg12467090(PIK3C2B_intronic) = methylated THENfetus’
(
(
(
(

IF cg19740375(SCN5A_intronic) = unmethylated THENfetus’
IF cg24178740(FEV_upstream) = unmethylated THENfetus’
IF cg20289949(HAAQ_exonic) = unmethylated THENfetus'
IF cg07830847(KCNA10_exonic) = methylated THENfetus’

All of these rules are perfect rules with accuracy of 1 and support of 30 (all
fetus samples)
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hypermethylated in tumors, including brain tumors [22]
and in this data showed an increasing pattern from 0.05
towards 0.2 from fetus towards age 5—27 class and up to
0.3 in the age 28+ class. The site annotated to FBXO2
also appeared in the rules with a similar pattern. FBXO2
is related to Alzheimer disease, as it regulates APP pro-
cessing [24].

Rules interactions

We used Ciruvis [19] to investigate the combinations of
the features in the rules. Figure 7 depicts the outcome
for each of the decision classes. Two features (CpG sites)
are connected inside the circle if they co-occur in mul-
tiple rules. The connections are shown as edges between
the nodes. The width and color of the edges reflect the
connection score (low = yellow and thin, high = red and
thick). Table 4 lists the two strongest interactions for all
classes.

Some of these interactions indicate coordinated age-
related changes in methylation of genes involved in the
same biological function or process. For example, gene
TGFBR3 encodes TGF beta-receptor III (also known as
betaglycan) that serves as a co-receptor for other types
of TGF beta-receptors. Conversely, ectodomain shedding
of TGFBR3 produces soluble TGFBR3, which inhibits
TGF beta signaling [24]. In either case, changes in the
expression of TGFBR3 are likely to affect the signaling
through the TGF beta pathway. The other gene listed as
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interacting with TGFBR3, namely CDKNZ2B, encodes
cyclin-dependent kinase inhibitor 2B, which is a potent
inhibitor of the cell cycle. In epithelial cells, CDKN2B is
known to be induced by TGF beta [25]. The link be-
tween TGFBR3, CDKN2 and the cell cycle is likely rele-
vant to the aging brain, as TGF beta stimulates
proliferation of microglia [26], brain resident macro-
phages, which play important role during aging.

Another strong interaction lists gene TP73 together
with HAPLN2. Gene TP73 encodes the tumor protein
73, a member of the p53 family of transcription factors,
with a role in neuronal differentiation and hippocampal
development [27]. Its deficiency results in impaired self-
renewal and premature differentiation of mouse neur-
onal progenitors [28]. TP73 is also a major survival fac-
tor for postmitotic neurons [30]. Gene HAPLN2 encodes
brain-specific hyaluronyan and proteoglycan link protein
2. This protein in the cerebellar cortex is produced by
neurons and localizes in the perineural net [30].
HAPLN? also localizes at the nodes of Ranvier in the
myelinated regions of the developing central nervous
system [31], where it plays a role in the formation of the
cation diffusion barrier, important for the conduction
velocity [32]. The processes of neuronal differentiation
and formation of the myelin sheet are related, which
may explain why the genes interact.

Several of the genes appearing in other interacting
rules have been previously individually associated with
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Table 4 Top two strongest interactions for different decision classes

Interactions Class
€g00563926(TGFBR3) = unmethylated AND cg23283495(IRF6) = unmethylated Fetus
€g00563926(TGFBR3) = unmethylated AND cg10210238(CDKN2B) = unmethylated Fetus
€g05924583(TP73) = unmethylated AND cg27138018(HAPLN2) = intermediate Age 0-4
€g27138018(HAPLN2) = intermediate AND cg09492887(SLC26A5) = unmethylated Age 0-4
€g24691453(S100A4) = intermediate AND cg00548268(NPTX2) = unmethylated Age 5-27
€g02525756(RAB42) = unmethylated AND cg06144905(PIPOX) = intermediate Age 5-27
€g24691453(S100A4) = methylated AND cg20264732(ESRP2) = intermediate Age 28plus
cg07011110(intergenic: LOC285819, BTN1AT) = methylated AND cg20264732(ESRP2) = intermediate Age 28plus

aging. The methylation of NPTX2 was found to
correlate with the chronological age, with older indi-
viduals having enhanced methylation [34]. The gene
ESRP2, appearing in two rules for the ‘Age 28plus’
class, controls adult-specific splicing program in
mouse hepatocytes [34]. The gene S100A4, which
encodes the S100 calcium binding protein A4 and is
involved in the regulation of neuritogenesis and neur-
onal survival [35], was previously identified to be reg-
ulated in a telomerase-dependent way [36].

Conclusions

We applied machine learning techniques to identify
genes that contain CpG sites that change in methylation
levels or patterns at particular boundaries over life span.
Our approach does not aim at developing a classifier of
age itself - there are other methods that can predict age
using the methylation status [12—37] - but rather it in-
troduces a method to explore which combinations of
CpG sites and associated genes contribute to changing
patterns at the given boundaries and methylation levels
as the age change. Not surprisingly, changes in methyla-
tion were most pronounced at birth, as has been re-
ported earlier [13], resulting in comprehensive singleton
rules using our approach. Conjunctive rules, i.e. rules
that associated more than one CpG site and its methyla-
tion status with an age class, showed the combinatorial
role that methylation may play in more interconnected
ways. Our results reported that the patterns of methyla-
tion changes in a healthy individual’s brain were highly
complex and interdependent. While we confirmed 33
genes related to aging or involved in diseases, notably
cancer, Alzheimer’s disease, and autism, that have been
reported in the original study [13], we identified a num-
ber of additional genes, many of which are linked to de-
velopmental and/or nervous systems specific function.
In conclusion, we expect that future studies will
adopt our, or a similar machine learning approach to
test these hypotheses by utilizing a multivariate ana-
lysis to compile a network of candidate CpG sites and
associated genes.
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