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Introduction
The top-down goal this paper is synthesis of biologi-
cal models that cogently explain and predict experi-
mental data with simple and parsimonious use of 
mathematical equations and parameters. Pursuit of 
this goal has led to description of a linear dynamical 
system model that has a type of qualitative stability, 
a topic of theoretical interest in itself. The bottom-up 
goal, regarding our particular line of cell biology 
research, is to reveal from cell cultures the patterns of 
disturbance of cell cycle stages after exposure to ion-
izing radiation with the sequential timing and recov-
ery rates of checkpoint arrests activated by responses 
to DNA damage.

More specifically, our top-down discovery is that 
a certain linear design for models of cell cycling 
is inherently stable in the sense that all trajectories 
(with initially positive values) must asymptotically 
approach one particular trajectory, namely, the tra-
jectory that amounts to simple exponential growth as 
cells proliferate. We make use of the basic plan of cell 
cycling with four stages called G1 (gap 1, the state 
of cells that are metabolically active but not divid-
ing), S (synthesis of new DNA), G2 (a second gap in 
the division cycle wherein cells have double copies of 
normal DNA molecules), and M (mitosis, the division 
of the cell and formation of two new cells in G1).

The topological consequence of the basic equa-
tions (patterns of signs of matrix entries as well as 
quantiative equality of pairs of entries) is that, given a 
particular but arbitrary choice of system coefficients, 
all trajectories with initially feasible (nonnegative 
and at least one positive) populations of cell cycle 
stages must converge to a common, exponentially 
increasing trajectory. Technically this means that all 
eigenvalues except one of the system matrix are guar-
anteed to have negative real parts, just by the layout 
of matrix entries; the exceptional eigenvalue must 
be real and positive. The common, exponentially 
increasing trajectory, called herein a canonical trajec-
tory, describes a ray from the origin of four-space into 
the positive orthant.

Once a linear model captures canonical tra-
jectory dynamics, it can be made nontrivial and 
highly nonlinear by addition of effects of ionizing 
radiation. That is, certain allowable functions will 
be used to describe transient reductions in the coef-
ficients of rates of transfer from one stage to the next. 

The allowable functions are simple but sufficiently 
flexible to enable accurate, automatic approximations 
of  experimentally determined effects of  DNA damage 
and repair in cells.

The bottom-up discoveries are the necessary 
sequences and intensities of checkpoint arrests (par-
tial or complete cessation of transfer of cells from 
one stage the next) for a successful model of cell 
cycle dynamics with DNA damage response.1–3 Cell 
cycle checkpoints represent natural points of control 
that ensure the proper order of cycle events, stabilize 
stalled or arrested DNA replication forks, activate 
apoptosis, and provide increased time for repair of 
DNA damage before DNA replication and mitosis. 
The importance of cell cycle checkpoints includes 
protection against carcinogenesis. A cell that fails to 
repair damaged DNA in a timely manner can be sig-
naled to undergo apoptosis (cell suicide). Failure of 
this DNA quality assurance machinery can be the first 
step in development of a tumor. Thus understanding 
cellular DNA quality control is of great importance 
in oncology.

In more detail, Bartkova et al4 reported that early 
precursor lesions in several tumor types commonly 
expressed markers of an activated DNA damage 
response. Gorgoulis et al5 reported hyperplasias show-
ing allelic imbalance at loci that are prone to DNA 
double-strand break formation (at common fragile 
sites), and proposed that, from its earliest stages, 
cancer development is associated with DNA replica-
tion stress, leading to DNA double-strand breaks and 
genomic instability.6 Thus defects at cell cycle check-
points have been associated with uncontrolled growth 
and accelerated carcinogenesis.7 It is therefore imper-
ative to understand the mechanisms of DNA surveil-
lance and repair functions and their failures during 
multistage development of cancer.

An early cell cycle model of Smith and Martin8 used 
a simple transition probability for cells leaving G1 to 
undergo division. Subsequent models used two transi-
tion events to better fit experimental data. However, 
Boyd9 found unavoidable discrepancies between 
experiments and transition models, and so devised a 
model based only on the assumption that the cell cycle 
is an ordered, deterministic sequence of chemical reac-
tions. In parallel, other approaches have been explored 
using queuing theory or stochastic processes.10 At each 
time step the material in one compartment is transferred 
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according to a transition probability to the next 
compartment in a linear or circular processing system 
(arrival-departure or birth-death modeling). Indeed, 
we investigated hybridization of the two approaches 
to allow for substages such as early G1, late G1, etc, 
but we found that doing so added complexity (con-
trary to the top-down goal) and contributed little to 
quality of approximations of experimental data (con-
trary to the bottom-up goal). Thus the present paper 
reflects only the chemical reaction approach of Boyd. 
In its favor, Boyd’s model was shown to fit data for 
the subsequent dynamics of a cell population fol-
lowing synchronization in G1 as well as the case in 
which all cells are initially distributed through the cell 
cycle but are subsequently prevented from leaving M.9 
Furthermore, Boyd’s cell cycle model type has been 
more recently used in the application of engineering 
control theory to the important problem of scheduling 
fractionated cancer radiotherapy.11

Regarding other types of sophisticated approaches, 
a number of cell cycle models have been developed 
that employ saddle-node bifurcations, investigating 
the view that cell cycling arises from bistable tog-
gling. The seminal and representative work of Tyson 
et al12–14 includes dynamical systems and bifurcation 
diagrams. In a model employing Hopf bifurcations, 
Qu et al15 considered some 13 signal species, proposed 
certain forms of differential equations, and listed 31 
rate constants to construct a generic cell cycle model. 
Their dynamical system included positive and nega-
tive feedbacks that combine to exhibit limit cycle 
behavior. Pomerening et al devised a model cell cycle 
oscillator that exhibits hysteresis and bistability in the 
activation of Cdc2.16

These and other models explain why cells cycle; 
another approach is to assume that cells do cycle in 
accord with mass action kinetics and coefficients of 
transfer among the cell cycle stages that vary according 
to cell treatments as fundamental variables (ignoring sig-
nal species). A notable example is the model of Ubezio 
et al17 in which stages are subdivided by time (half-hour 
age classes), each with a coefficient giving the probabil-
ity of advancing to the next stage. Their model success-
fully captured experimentally observed arrest in G1 as a 
response to low doses of several chemotherapy agents.

The model in the present paper employs only the four 
basic stages and transfer coefficients that are assumed 
to vary in response to treatment by ionizing radiation. 

Specifically, the coefficients drop, after tuneable time 
delays, to tuneable low levels, remain at the low lev-
els for tuneable intervals, then exponentially recover 
to pre-treatment values. We find that, depending upon 
competence of checkpoint mechanisms, automatic 
computation of good fits of published experimental 
data generate checkpoint response curves with cogent 
interpretations. Thus fitting data of cell stage popula-
tions automatically and correctly predicts checkpoint 
behaviors described in the literature.

Our focus is on how in cellular response to ioniz-
ing radiation (IR)-induced DNA damage is reflected 
in some generalized manner by changes in transfer 
coefficient functions. The general shape of allowed 
coefficient functions is shown in Figure 1.

We also appled the same model template to data 
from IR-induced responses in two other types of cells, 
namely, cells with somatic mutations that compro-
mised p53 functions (allowing no impact of treatment 
on the G1/S rate) or compromised ATM functions 
(allowing reduced impact of treatment on the G2/M 
rate). These mutations of tumor cells occur frequently 
in melanoma. Fitting experimental trajectories anew 
required quantitative but not qualitative adjustments 
in the rate coefficient functions for G1/S, G2/M, and 
M/G1. Importantly, we found that few parameters must 
be tuned to accommodate the three types of experi-
mental data points. Furthermore, the adjustments are 
clearly intrepretable in terms of successes or failures 
of known DNA damage response mechanisms.

Convenient computer models for all of the three 
cases are included in the supplement. Any interested 
reader can open and run them to observe the stated 
convergence.

Fitting Models and Experimental Data
In difference equation format for cells populating G1, 
S, G2, and M, the Boyd model9 can be represented by 
equation (1).

G1(t + Dt) = G1(t) + (2R4M(t) − R1G1 (t))Dt 
S(t + Dt) = S(t) + (R1G1(t) − R2S(t))Dt 
G2(t + Dt) = G2(t) + (R2S(t) − R3G2(t))Dt 
M(t + Dt) = M(t) + (R3G2(t) − R4M(t))Dt

	 (1)

This is an application of mass action kinetics model-
ing18 to idealized, exponential growth of proliferating 
cells. Senescent sequestration, apoptosis, and other 
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mechanisms of cell removal from the proliferating 
population are not presently considered.

The rate at which cells depart a phase is the prod-
uct of the population of cells in that phase with a coef-
ficient; the coefficient in pre-treatment is assumed to 
be a constant and in post-treatment, a variable. The 
rate of change of untreated total T(t) cell count fits 
equation (2).

	 T(t + Dt) = T(t) + (εT(t))Dt	 (2)

where ε is a doubling rate constant. Thus if the sys-
tem given by equations (1, 2) starts with cells in equi-
librium proportions, then the fractions G1(t)/T(t), 
S(t)/T(t), G2(t)/T(t), M(t)/T(t) should remain at those 
proportions until treatment.

In the system (1), the {Ri} constants are constant 
rate coefficients that must be computed to achieve a 
given doubling rate and the four stage proportions. 
The number 2 in the first line of (1) reflects doubling 
as cells complete the mitosis phase. Thus (1) is a 
very simple model that captures exponential growth. 
By computer experiment, we found that sufficient 
numerical stability and accuracy of our models could 
be achieved by updating stages every 0.25 hours (h).

The untreated immortalized human fibroblasts in 
data forming the basis of this study were observed to 

double in cell number every ∼24 h during exponential 
growth.19 Suppose the initial total number T(0) of 
cells that double in 24  hours is normalized to one 
unit, and that typical fractions prior to treatment are 
determined from data to be as in (3).

	 G1 = 0.55, S = 0.34, G2 = 0.095, M = 0.021	 (3)

These data are representative values.19

To achieve doubling in 24 h with Dt = 0.25, equa-
tion (2) requires ε = 0.0145. This requirement plus the 
four equations in (1) lead to the matrix equation in 
(4) where {Ri} are per hour rate coefficients and the 
updates are every 0.25 hour.
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The linear system (4) is solved by R1  =  0.077, 
R2  =  0.096, R3  =  0.314, R4  =  1.389. These are the 
default values of our model that ensure, in the absence 
of treatment, a doubling period of 24 h and the four 

Treatment      Onset  of          Recovery Asymptotic approach 
at hour 0        effects            initiation          pre-treatment value

Severity of 
arrest

Rate of asymptotic approach 
to pre-treatment value

Pre-treatment
value

Figure 1. General form of a coefficient function considered to manifest response to stressful treatment and post-treatment recovery. The arrows indicate 
the types of flexibility allowed. Onset of effects can be at a variable time after treatment (blue double-ended arrow), and the coefficient is assumed to 
fall to zero or an adjustable positive value (orange arrow). The coefficient can begin recovery at the next time step or later (gray arrow). The exponential 
asymptotic approach rate to the pre-treatment level is a fourth variable.
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constant proportions in (3). By direct substitution, a 
solution of (4) is automatically a solution of (1) in 
which every stage variable grows exponentially. Thus 
selection of four rate coefficients enables fitting of 
five criteria.

The stability of (1) can be described as follows. 
All four components of the default trajectory with 
constant proportions increase exponentially, reflect-
ing instability in that sense. However, it can be shown 
that perturbing initial conditions from those propor-
tions to other positive values and using sufficiently 
small Dt always results in asymptotic approach to the 
canonical trajectory (24-hour doubling of populations 
with chosen proportions). In fact, the very form of 
system (1) will be shown to be “qualitatively stable” 
in the sense that using any positive doubling period 
and any long-term proportions inevitably results in 
a model exhibiting asymptotic approach to such a 
default, canonical trajectory.

Regarding the effects of IR treatment, our start-
ing point was distillation of experiments reported 
by Zhou et  al19 shown graphically as “irradiated” 
experimental data within Figure 2 (numerical data in 
Table 1).

The parameters of Figure  1 for each check-
point must be tuned so that the model trajectories 
approximate the experimental values. Our definition 
of optimal approximation is as follows.

Optimal Approximation is achieved in general by starting 
with default, untreated parameters for all four rate coef-
ficients. However, we discounted the S/G2 checkpoint, 
leaving 12 parameters to tune. We found that a time 
step of 0.25 h yielded stable, smooth-appearing trajec-
tories. Smaller time steps are certainly possible but in 
our experience not beneficial. The quality of approxi-
mation is simply the sum of all the absolute values up 
to 24 hours of the differences of model values versus 
experimental values for G1, S, G2, M.
Initially all three rate coefficient functions are very 
simple: they drop to zero at time zero and stay at zero 
for the duration of 24 h. In a type of gradient descent 
approximation, all 12 parameters are thereafter allowed 
to change by a small, random amount. If such a step 
results in an improved (lower) error sum, then the new 
values for rate coefficients are kept; else, fresh random 
perturbations are selected. The descent terminates 
when many consecutive steps (such as 100) never 
result in a significant improvement in the sum. 

The spreadsheets in the Supplement allow conve-
nient, automatic implementation of this algorithm. 
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Figure 2. Optimal approximation of model versus experiment for cells irradiated at time = 0. The model curve for G2 at times 2 h and 6 h is much smaller 
than the experimental value, but as noted in the text, it does not seem theoretically possible for experimental G2 at 2 hours to be more than 1.46 (shown 
as black square in model and irradiated graphs). Otherwise, model and experiment are in agreement. The sequence of arrests is G2/M, then G1/S, then 
M/G1. This sequence is absolutely essential to the quality of approximation. Also, G1/S arrest is not followed by any recovery for the duration of the experi-
ment (24 h), again necessary for optimal approximation. 
A convenient representation of this model is Model 1 in the Supplement.
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Much more sophisticated approaches such as those 
described by Ljung20 were not needed but could be 
used in more elaborate models.

The results of seeking an Optimal Approximation 
for the data for irradiated cells with fully functional 
checkpoints19 are shown in Figure 2.

The fundamental state variables in Figure  2 
were the ratios of phases of treated cells relative 
to untreated cells; hence prior to treatment the 
four variables were all 1. Two hours after irradia-
tion the proportion of cells in G2 rose relative to 
G2  in untreated cells and the percentage of cells 
in M fell as the mitotic compartment emptied 
behind the closed G2 checkpoint. By 6 h after 
irradiation, the accumulation in G2 persisted and 
the G2 checkpoint recovered somewhat, allowing 
refilling of the mitotic compartment. Meanwhile 
the S phase compartment decreased downstream 
of the closed G1 checkpoint. By 12 h after irra-
diation the S phase compartment emptied severely 
and the G2 compartment was returning to the pre-
treatment value. At 24 h after treatment a second-
ary reduction in M reflected emptying of the mitotic 
compartment due to the earlier emptying of the 
S compartment.

Visually speaking, the main shortcoming of the 
model trajectories is the failure of approximation 
of G2 at 2 hours. However, from (1), even if influx 
to G2 remained at untreated levels and efflux from 
G2 were zero, the G2 curve could only grow to a 
value of 1.46 (the black square), not 2.56 as shown 
in the experimental data. Hence experimental data 
for G2 at 2  hours might be questioned. Replicate 
experiments with two other human fibroblast lines 
yielded values for G2 at 1.59 and 1.78, further 
implying an anomalous response in the index fibro-
blast line.

The results shown in Figure 2 demonstrate that 
the model can approximate the empirical data to a 
high degree of concordance. The approximation was 
dependent upon simple alterations in transition rate 
coefficients for G1/S, G2/M and M/G1 of the type 
in Figure  1. Radiation-induced G1 and G2 check-
point responses are well-understood and kinetic 
behaviors of the transition rate constants shown in 
Figure 2 are qualitatively as expected. The G1 to S 
transition is regulated by ATM- and p53-dependent 
induction of the cyclin-dependent kinase inhibitor 
p21  Waf1. Recovery from G1 arrest is dependent 
upon repair of DNA double-strand breaks, inactiva-
tion of p53 by dephosphorylation and proteolysis, 
and proteolysis of p21  Waf1. The G2 to M 
transition is regulated by ATM-dependent (but p53- 
independent) inhibition and cytoplasmic sequestra-
tion of cyclin B1/Cdk2. Recovery from G2/M arrest 
is dependent upon repair of DNA double-strand 
breaks, recovery of Cdc25C phosphatase activity, 
and activation of Plk1.

The Optimal Approximation of the empirical data 
also required that IR-treated cells experience a delay 
in progression from M to G1. This delay in comple-
tion of mitosis was not immediate but occurred after 
an ∼4 h delay. Thus, the delay did not occur in IR-
treated M phase cells, but in cells that were in G2 
or late S when irradiated. Consistent with this, DNA 
damage has been reported to trigger a delay in pro-
gression through mitosis.21,22

Linear Model with Qualitative Stability
Verbal reasoning alone cannot enable understand-
ing of the vast complexities of cell cycle regulation. 
Thus some researchers have advocated a strong role 
for matrix algebra in deduction of genetic networks, 
possibly becoming a foundation of a future in which 
biological systems are modeled as physical systems 
are today.23 At any rate, the purpose of this section is 
application of matrix stability theory to the problem 
of construction of informative, testable models of the 
impact of IR on cell cultures.

As shown by the Theorem below, the system (1) 
is qualitatively stable, meaning that starting at other 
nonnegative cell cycle proportions always results in 
asymptotic approach to the same equilibrium pro-
portions, all as determined by {Ri}. For example, 

Table 1. The ratios of cell counts in G1, S, G2 and M at 
various times after irradiation (1.5 Gy) of human fibro-
blasts expressed relative to the corresponding phases in 
the sham-treated control population.19

G1 S G2 M
2 h 0.65 0.98 2.63 0.06
6 h 1.06 0.37 2.56 1.18
12 h 1.60 0.15 0.80 0.37
2 4 h 1.62 0.19 0.63 0.17
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if cells in the explicit model (4) we employed were 
initially synchronized in G1, then with time the 
equilibrium proportions would resume (in fact to 
within one part in 100 after 23.25 hours, data not 
shown).

Generally, those system models with consistent, 
qualitative behavior are favorably represented in 
nature, such as the damped harmonic oscillator in all 
its physical forms and ecosystem energy flow mod-
els with complex but orderly graph topology.24 This 
lends general credibility to the study of qualitatively 
stable systems.

The generalized dynamical system version of (1) 
is a linear system with the 4-by-4 Jacobian matrix F 
relative to the exponential trajectory as shown in (6):
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Theorem. Regardless of choice of positive {Ri} 
values, all trajectories of dX/dt  =  FX with initially 
positive values must asymptotically approach an 
exponentially increasing trajectory with components 
in constant proportions.

Proof. Background concepts in this proof may be 
found in introductory texts that connect linear algebra 
and dynamical systems.25

The chararcteristic polynomial of (6) is

x4 + (R1 + … + R4)x
3 + (R1R2 + … + R3R4)x

2  

  + (R1R2R3 + … + R2R3R4)x − R1R2R3R4	 (7)

In particular, the determinant of (6) is—R1R2R3R4 , 0. 
No eigenvalue for any choice of (positive) {Ri} can 
be zero because that would force the determinant to 
be zero. Futhermore the four eigenvalues cannot all be 
purely imaginary for any choice of {Ri} because that 
would force the determinant to be positive. It follows 
that for all choices of {Ri} at least one eigenvalue must 
be real and positive (denoted λ) and at least one must 
be real and negative (denoted −µ).

Suppose the existence for some choice of {Ri} the 
roots of (7) are λ, −µ, and a purely imaginary pair ± iβ. 

Without loss of generality, we may assume β = 1. It 
follows that the characteristic polynomial is

x4 + (−λ + µ)x3 + (1 − λµ)x2 + (−λ + µ)x −λµ	 (8)

Equating the coefficients in (7) and (8) shows 
that λµ = R1R2R3R4 and −λ + µ = R1 + R2 + R3 + 
R4 = R1R2R3 + R1R2R4 + R1R3R4 + R2R3R4. Also,  
1 = R1R2R3R4 + R1R2 + … + R3R4. These values imply 
that R1R2R3 + … + R2R3R4 = (R1 + … + R4) (R1R2R3R4 
+ R1R2+ … + R3R4), an equation impossible to solve 
with all positive {Ri}. Thus there can be no purely 
imaginary eigenvalue of the matrix in (6).

In the case that all {Ri}  =  1, the eigenvalues of 
(6) are approximately 0.19, −2.19, and −1.00 ± 1.19i. 
In particular one is positive and the other three have 
negative real parts. Since the eigenvalues of a matrix 
are the roots of its characteristic polynomial, since the 
roots are continuous functions of matrix coefficients, 
and since as {Ri} vary the eigenvalues cannot assume 
values on the imaginary axis, it follows that for all 
choices of {Ri} there must be one positive and real 
eigenvalue and the other three must have negative 
real parts.

For any choice of {Ri}, the trajectories of the linear 
system with matrix (6) must be linear combinations 
of the eigentrajectories, three of which exponentially 
approach the origin of four-dimensional space and one 
that, if initially in the postive orthant, exponentially 
increases. This establishes in the positive orthant the 
existence of a unique, global attractor trajectory that 
exponentially accelerates along a ray in the positive 
orthant. QED

Regarding computation of the {Ri} from any 
positive four cell cycle stage proportions and 
any doubling rate, all 16 entries in the inverse of 
any matrix of the form (6) can be shown to be posi-
tive, so the generalization of (4) always has a posi-
tive solution.

Model Verification by Use of Data on 
Cells with Compromised Checkpoints
Upon observation of Figure 2, we hypothesized that 
irradiation effects in cells with compromised check-
points would be captured by a simple alteration of 
parameters in Figure 1. Thus we next considered the 
outcome of irradiation of cells with p53 inactivation 
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as described by Simpson et al.26 The data were again 
for 2, 6, 12, and 24 hours post-treatment (Table 2). 
Optimal approximation was achieved with nearly 
complete inactivation of G1/S for the full 24 h as 
shown in Figure 3.

The immediate G2 checkpoint response to IR was 
p53-independent, as reflected in the severe emptying 
of the mitotic compartment at 2 h post irradiation and 
the accumulation of G2 cells 2 h and 6 h after irra-
diation. Because the S phase did not empty behind 
the G1 checkpoint, and the recovery from the G2 
checkpoint was rapid; the secondary emptying of the 
mitotic compartment seen in the control cells at 24 h 
(Fig. 2) did not occur in p53-defective cells. The good 
fit of the data again required an IR-induced delay in 
the M to G1 transition. Thus, in this model the empir-
ical data (16 data points) were well fitted by tuning 
only seven parameters. Data are shown in Table 2.

Next we considered the outcome of ATM 
inactivation. ATM is required for both G1 and G2 
checkpoint responses to IR.27 The data were for 
2, 6, 12, and 24 hours post-treatment of skin fibroblast 
lines from patients with ataxia telangiectasia (AT).27

ATM is known to phosphorylate and activate 
p53  so the normal emptying of the S compartment 
at 6 and 12 h was expected to be severely attenuated. 
Similarly, ATM is required for the G2 checkpoint, so 
blocking by G2/M was also expected.

The inhibition of mitosis in Figure  4 was 
associated with a significant and prolonged accu-
mulation of irradiated AT cells in G2, a phenom-
enon that is well described in the literature28 and 
probably reflects signaling by other PI-3-like check-
point kinases, ATR and DNA-PK. ATM and ATR 
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Figure 3. Optimal approximation of model to experiment for cells with G1/S disabled. The model fits the irradiated cell data well with changes in G2/M 
and M/G1 transition rates. 
A convenient representation of this model is Model 2 in the Supplement.

Table 2. The ratios of cell counts in G1, S, G2 and M at 
various times after irradiation (1.5 Gy) of p53-defective 
fibroblasts expressed relative to the corresponding phases 
in the sham-treated control population. p53 function was 
inactivated by stable expression of a dominant-negative 
p53 allele (p53-H179Q).26

G1 S G2 M
2 h 0.80 1.01 1.85 0.10
6 h 0.88 0.84 1.96 1.67
12 h 1.12 0.87 0.89 1.17
24 h 1.00 1.00 1.00 1.00
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Figure 4. Optimal approximation of model to experiment for AT cells with inactivation of ATM. The model and experiment are in good agreement. Note that 
in contrast to the previous example in Figure 3, G2/M and M/G1 are arrested completely. 
A convenient representation of this model is Model 3 in the Supplement.

share substantial overlap in substrate specificity 
and both kinases are known to cooperate to enforce 
the G2 checkpoint.29 The delayed reduction in the 
S compartment in irradiated AT cells may reflect a 
secondary effect of the prolonged G2 accumulation. 
Data are shown in Table 3.

The model trajectories automatically approxi-
mated the empirical data with good concordance. 

The alterations in the transition rate constants that 
supported the model trajectories suggested that ATM 
may influence the rate of recovery from checkpoint 
responses more than the initial induction of the 
checkpoint response.

Conclusions
This paper has applied modeling strategies to attempt 
to surmise DNA damage checkpoint responses in nor-
mal human fibroblasts.

In response to DNA damage, G1/S, G2/M, and 
M/G1 phase transitions were inhibited. A good fit of 
experimental data was obtained by dropping the coef-
ficient to a low value (possibly zero) after a time delay 
(possibly zero), and holding the coefficient at the low 
value for a time interval (also possibly zero or for 
the duration of the experiment). The coefficient was 
then allowed to recover by exponentially converging to 

Table 3. The ratios of cells in G1, S, G2 and M at various 
times after irradiation (1.5 Gy) of AT fibroblasts expressed 
relative to the corresponding phases in the sham-treated 
control population.27

G1 S G2 M
2 h 0.92 1.05 1.20 0.52
6 h 0.82 0.96 2.58 0.65
12 h 0.82 0.58 3.89 0.69
24 h 0.98 0.36 3.11 0.86
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its pre-treatment value. This approach captured many 
aspects of the experimental data with parsimonious 
selection of non-default parameters, a hallmark of 
successful models of complex systems.

In all simulations, the initial coefficient functions 
for G1/S, G2/M, and M/G1 simply dropped to a value 
of zero at time zero and stayed at zero for the duration 
of 24 h. The model automatically restored nonzero 
values as shown in our figures.

The model generated the expected post-irradiation 
delays in G1/S and G2/M, as induced by the G1 
and G2 checkpoints, respectively. The model did 
not require a change in the S to G2 transition rate to 
model cell proliferation successfully. Although the 
1.5 Gy dose of IR that was tested is known to inhibit 
replicon initiation in S phase cells, the inhibition is 
only partial and appears to decay to zero within a few 
hours of irradiation.30 Thus, although cells experience 
a transient delay in progression through S after treat-
ment with 1.5 Gy IR, the overall rate of progression 
from S to G2 may vary little from the control.

The model also included a delayed induction of 
a M/G1 arrest. IR has been demonstrated to induce 
a delay in the metaphase to anaphase transition that 
would slow M/G1 progression.21,22 This metaphase 
delay was found to be independent of p53 and ATM, 
consistent with the results shown here in which an 
M/G1 delay contributed to the IR-induced changes in 
cell cycle compartments in cells with defective ATM 
and p5321 The IR-induced metaphase-to-anaphase 
delay appears to depend upon Plk1, a kinase that is 
required for completion of mitosis.21 ATM is known 
to inhibit Plk1 kinase so it is possible that ATM sig-
naling to inhibit Plk1 could expand the time that cells 
require to transition from metaphase to anaphase.31 
Although Plk1 is not required for the G2/M transi-
tion in the absence of DNA damage, it is required 
for the recovery from the prolonged IR-induced 
G2 arrest that is triggered after much higher doses 
of IR than that used here.32,33 Another study has 
demonstrated that the delay in the metaphase-to-
anaphase transition after high levels of DNA dam-
age included signaling through the Mad2-dependent 
spindle damage checkpoint that regulates activation 
of the anaphase-promoting complex to trigger the 
metaphase-to-anaphase transition22 In our model, 
the IR-induced delay in the M/G1 transition did not 
occur until after the irradiated mitotic cells had left 

mitosis and entered G1. Seemingly, during the IR-
induced G2 arrest, changes in cellular biochemistry 
alter the requirements for mitotic entry and exit after 
repair of the DNA damage and inactivation of the G2 
checkpoint.

The value of a good model is in part determined 
by its ability to generate new hypotheses. The results 
presented here suggest that it would be fruitful to 
quantify the timing of progression through mitosis in 
human fibroblasts following treatment with IR when 
in S or G2.

The severe attenuation of activation of p53 in AT 
cells34,35 explains the inactivation of the G1 arrest. 
ATM has been shown to accelerate the metaphase- 
to-anaphase transition consistent with the model’s pre-
diction that the recovery of the M to G1 transition rate 
in IR-treated cels was delayed in AT cells with defective 
ATM function.36 AT cells presented prolonged G2/M 
mitotic arrest. Remarkably, while ATM appears to be 
stringently required for the immediate G1 arrest in 
human fibroblasts, it is only partially required for the 
immediate G2 arrest. ATM-independent checkpoint 
responses to IR-induced DNA damage include conti-
butions from ATR and DNA-PK, and both kinases have 
been implicated in the G2 checkpoint response.29,32,37 
ATM may cooperate with ATR and DNA-PK to 
recover from the G2 and mitotic arrests. DNA-PK is 
activated rapidly after IR-induced DNA damage as 
its Ku regulatory subunit finds and binds with high 
avidity to DNA double strand breaks.29 ATR is acti-
vated through processing of the DNA double-strand 
break by the Mre11/Rad50/Nbs1 complex38 DNA-PK 
is required for repair of DNA double-strand breaks by 
the non-homologous end-joining pathway.39–41 Fur-
thermore, ATM appears to be required for repair of 
DNA double-strand breaks through activation of the 
BRCA1-dependent recombinational repair pathway42 
and through a KAP1/HP1-dependent pathway for 
remodeling of heterochromatin.43 Thus, inactivation 
of ATM in AT cells may impair repair of DNA dou-
ble-strand breaks and sustain G2 checkpoint signaling 
through ATR and DNA-PK.

Regarding future work, we note the recent paper 
of Fernet et al44 describing two molecularly distinct 
G2 arrest mechanisms. Whether or not a cell is in G2 
during treatment with ionizing radiation determines 
which of the two G2/M checkpoints it encounters. 
This finding parallels our view that that checkpoint 
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responses may vary according the cycle phase in 
which damage occurs and that M/G1 delay does 
not occur in M cells (under the conditions studied 
in this paper) but rather in cells that were in S or 
G2 when damaged (the delay of about four hours 
in M/G1 response in Fig 2). Capturing the dynamic 
responses reported and analyzed by Fernet et  al 
might be accomplished with two models much like 
the one in this paper that are linked to allow mingling 
of cells distinguished at irradiation by membership 
or not in G2.

In summary, we have found that the IR-induced 
changes in progression through the various phases 
of the cell cycle can be modeled successfully using 
a computational approach. The model emphasizes 
that DNA damage checkpoint responses include ini-
tial time-dependent signaling events to delay or arrest 
cycle phase transitions and secondary time-depen-
dent signaling events to recover from the arrest and 
resume the transitions. This computational model will 
be developed further to incorporate rates of repair 
of DNA damage and to estimate the burden of rep-
lication of damaged DNA in carcinogen-treated cell 
populations.

Abbreviations
IR, ionizing radiation; T(t), the total cell count at 
time t; {Ri}, for i = 1,2,3,4 four rate coefficients that 
are constant in untreated cells but functions of time t 
in IR-treated cells.
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