
Research Article
Analyzing Big Data with the Hybrid Interval
Regression Methods

Chia-Hui Huang,1 Keng-Chieh Yang,2 and Han-Ying Kao3

1 Department of Business Administration, National Taipei University of Business, No. 321, Section 1, Jinan Road,
Zhongzheng District, Taipei City 100, Taiwan

2Department of Information Management, Hwa Hsia Institute of Technology, No. 111, Gongzhuan Road,
Zhonghe District, New Taipei City 235, Taiwan

3Department of Computer Science and Information Engineering, National Dong Hwa University,
No. 123, Hua-Shi Road, Hualien 97063, Taiwan

Correspondence should be addressed to Chia-Hui Huang; leohkkimo@gmail.com

Received 19 May 2014; Accepted 7 July 2014; Published 20 July 2014

Academic Editor: Jung-Fa Tsai

Copyright © 2014 Chia-Hui Huang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Big data is a new trend at present, forcing the significant impacts on information technologies. In big data applications, one of
the most concerned issues is dealing with large-scale data sets that often require computation resources provided by public cloud
services. How to analyze big data efficiently becomes a big challenge. In this paper, we collaborate interval regression with the
smooth support vector machine (SSVM) to analyze big data. Recently, the smooth support vector machine (SSVM) was proposed
as an alternative of the standard SVM that has been proved more efficient than the traditional SVM in processing large-scale data.
In addition the soft margin method is proposed to modify the excursion of separation margin and to be effective in the gray zone
that the distribution of data becomes hard to be described and the separation margin between classes.

1. Introduction

Big data has become one of new research frontiers. Generally
speaking, big data is a collection of large-scale and complex
data sets that it becomes more difficult to process using
current database management systems and traditional data
processing applications. In 2012, Gartner Inc. gave a defini-
tion of big data as “Big data is high volume, high velocity,
and/or high variety information assets that require new forms
of processing to enable enhanced decision making, insight
discovery and process optimization” [1]. The trend of big
data sets is due to the additional information derivable from
analysis of a single large set of related data, as compared to
separate smaller sets with the same total amount of data.

One of the major applications of the future parallel,
distributed, and cloud systems is in big data analytic [2–5].
Most concerned issues are dealing with large-scale sets which
often require computation resources provided by public cloud

services. How to analyze big data efficiently becomes a big
challenge.

The support vector machine (SVM) has shown to be an
efficient approach for a variety of data mining, classification,
analysis, pattern recognition, and distribution estimation
[6–14]. Recently, using SVM to solve the interval regres-
sion model [15] has become an alternative approach. Hong
and Hwang [16] evaluated interval regression models with
quadratic loss SVM. Bisserier et al. [17] proposed a revisited
fuzzy regression method where a linear model is identified
from Crisp-Inputs Fuzzy-Outputs (CISO) data. D’Urso et al.
[18] presented fuzzy clusterwise regression analysis with LR
fuzzy response variable and numeric explanatory variables.
The suggested model is to allow for linear and nonlinear
relationship between the output and input variables. Jeng
et al. [19] developed a support vector interval regression
networks (SVIRNs) based on both SVMandneural networks.
Huang andKao [20] proposed a soft-margin SVM for interval
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regression analysis. Huang [21] solved interval regression
model with reduced support vector machine.

However, there are several main problems while using
SVMmodel.

(1) Big data: when dealing with big data sets, the solution
by using SVMwith a nonlinear kernelmay be difficult
to be found.

(2) Noises and interaction: the distribution of data
becomes hard to be described and the separation
margin between classes becomes a “gray” zone.

(3) Unbalance: the number of samples from one class is
much larger than the number of samples from other
classes. It causes the excursion of separation margin.

Under this circumstance, developing an efficient method
to analyze big data becomes important. The smooth support
vector machine (SSVM) has been proved more efficient than
the traditional SVM in processing large-scale data [22–24].
The main idea of SSVM is solved by a fast Newton-Armijo
algorithm [25] and has been extended to nonlinear separation
surfaces by using a nonlinear kernel technology [24].

In this study, we collaborate interval regression [15] with
SSVM to analyze big data. The main idea of SSVM is solved
by a fast Newton-Armijo algorithm and has been extended
to nonlinear separation surfaces by using a nonlinear kernel
technology. Additionally, to modify the excursion of sepa-
ration margin and to be effective in the gray zone, the soft
margin method is proposed. The experiment results show
that the proposed methods are more efficient than existing
methods.

This study is organized as follows. Section 2 reviews the
current methods for interval regression analysis. Section 3
proposes the soft margin method and the formulation of
interval regression with SSVM to analyze big data. Section 4
gives a numerical example by the proposed methods dealing
with big data which is extracted from Taiwan Stock Exchange
Capitalization Weighted Stock Index (TAIEX) [26]. Finally,
Section 5 gives the concluding remarks.

2. Literature Review

SinceTanaka et al. [27] introduced the fuzzy regressionmodel
with symmetric fuzzy parameters, the properties of fuzzy
regression have been studied extensively bymany researchers.
Fuzzy regression model can be simplified to interval regres-
sion analysis which is considered as the simplest version of
possibilistic regression analysis with interval coefficients. An
interval linear regression model is described as

𝑌 (x𝑗) = 𝐴0 + 𝐴1𝑥1𝑗 + ⋅ ⋅ ⋅ + 𝐴𝑛𝑥𝑛𝑗, (1)

where 𝑌(x𝑗), 𝑗 = 1, 2, . . . , 𝑞, is the estimated interval cor-
responding to the real input vector x𝑗 = (𝑥1𝑗, 𝑥2𝑗, . . . , 𝑥𝑛𝑗)

𝑡.
An interval coefficient 𝐴 𝑖 is defined as (𝑎𝑖, 𝑐𝑖), where 𝑎𝑖 is the
center and 𝑐𝑖 is the radius. Hence, 𝐴 𝑖 can also be represented
as

𝐴 𝑖 = [𝑎𝑖 − 𝑐𝑖, 𝑎𝑖 + 𝑐𝑖] = {𝑎𝑖 − 𝑐𝑖 ≤ 𝑎 ≤ 𝑎𝑖 + 𝑐𝑖} . (2)

The interval linear regression model (1) can also be
expressed as

𝑌 (x𝑗) = 𝐴0 + 𝐴1𝑥1𝑗 + ⋅ ⋅ ⋅ + 𝐴𝑛𝑥𝑛𝑗

= (𝑎0, 𝑐0) + (𝑎1, 𝑐1) 𝑥1𝑗 + ⋅ ⋅ ⋅ + (𝑎𝑛, 𝑐𝑛) 𝑥𝑛𝑗

= (𝑎0 +

𝑛

∑

𝑖=1

𝑎𝑖𝑥𝑖𝑗, 𝑐0 +

𝑛

∑

𝑖=1

𝑐𝑖


𝑥𝑖𝑗


) .

(3)

For a data set with crisp inputs and interval outputs, two
interval regressionmodels, the possibility and necessitymod-
els, are considered. By assumption, the center coefficients of
the possibility regression model and the necessity regression
model are the same [15]. For this data set, the possibility and
necessity estimation models are defined as

𝑌
∗
(x𝑗) = 𝐴

∗
0 + 𝐴
∗
1𝑥1𝑗 + ⋅ ⋅ ⋅ + 𝐴

∗
𝑛𝑥𝑛𝑗

𝑌∗ (x𝑗) = 𝐴0∗ + 𝐴1∗𝑥1𝑗 + ⋅ ⋅ ⋅ + 𝐴𝑛∗𝑥𝑛𝑗,
(4)

where the interval coefficients𝐴∗𝑖 and𝐴 𝑖∗ are defined as𝐴
∗
𝑖 =

(𝑎
∗
𝑖 , 𝑐
∗
𝑖 ) and 𝐴 𝑖∗ = (𝑎𝑖∗, 𝑐𝑖∗), respectively. The interval 𝑌∗(x𝑗)

estimated by the possibility model must include the observed
interval 𝑌𝑗 and the interval 𝑌∗(x𝑗) estimated by the necessity
model must be included in the observed interval 𝑌𝑗.

In this section, we review the current methods which are
ordinarily used for interval regression analysis.

2.1. Tanaka and Lee’s Approach. Tanaka and Lee [15] pro-
posed an interval regression analysis with a quadratic pro-
gramming (QP) approach which gives more diverse spread
coefficients than a linear programming (LP) one.

The interval regression analysis by QP approach unifying
the possibility and necessity models subject to the inclusion
relations, 𝑌∗(x𝑗) ⊆ 𝑌𝑗 ⊆ 𝑌∗(x𝑗), can be represented as

min
𝑞

∑

𝑗=1

(𝑑0 +

𝑛

∑

𝑖=1

𝑑𝑖


𝑥𝑖𝑗


)

2

+ 𝜑

𝑛

∑

𝑖=0

(𝑎
2
𝑖 + 𝑐
2
𝑖 )

s.t. 𝑌∗ (x𝑗) ⊆ 𝑌𝑗 ⊆ 𝑌
∗
(x𝑗) , 𝑗 = 1, 2, . . . , 𝑞

𝑐𝑖, 𝑑𝑖 ≥ 0, 𝑖 = 0, 1, . . . , 𝑛,

(5)

where 𝜑 is an extremely small positive number and makes
the influence of the term 𝜑∑

𝑛
𝑖=0(𝑎
2
𝑖 + 𝑐
2
𝑖 ) on the objective
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function negligible. The constraints of the inclusion relations
are equivalent to

𝑌∗ (x𝑗) ⊆ 𝑌𝑗 ⇐⇒

{{{{{

{{{{{

{

𝑦𝑗 − 𝑒𝑗 ≤ (𝑎0 +

𝑛

∑

𝑖=1

𝑎𝑖𝑥𝑖𝑗) − (𝑐0 +

𝑛

∑

𝑖=1

𝑐𝑖


𝑥𝑖𝑗


)

(𝑎0 +

𝑛

∑

𝑖=1

𝑎𝑖𝑥𝑖𝑗) + (𝑐0 +

𝑛

∑

𝑖=1

𝑐𝑖


𝑥𝑖𝑗


) ≤ 𝑦𝑗 + 𝑒𝑗,

(6)

𝑌𝑗 ⊆ 𝑌
∗
(x𝑗) ⇐⇒

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(𝑎0 +

𝑛

∑

𝑖=1

𝑎𝑖𝑥𝑖𝑗) − (𝑐0 +

𝑛

∑

𝑖=1

𝑐𝑖


𝑥𝑖𝑗


)

−(𝑑0 +

𝑛

∑

𝑖=1

𝑑𝑖


𝑥𝑖𝑗


) ≤ 𝑦𝑗 − 𝑒𝑗

𝑦𝑗 + 𝑒𝑗 ≤ (𝑎0 +

𝑛

∑

𝑖=1

𝑎𝑖𝑥𝑖𝑗) + (𝑐0 +

𝑛

∑

𝑖=1

𝑐𝑖


𝑥𝑖𝑗


)

+ (𝑑0 +

𝑛

∑

𝑖=1

𝑑𝑖


𝑥𝑖𝑗


) ,

(7)

where x𝑗 is the 𝑗th input vector and 𝑌𝑗 is the corresponding
interval output that consists of a center 𝑦𝑗 and a radius 𝑒𝑗
denoted by 𝑌𝑗 = (𝑦𝑗, 𝑒𝑗).

2.2. Hong and Hwang’s Approach. Hong and Hwang [16]
evaluated interval regressionmodel combining the possibility
and necessity estimation formulation with the principle
of quadratic loss support vector machine (QLSVM). This
version of SVM utilizes the quadratic loss function. The
QLSVM performs interval nonlinear regression analysis by
constructing an interval linear regression function in high-
dimensional feature space.

With the principle of QLSVM, the interval nonlinear
regression model is given as follows:

max −
1

2
(

𝑛

∑

𝑖,𝑗=1

(𝜆2𝑖 − 𝜆
∗
2𝑖) (𝜆2𝑗 − 𝜆

∗
2𝑗)𝐾 (x𝑖, x𝑗)

+

𝑛

∑

𝑖,𝑗=1

(𝜆3𝑖 − 𝜆
∗
3𝑖) (𝜆3𝑗 − 𝜆

∗
3𝑗)𝐾 (x𝑖, x𝑗)

+

𝑛

∑

𝑖,𝑗=1

(𝜆4𝑖 − 𝜆
∗
4𝑖) (𝜆4𝑗 − 𝜆

∗
4𝑗)𝐾 (x𝑖, x𝑗)

+ 2

𝑛

∑

𝑖,𝑗=1

(𝜆2𝑖 − 𝜆
∗
2𝑖) (𝜆3𝑗 − 𝜆

∗
3𝑗)𝐾 (x𝑖, x𝑗)

− 2

𝑛

∑

𝑖,𝑗=1

(𝜆2𝑖 − 𝜆
∗
2𝑖) (𝜆4𝑗 − 𝜆

∗
4𝑗)𝐾 (x𝑖, x𝑗)

− 2

𝑛

∑

𝑖,𝑗=1

(𝜆3𝑖 − 𝜆
∗
3𝑖) (𝜆4𝑗 − 𝜆

∗
4𝑗)𝐾 (x𝑖, x𝑗)

+

𝑛

∑

𝑖,𝑗=1

(𝜆3𝑖 + 𝜆
∗
3𝑖) (𝜆3𝑗 + 𝜆

∗
3𝑗)𝐾 (

x𝑖
 ,

x𝑗

)

+

𝑛

∑

𝑖,𝑗=1

(𝜆4𝑖 + 𝜆
∗
4𝑖) (𝜆4𝑗 + 𝜆

∗
4𝑗)𝐾 (

x𝑖
 ,

x𝑗

)

− 2

𝑛

∑

𝑖,𝑗=1

(𝜆3𝑖 + 𝜆
∗
3𝑖) (𝜆4𝑗 + 𝜆

∗
4𝑗)𝐾 (

x𝑖
 ,

x𝑗

)

+

𝑛

∑

𝑖,𝑗=1

𝜆1𝑖𝜆1𝑗𝐾(
x𝑖
 ,

x𝑗

)

− 2

𝑛

∑

𝑖,𝑗=1

𝜆1𝑖 (𝜆3𝑗 + 𝜆
∗
3𝑗)𝐾 (

x𝑖
 ,

x𝑗

))

−
1

2𝐶

𝑛

∑

𝑖=1

𝜆
2
1𝑖 −

1

2𝐶

𝑛

∑

𝑖=1

(𝜆
2
2𝑖 + 𝜆
∗2
2𝑖 )

+

𝑛

∑

𝑖=1

(𝜆2𝑖 − 𝜆
∗
2𝑖) 𝑦𝑖 +

𝑛

∑

𝑖=1

(𝜆3𝑖 − 𝜆
∗
3𝑖) 𝑦𝑖

−

𝑛

∑

𝑖=1

(𝜆4𝑖 − 𝜆
∗
4𝑖) 𝑦𝑖

+

𝑛

∑

𝑖=1

(𝜆3𝑖 + 𝜆
∗
3𝑖) 𝜖𝑖 −

𝑛

∑

𝑖=1

(𝜆4𝑖 + 𝜆
∗
4𝑖) 𝜖𝑖

s.t. 𝜆1𝑖, 𝜆2𝑖, 𝜆
∗
2𝑖, 𝜆3𝑖, 𝜆

∗
3𝑖, 𝜆4𝑖, 𝜆

∗
4𝑖 ≥ 0,

(8)

where 𝜆1𝑖, 𝜆2𝑖, 𝜆
∗
2𝑖, 𝜆3𝑖, 𝜆

∗
3𝑖, 𝜆4𝑖, and 𝜆∗4𝑖 are Lagrange

multipliers. 𝐾(∗) is a nonlinear kernel. The followings are
well-known nonlinear kernels, where 𝜎, 𝛾, 𝑟, ℎ, and 𝜃 are
kernel parameters:

(1) Gaussian (radial basis) kernel: 𝑒−‖𝑥𝑖−𝑥𝑗‖
2
/2𝜎2 , 𝜎 > 0

[10],
(2) hyperbolic tangent kernel: tanh(𝛾𝑥𝑖𝑥

𝑡
𝑗 +𝜃), 𝛾 > 0 [12],

(3) polynomial kernel: (𝛾𝑥𝑖𝑥
𝑡
𝑗 + 𝑟)

ℎ, ℎ ∈ N, 𝛾 > 0, and
𝑟 ≥ 0 [14].

The advantage ofHong andHwang’s approach is amodel-
free method in the sense that there is no need to assume the
underlying model function for interval nonlinear regression
model with crisp inputs and interval output.

2.3. Huang’s Approach. There are two problems while using
the traditional SVMmodel. (1) Large scale: when dealingwith
large-scale data sets, the solution may be difficult to be found
when using SVM with nonlinear kernels; (2) Unbalance:
the number of samples from one class is much larger than
the number of samples from the other classes. It causes the
excursion of separation margin.

To resolve these problems, Huang [21] proposed a
reduced support vector machine (RSVM) approach in eval-
uating interval regression models. RSVM has been proven
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more efficient than the traditional SVM in processing large-
scale data.

With the principle of RSVM, the interval nonlinear
regression model is listed as follows:

max −
1

2

𝑛

∑

𝑖,𝑗=1

𝜆1𝑖𝜆1𝑗𝑄
𝑡
⋅,𝐾𝑄⋅,𝐾

−
1

2

𝑛

∑

𝑖,𝑗=1

(𝜆2𝑖 − 𝜆
∗
2𝑖) (𝜆2𝑗 − 𝜆

∗
2𝑗)𝐾 (x𝑖, x𝑗)

−
1

2

𝑛

∑

𝑖,𝑗=1

(𝜆3𝑖 − 𝜆
∗
3𝑖) (𝜆3𝑗 − 𝜆

∗
3𝑗)𝐾 (x𝑖, x𝑗)

−

𝑛

∑

𝑖,𝑗=1

𝜆1𝑖𝑄⋅,𝐾 (𝜆2𝑗 − 𝜆
∗
2𝑗) x𝑗

+

𝑛

∑

𝑖,𝑗=1

𝜆1𝑖𝑄⋅,𝐾 (𝜆3𝑗 − 𝜆
∗
3𝑗) x𝑗

+

𝑛

∑

𝑖,𝑗=1

(𝜆2𝑖 − 𝜆
∗
2𝑖) (𝜆3𝑗 − 𝜆

∗
3𝑗)𝐾 (x𝑖, x𝑗)

−
1

2

𝑛

∑

𝑖,𝑗=1

(𝜆2𝑖 + 𝜆
∗
2𝑖) (𝜆2𝑗 + 𝜆

∗
2𝑗)𝐾 (

x𝑖
 ,

x𝑗

)

+

𝑛

∑

𝑖,𝑗=1

(𝜆2𝑖 + 𝜆
∗
2𝑖) (𝜆3𝑗 + 𝜆

∗
3𝑗)𝐾 (

x𝑖
 ,

x𝑗

)

−

𝑛

∑

𝑖,𝑗=1

(𝜆3𝑖 + 𝜆
∗
3𝑖) (𝜆3𝑗 + 𝜆

∗
3𝑗)𝐾 (

x𝑖
 ,

x𝑗

)

−
1

4𝐶

𝑛

∑

𝑖=1

𝜆
2
1𝑖 +

𝑛

∑

𝑖=1

(𝜆2𝑖 − 𝜆
∗
2𝑖) 𝑦𝑖

−

𝑛

∑

𝑖=1

(𝜆3𝑖 − 𝜆
∗
3𝑖) 𝑦𝑖

−

𝑛

∑

𝑖=1

(𝜆2𝑖 + 𝜆
∗
2𝑖) 𝜖𝑖 +

𝑛

∑

𝑖=1

(𝜆3𝑖 + 𝜆
∗
3𝑖) 𝜖𝑖

s.t. 𝜆1𝑖, 𝜆2𝑖, 𝜆
∗
2𝑖, 𝜆3𝑖, 𝜆

∗
3𝑖 ≥ 0,

(9)

where 𝜆1𝑖, 𝜆2𝑖, 𝜆
∗
2𝑖, 𝜆3𝑖, and 𝜆

∗
3𝑖 are Lagrange multipliers. 𝑄 is

a positive semidefinite matrix in RSVM. 𝐾(∗) is a nonlinear
kernel.

The advantage of Huang’s approach is to reduce the
number of support vectors by randomly selecting a subset
of samples. While processing with large-scale data sets, the
solution can be found easily by the proposed method with
nonlinear kernels.

Figure 1: Soft margin.

3. Proposed Methods

In this section we first propose the soft margin method to
modify the excursion of separationmargin and to be effective
in the gray zone. Then the formulation of interval regression
with SSVM to analyze big data is introduced.

3.1. Soft Margin. In a conventional SVM, the sign function is
used as the decision-making function.The separation thresh-
old of the sign function is 0, which results in an excursion of
separation margin for unbalanced data sets. The aim of the
hard-margin separation margin is to find a hyperplane with
the largest distance to the nearest training data. However, the
limitations of the hard-margin formulation are as follows:

(1) there is no separating hyperplane for certain training
data;

(2) complete separation with zero training error will lead
to suboptimal prediction error;

(3) it is difficult to deal with the gray zone between
classes.

Thus, the soft margin method is proposed to modify the
excursion of separation margin and to be effective in the gray
zone. The soft margin is defined as

𝑓
−
(𝛿) =

arctan (−𝛿 ⋅ 𝑠 + 𝜗 ⋅ 𝑠)
𝜋

+ 0.5,

𝑓
+
(𝛿) =

arctan (𝛿 ⋅ 𝑠 − 𝜗 ⋅ 𝑠)
𝜋

+ 0.5,

(10)

where 𝛿 is the decision value. 𝜗 and 𝑠 are offset parameter and
scale parameter which need to be estimated using statistical
method.

With the softmargin as shown in Figure 1, the predication
of the class labels can be determined as follows:
𝑦 (𝑥)

= {
−1, if (]𝑟 < 𝑓

−
(𝛿) , 𝛿 < 𝜗) or (]𝑟 > 𝑓

+
(𝛿) , 𝛿 > 𝜗)

+1, if (]𝑟 > 𝑓
−
(𝛿) , 𝛿 < 𝜗) or (]𝑟 < 𝑓

+
(𝛿) , 𝛿 > 𝜗) ,

(11)

where ]𝑟 is a random number between 0 and 1.
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3.2. Interval Regression with SSVM. Themain idea of smooth
support vector machine (SSVM) is solved by a fast Newton-
Armijo algorithm [25] and has been extended to nonlinear
separation surfaces by using a nonlinear kernel technology
[24].

Suppose that 𝑚 training data {𝑥𝑖, 𝑦𝑖}, 𝑖 = 1, 2, . . . , 𝑚, are
given, where 𝑥𝑖 ∈ R𝑛 are the input patterns and 𝑦𝑖 ∈ {−1, 1}
are the related target values of two-class pattern classification
case.Then the standard support vector machine with a linear
kernel [14] is

min
𝑤,𝑏,𝜉

1

2
‖𝑤‖
2
+ 𝐶

𝑚

∑

𝑖=1

𝜉
2
𝑖

s.t. 𝑦𝑖 (𝑤
𝑡
𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚,

(12)

where 𝑏 is the location of hyperplane relative to the origin.
The regularization constant 𝐶 is a positive parameter to
control the tradeoff between the training error and the part of
maximizing the margin that is achieved by minimizing ‖𝑤‖2.
𝜉𝑖 is the slack variable with weight 𝐶/2. ‖𝑤‖ is the Euclidean
norm of 𝑤 which is the normal to the following hyperplanes:

𝑤
𝑡
𝑥𝑖 + 𝑏 = +1, for 𝑦𝑖 = +1, (13)

𝑤
𝑡
𝑥𝑖 + 𝑏 = −1, for 𝑦𝑖 = −1. (14)

The first hyperplane (13) bounds the class {+1} and the
second hyperplane (14) bounds the class {−1}. The linear
separating hyperplane is

𝑤
𝑡
𝑥𝑖 + 𝑏 = 0. (15)

In Lee and Mangasarian’s approach [24], 𝑏2/2 is added to
the objective function of (12). This is equivalent to adding a
constant feature to the training data and finding a separating
hyperplane through the origin. Consider

min
𝑤,𝑏,𝜉

1

2
(‖𝑤‖
2
+ 𝑏
2
) +
𝐶

2

𝑚

∑

𝑖=1

𝜉
2
𝑖

s.t. 𝑦𝑖 (𝑤
𝑡
𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚,

(16)

where 𝜉𝑖 = {1 − 𝑦𝑖(𝑤
𝑡
𝑥𝑖 + 𝑏)}+ for all 𝑖 and the “+” function

is defined as 𝑥+ = max{0, 𝑥}. Then (12) can be reformulated
as the following minimization problem by replacing 𝜉𝑖 with
{1 − 𝑦𝑖(𝑤

𝑡
𝑥𝑖 + 𝑏)}+:

min
𝑤,𝑏

1

2
(‖𝑤‖
2
+ 𝑏
2
) +
𝐶

2

𝑚

∑

𝑖=1

{1 − 𝑦𝑖 (𝑤
𝑡
𝑥𝑖 + 𝑏)}

2

+
. (17)

The objective function in (17) is not twice differentiable
and can be solved by using a fast Newton-Armijo method
[25]. Thus the “+” function in SSVM is approximated by a
smooth function, 𝑝(𝑥, 𝛼), as follows:

𝑝 (𝑥, 𝛼) = 𝑥 +
1

𝛼
log (1 + 𝑒−𝛼𝑥) , 𝛼 > 0, (18)

where 𝛼 > 0 is the smooth parameter. 1/(1 + 𝑒−𝛼𝑥) is the
integral of the sigmoid function of neural networks [28].
The 𝑝(𝑥, 𝛼) with a smoothing parameter 𝛼 is to replace the
“+” function of (17) to obtain the following smooth support
vector machine (SSVM) with a linear kernel:

min
𝑤,𝑏

1

2
(‖𝑤‖
2
+ 𝑏
2
) +
𝐶

2

𝑚

∑

𝑖=1

𝑝({1 − 𝑦𝑖 (𝑤
𝑡
𝑥𝑖 + 𝑏)} , 𝛼)

2
. (19)

For specific data sets, an appropriate nonlinear mapping
𝑥 → 𝜙(𝑥) can be used to embed the originalR𝑛 features into
a Hilbert feature space F, 𝜙 : R𝑛 → F, with a nonlinear
kernel 𝐾(𝑥𝑖, 𝑥𝑗) ≡ 𝜙(𝑥𝑖)

𝑡
𝜙(𝑥𝑗). Thus, (19) can be extended to

the SSVM with a nonlinear kernel:

min
𝑤,𝑏

1

2
(‖𝑤‖
2
+ 𝑏
2
)

+
𝐶

2

𝑚

∑

𝑖=1

𝑝(

{

{

{

1 − 𝑦𝑖(

𝑚

∑

𝑗=1

V𝑗𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏)
}

}

}

, 𝛼)

2

,

(20)

where ∑𝑚𝑗=1 V𝑗𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏 is the nonlinear SSVM classifier.
The coefficient V𝑗 is determined by solving an optimiza-
tion problem (20) and the data points with corresponding
nonzero coefficients.

With the principle of SSVM,we can formulate the interval
linear regression model as follows:

min
𝑎,𝑐,𝑑

1

2
(𝑎
𝑡
𝑎 + 𝑐
𝑡
𝑐 + 𝑑
𝑡
𝑑 + 𝑏
2
)

+
𝐶

2

𝑚

∑

𝑖=1

𝑝({1 − 𝑦𝑖 (𝑤
𝑡
𝑥𝑖 + 𝑏)} , 𝛼)

2

s.t. 𝑎x𝑖 + 𝑐
x𝑖
 ≤ 𝑦𝑖 + 𝑒𝑖

𝑎x𝑖 − 𝑐
x𝑖
 ≥ 𝑦𝑖 − 𝑒𝑖

𝑎x𝑖 + 𝑐
x𝑖
 + 𝑑

x𝑖
 ≥ 𝑦𝑖 + 𝑒𝑖

𝑎x𝑖 − 𝑐
x𝑖
 − 𝑑

x𝑖
 ≤ 𝑦𝑖 − 𝑒𝑖

𝑖 = 1, 2, . . . , 𝑚,

(21)

where 𝑎, 𝑐, and 𝑑 are the collections of all 𝑎𝑖, 𝑐𝑖, and 𝑑𝑖, 𝑖 =
1, 2, . . . , 𝑚, respectively.
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Given (21), the corresponding Lagrangian objective func-
tion is

𝐿 :=
1

2
(𝑎
𝑡
𝑎 + 𝑐
𝑡
𝑐 + 𝑑
𝑡
𝑑 + 𝑏
2
)

+
𝐶

2

𝑚

∑

𝑖=1

𝑝({1 − 𝑦𝑖 (𝑤
𝑡
𝑥𝑖 + 𝑏)} , 𝛼)

2

−

𝑚

∑

𝑖=1

𝜆1𝑖 (𝑦𝑖 + 𝑒𝑖 − 𝑎x𝑖 − 𝑐
x𝑖
)

−

𝑚

∑

𝑖=1

𝜆2𝑖 (𝑎x𝑖 − 𝑐
x𝑖
 − 𝑦𝑖 + 𝑒𝑖)

−

𝑚

∑

𝑖=1

𝜆3𝑖 (𝑎x𝑖 + 𝑐
x𝑖
 + 𝑑

x𝑖
 − 𝑦𝑖 − 𝑒𝑖)

−

𝑚

∑

𝑖=1

𝜆4𝑖 (𝑦𝑖 − 𝑒𝑖 − 𝑎x𝑖 + 𝑐
x𝑖
 + 𝑑

x𝑖
) ,

(22)

where 𝐿 is Lagrangian and 𝜆1𝑖, 𝜆2𝑖, 𝜆3𝑖, and 𝜆4𝑖 are Lagrange
multipliers. The idea to construct a Lagrange function from
the objective function and the corresponding constraints is
to introduce a dual set of variables. It can be shown that the
Lagrangian function has a saddle point with respect to the
primal and dual variables in the solution [29].

The Karush-Kuhn-Tucker (KKT) conditions that the
partial derivatives of 𝐿 with respect to the primal variables
(𝑎, 𝑐, 𝑑) for optimality

𝜕𝐿

𝜕𝑎
= 0 ⇒ 𝑎 = −

𝑚

∑

𝑖=1

(𝜆1𝑖 − 𝜆2𝑖 − 𝜆3𝑖 + 𝜆4𝑖) x𝑖,

𝜕𝐿

𝜕𝑐
= 0 ⇒ 𝑐 = −

𝑚

∑

𝑖=1

(𝜆1𝑖 + 𝜆2𝑖 − 𝜆3𝑖 − 𝜆4𝑖)
x𝑖
 ,

𝜕𝐿

𝜕𝑑

= 0 ⇒ 𝑑 =

𝑚

∑

𝑖=1

(𝜆3𝑖 + 𝜆4𝑖)
x𝑖
 .

(23)

Substituting (23) in (22) yields the following optimization
problem:

max 1

2
(

𝑚

∑

𝑖,𝑗=1

(𝜆1𝑖 − 𝜆2𝑖 − 𝜆3𝑖 + 𝜆4𝑖)

× (𝜆1𝑗 − 𝜆2𝑗 − 𝜆3𝑗 + 𝜆4𝑗) x
𝑡
𝑖x𝑗

+

𝑚

∑

𝑖,𝑗=1

(𝜆1𝑖 + 𝜆2𝑖 − 𝜆3𝑖 − 𝜆4𝑖)

× (𝜆1𝑗 + 𝜆2𝑗 − 𝜆3𝑗 − 𝜆4𝑗)
x𝑖


𝑡 
x𝑗


−

𝑚

∑

𝑖,𝑗=1

(𝜆3𝑖 + 𝜆4𝑖) (𝜆3𝑗 + 𝜆4𝑗)
x𝑖


𝑡 
x𝑗

+ 𝑏
2
)

+
𝐶

2

𝑚

∑

𝑖=1

𝑝({1 − 𝑦𝑖 (𝑤
𝑡
𝑥𝑖 + 𝑏)} , 𝛼)

2

s.t. 𝜆1𝑖, 𝜆2𝑖, 𝜆3𝑖, 𝜆4𝑖 ≥ 0.

(24)

Similarly, we can obtain the interval nonlinear regression
model by mapping 𝑥 → 𝜙(𝑥) to embed the original R𝑛
features into a Hilbert feature space F, 𝜙 : R𝑛 → F,
with a nonlinear kernel 𝐾(𝑥𝑖, 𝑥𝑗) ≡ 𝜙(𝑥𝑖)

𝑡
𝜙(𝑥𝑗) as discussed

in Section 2.2. Then we obtain the optimization problem as
(25) by replacing x𝑡𝑖x𝑗 and |x𝑖|

𝑡
|x𝑗| in (24) with 𝐾(x𝑖, x𝑗) and

𝐾(|x𝑖|, |x𝑗|), respectively:

max 1

2
(

𝑚

∑

𝑖,𝑗=1

(𝜆1𝑖 − 𝜆2𝑖 − 𝜆3𝑖 + 𝜆4𝑖)

× (𝜆1𝑗 − 𝜆2𝑗 − 𝜆3𝑗 + 𝜆4𝑗)𝐾 (x𝑖, x𝑗)

+

𝑚

∑

𝑖,𝑗=1

(𝜆1𝑖 + 𝜆2𝑖 − 𝜆3𝑖 − 𝜆4𝑖)

× (𝜆1𝑗 + 𝜆2𝑗 − 𝜆3𝑗 − 𝜆4𝑗)𝐾 (
x𝑖
 ,

x𝑗

)

−

𝑚

∑

𝑖,𝑗=1

(𝜆3𝑖 + 𝜆4𝑖)

× (𝜆3𝑗 + 𝜆4𝑗)𝐾 (
x𝑖
 ,

x𝑗

) + 𝑏
2
)

+
𝐶

2

𝑚

∑

𝑖=1

𝑝(

{

{

{

1 − 𝑦𝑖(

𝑚

∑

𝑗=1

V𝑗𝐾(x𝑖, x𝑗) + 𝑏)
}

}

}

, 𝛼)

2

s.t. 𝜆1𝑖, 𝜆2𝑖, 𝜆3𝑖, 𝜆4𝑖 ≥ 0.

(25)

4. Numerical Example

To illustrate the methods developed in Section 3, the follow-
ing example is presented.

Example. To illustrate the proposed methods dealing with
big data sets, we use the data sets from Taiwan Stock
Exchange CapitalizationWeighted Stock Index (TAIEX) [26]
which included the highest, lowest, and closed data and the
ranges are from 01/02/2012 to 12/28/2012, from 01/02/2011
to 12/28/2012, from 01/02/2010 to 12/28/2012, and from
01/02/2009 to 12/28/2012, respectively. For these data sets,
the Gaussian kernel [10] is used where 𝜎 = 2.5 and the
regularization constant 𝐶 = 300. The results are illustrated
from Figure 2 to Figure 5.

The comparison is shown by using the measure of fitness
[15] as (26), which defines how closely the possibility output
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Table 1: Comparison results of the measure of fitness.

Tanaka and Lee [15] Hong and Hwang [16] Huang [21] Proposed methods
𝜑𝑌 (Figure 2) 0.1404 0.1395 0.1412 0.1354
𝜑𝑌 (Figure 3) 0.1573 0.1562 0.1581 0.1429
𝜑𝑌 (Figure 4) 0.1694 0.1658 0.1706 0.1583
𝜑𝑌 (Figure 5) 0.1714 0.1695 0.1723 0.1609

TWSE TAIEX
(01/02/2012~12/28/2012)

6.500.00

7.000.00

7.500.00

8.000.00

8.500.00

Highest
Lowest
TAIEX

Figure 2: TAIEX [26] from 01/02/2012 to 12/28/2012.

TWSE TAIEX

6.000.00

6.500.00

7.000.00

7.500.00

8.000.00

8.500.00

9.000.00

9.500.00
(01/02/2011~12/28/2012)

Highest
Lowest
TAIEX

Figure 3: TAIEX [26] from 01/02/2011 to 12/28/2012.

for the 𝑗th input approximates the necessity output for the 𝑗th
input. Consider

𝜑𝑌 (x𝑖) =
1

𝑞

𝑞

∑

𝑗=1

𝑐0 + ∑
𝑛
𝑖=1 𝑐𝑖


𝑥𝑖𝑗



𝑐0 + ∑
𝑛
𝑖=1 𝑐𝑖


𝑥𝑖𝑗


+ 𝑑0 + ∑

𝑛
𝑖=1 𝑑𝑖


𝑥𝑖𝑗



, (26)

where 𝑞 is a sample size and 0 ≤ 𝜑𝑌 ≤ 1.
Table 1 presents the proposed methods with a Gaussian

kernel along with the results computed by Tanaka and Lee

TWSE TAIEX

6.000.00

6.500.00

7.000.00

7.500.00

8.000.00

8.500.00

9.000.00

9.500.00
(01/02/2010~12/28/2012)

Highest
Lowest
TAIEX

Figure 4: TAIEX [26] from 01/02/2010 to 12/28/2012.

TWSE TAIEX

4.000.00

5.000.00

6.000.00

7.000.00

8.000.00

9.000.00

(01/02/2009~12/28/2012)

Highest
Lowest
TAIEX

Figure 5: TAIEX [26] from 01/02/2009 to 12/28/2012.

[15], Hong and Hwang [16], and Huang [21]. We can find that
the proposedmethods aremore efficient than othermethods.

5. Conclusions

In this paper, we collaborate interval regression with SSVM
to analyze big data. In addition, the soft margin method
is proposed to modify the excursion of separation margin
and to be effective in the gray zone. The main idea of
SSVM is solved by a fast Newton-Armijo algorithm and has
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been extended to nonlinear separation surfaces by using a
nonlinear kernel technology. The experiment results show
that the proposed methods are more efficient than existing
methods. In this study, we estimate the interval regression
model with crisp inputs and interval output. In future works,
both interval inputs-interval output and fuzzy inputs-fuzzy
output will be considered.
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