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Chemical shifts in molecular solids by machine
learning
Federico M. Paruzzo1, Albert Hofstetter 1, Félix Musil2, Sandip De 2, Michele Ceriotti 2 & Lyndon Emsley1

Due to their strong dependence on local atonic environments, NMR chemical shifts are

among the most powerful tools for strucutre elucidation of powdered solids or amorphous

materials. Unfortunately, using them for structure determination depends on the ability to

calculate them, which comes at the cost of high accuracy first-principles calculations.

Machine learning has recently emerged as a way to overcome the need for quantum chemical

calculations, but for chemical shifts in solids it is hindered by the chemical and combinatorial

space spanned by molecular solids, the strong dependency of chemical shifts on their

environment, and the lack of an experimental database of shifts. We propose a machine

learning method based on local environments to accurately predict chemical shifts of

molecular solids and their polymorphs to within DFT accuracy. We also demonstrate that the

trained model is able to determine, based on the match between experimentally measured

and ML-predicted shifts, the structures of cocaine and the drug 4-[4-(2-adamantylcarba-

moyl)-5-tert-butylpyrazol-1-yl]benzoic acid.
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Solid-state nuclear magnetic resonance (NMR) spectroscopy
is among the most powerful methods for determining the
atomic-level structure and dynamics of powdered and

amorphous solids. Notably, solid-state NMR directly probes the
local atomic environments and thus allows for characterization
without the need for long-range order. This has led to its broad
use today in many fields including for instance materials and
pharmaceutical chemistry. In the latter the determination of
structure and packing is essential to elaborate structure–property
relations for formulations in the drug development process.

A revolution in solid-state NMR has occurred with the intro-
duction of accurate methods to calculate chemical shifts1–3, in
particular using plane wave density functional theory (DFT)
methods developed for periodic systems based on the projected
augmented wave (PAW)/gauge including PAW (GIPAW)
approach4–6. This has enabled very rapid development of che-
mical shift-based NMR crystallography, which is now widely used
to validate structures of molecular solids and identify known
polymorphs7–26, or more recently in combination with crystal
structure prediction (CSP) protocols, to determine de novo
crystal structures from powders27–32. Recent studies also suggest
that the structural accuracy of chemical shift-based solid-state
NMR crystallography is at least comparable with more traditional
methods, such as single crystal X-ray diffraction33.

The power of the method arises from the fact that plane wave
DFT with the GIPAW method is accurate enough to reproduce
the exquisite sensitivity of chemical shifts to changes in local
atomic environments. However, this approach also has severe
limitations. The cubic scaling of the computational cost with
system size prevents the application to larger and more complex
crystals, or nonequilibrium structures. If one wanted to use more
accurate ab initio calculations, the expense is prohibitive.

Machine learning (ML) is emerging as a new tool in many
areas of chemical and physical science, and potentially provides a
method to bridge the gap between the need for high accuracy
calculations and limited computational power34–38. Notably,
prediction of chemical shifts for the specific case of proteins in
solution using methods based on large experimental databases,
using traditional39–46 or machine learning approaches47–49, have
been considerably successful in predicting shifts based on local
sequence and structural motifs, and are widely used today. While
there are some examples of machine learned experimental and
ab-initio chemical shifts of liquid and gas phase molecules50–54,
to date there is only one example of machine learning being
applied to calculations of chemical shifts in solids, which deals
with the specific case of silicas55. Molecular solids are char-
acterized by the combinatorial complexity and diversity of
organic chemistry, the subtle dependence on conformations, and
the long- and short-range effects of crystal packing, which leads
to a considerably broader range of chemical environments and
possible chemical shieldings than found, e.g., in proteins. All of
these aspects, compounded by the fact that there is no extensive
database of experimental chemical shifts for molecular solids,
make this class of systems particularly challenging for machine
learning.

Here, we develop a machine learning framework to predict
chemical shifts in solids which is based on capturing the local
environments of individual atoms, and which makes it well suited
for the prediction of such local properties. The protocol is sche-
matically illustrated in Fig. 1. In the absence of a database of
experimental shifts, and given that experiments alone do not
provide a 1:1 mapping between chemical shifts and a single
atomic configuration, we train the model on DFT calculated
chemical shifts for structures taken from the Cambridge Struc-
tural Database (CSD)56 chosen to be as diverse as possible, and
then show that the method can predict chemical shifts in a test set

with R2 coefficients between the chemical shifts calculated with
DFT and with ML of 0.97 for 1H, 0.99 for 13C, 0.99 for 15N, and
0.99 for 17O, corresponding to root-mean-square-errors (RMSEs)
of 0.49 ppm for 1H, 4.3 ppm for 13C, 13.3 ppm for 15N, and 17.7
ppm for 17O. Predicting the chemical shifts for a polymorph of
cocaine, with 86 atoms in the unit cell, using the ML method
takes less than a minute of central processing unit (CPU) time,
thus reducing the computational time by a factor of between 5 to
10 thousand, without any significant loss in accuracy as compared
to DFT.

Most significantly, even though no experimental shifts were
used in training, we show that the model has sufficient accuracy
to be used in a chemical shift-driven NMR crystallography pro-
tocol to correctly determine, based on the match between
experimentally measured and ML-predicted shifts, the correct
structure of cocaine, and the drug 4-[4-(2-adamantylcarbamoyl)-
5-tert-butylpyrazol-1-yl]benzoic acid (AZD8329). We also show
that it is possible to calculate the NMR spectra of very large
molecular crystals. For this we calculate the chemical shifts of six
structures from the CSD with between 768 and 1584 atoms in the
unit cells.

Results
Training and validation using DFT calculated shifts of known
crystal structures. Machine learning models should by definition
be trained on the property that is to be predicted. Here, that
corresponds to experimental chemical shifts. However, for
molecular solids there are currently only around 100 compounds
with reliable crystal structures and for which assigned 1H or 13C
shifts have been published, despite the rapidly increasing activity
of NMR in crystal structure determination. This is at least an
order of magnitude too few structures to hope to determine a
reliable prediction model. In this light, we note that today
GIPAW chemical shift calculations can accurately reproduce
experimental shifts13,57. Thus we propose to develop a machine
learning model to predict chemical shifts by training the model
on a database made up of GIPAW calculated shifts from a large
and diverse set of reference crystal structures. If the model can
then accurately predict GIPAW chemical shifts, we hypothesize
that it should also be in good agreement with experimental shifts.
We also note in this context that even if there was a database of
experimental shifts, there would be a challenge to machine
learning related to the fact that the experiment reports on
structures that include dynamics or distributions, making the
connection between shifts and environments ambiguous. Learn-
ing using GIPAW calculated shifts does not suffer from this
problem.

The approach we take to predicting chemical shifts in
molecular solids is illustrated in Fig. 1. We use the Gaussian
process regression (GPR) framework58 to predict the chemical
shift of a new atomic configuration based on a statistical model
that identifies the correlations between structure and shift for a
reference set of training configurations, for which the chemical
shifts have been determined by a GIPAW DFT calculation. The
predicted chemical shielding for a given atom is given by

σ Xð Þ ¼
X

i

αik X;Xið Þ; ð1Þ

where X and Xi correspond, respectively to a description of the
chemical environment of the atom for which we are making a
prediction, and that of one of the training configurations. The
weights αi are obtained by requiring that Eq. (1) is consistent with
the values computed by DFT for the reference structures. The
essential ingredient that differentiates one GPR-based framework
from another is the kernel function k X;Xið Þ, which describes and
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assesses the similarity between atomic environments, and
provides basis functions to approximate the target properties.

Here, our model relies on the smooth overlap of atomic
positions (SOAP) kernel59,60, in which any atomic environment is
represented as a three-dimensional neighborhood density given
by a superposition of Gaussians, one centered at each of the atom
positions in a spherical neighborhood within a cut-off radius rc
from the core atom. This framework, combined with GPR, has
been used to model the stability and properties of a number of
different systems35,59,60, and has been extended to the prediction
of tensorial properties61. We can see that this choice of kernel
should be particularly well adapted to predicting chemical shifts,
since it describes the local environments around each atom
without any simplification, and this is indeed what the chemical
shift also probes, as it is determined by the screening of the
nucleus from the main magnetic field by the electron density at
the nucleus. Note that it should be possible to tune and train
other ML methods to accurately predict chemical shifts of
molecular crystals. While these possibilities will be explored in
future work, the model we present here is already accurate
enough to substitute for DFT calculations in chemical shift-based
NMR crystallography.

As shown in Fig. 1, in the absence of an experimental
database of shifts the model is developed by using a reference
training set of structures for which chemical shifts are
calculated with GIPAW DFT. To obtain a model which is
robust and general, the training set should be as large, as
reliable, and as diverse as possible. We first extract from the
CSD a large set of about 61,000 structures, corresponding to all
the structures in the CSD with fewer than 200 atoms, in order
to make DFT chemical shift calculation affordable, and
containing C and H and allowing for N and/or O, to reduce
the space to organic molecular crystals (we call this set CSD-
61k, see Supplementary Methods for details on the structures
selection). Given that performing a GIPAW calculation for all
of these structures would be prohibitively demanding, we then
select a random subset of 500 structures (CSD-500, see
Supplementary Note 1 and Supplementary Dataset 2) that are
representative of the chemical diversity in the CSD, and we use
it to test the accuracy of our model. For cross-validation and
training, instead, we select 2000 structures (corresponding to
about 185,000 atomic environments) out of the CSD-61k using
a farthest point sampling algorithm62,63 (CSD-2k, see Supple-
mentary Note 2 and Supplementary Dataset 1). This step
ensures near-uniform sampling of the conformational space,
improving the quality of the model when using a relatively
small number of reference calculations.

To avoid including spurious environments in the model, e.g.,
environments which might not be well described by DFT, we also
automatically detect and discard from the training set atomic
environments with values of the DFT calculated shifts that are
anomalous based on a cross-validation procedure described in
the Supplementary Methods. Note that using this unbiased
statistical analysis we detected only a small fraction of environ-
ments as outliers (e.g., 211 out of 76,214 for 1H, or 0.3%). This is
discussed in detail in the Supplementary Methods. We observe
that the performance of the model degrades noticeably if one does
not use this procedure. This pruning as well as the parameter
optimization procedure, described below, were done exclusively
using cross-validation on the CSD-2k set. (Notably the test sets
were not subject to any curation.)

In order to reduce the computational cost of the training and
testing procedures we then finally remove from the training set all
the symmetrically equivalent environments. In case of 1H, this
reduced the size of the training set from 70,000 to about 35,000
different atomic environments. (Details of the selection method
and the members of the different sets used are given in
the Supplementary Methods and Supplementary Note 3.)

All the atomic positions of the structures in the training and
testing sets were relaxed with DFT, using the Quantum Espresso
suite64–66, prior to calculation of the chemical shieldings using
the GIPAW DFT method4,5. Note that the DFT relaxation
ensures “reasonable” geometries will be used even for crystal
structures containing errors (e.g., improbable 1H positions).
Parameters for the DFT calculations are given in the Supplemen-
tary Methods. The calculated chemical shieldings σ are converted
to the corresponding chemical shifts δ through the relationship
δ= σref− σ. Here, we used a σref of 30.8 ppm (for 1H) and 169.5
ppm (for 13C), found through linear regression between the
calculated and experimental chemical shifts for cocaine.

Figure 2 shows the chemical shift error between the DFT
calculations and the ML predictions for the CSD-500 set, which is
representative of the expected accuracy for the entire CSD-61k.
The figure shows the overall prediction accuracy for 1H chemical
shifts as RMSE in ppm between the shifts calculated with DFT
and with the protocol described above, which we refer to in the
following as ShiftML, as a function of the cut-off radius (rc) and
as a function of the number of training structures included from
CSD-2k. The effect of the different cut-off radii is clearly visible.
For example, for rc= 2 Å the prediction error for a small training
set (<10 structures or <100 atomic environments) can be smaller
than for the larger radii, but does not improve significantly with
increasing size of the training set. On the contrary, for rc= 7 Å we
observe a relatively large prediction error for a small training set,

Structure set (CSD-61k)
61,000 molecular solids

(containing H,C,N and O)

Test set (CSD-500)
500 structures  

selected at random

Trained model

New structure

Model evaluation

Predicted chemical shifts

DFT chemical shifts
vs

ShiftML chemical shiftsFPS selection

Training set (CSD-2k)
2000 structures 

(×190,000 atomic environments) 
relaxed with DFT

Calculated shifts
GIPAW DFT

Structural features
local chemical environments (SOAP-kernel)

Learning algorithm
Gaussian progress regression (GPR)

Model generation

Shift prediction (ShiftML)

Random structure selection

Fig. 1 Scheme of the machine learning model used for the chemical shift predictions
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but even with 2000 structures (35,000 environments), the
prediction error is still decreasing. A similar behavior is observed
for the prediction errors of the 13C, 15N, and 17O chemical shifts
(see Supplementary Figures 5–8).

The observed differences in the behavior of the prediction
error with respect to rc clearly indicates the influence of the
different extents of the local environment on the chemical
shift. Short-range interactions are sufficient to explain the
rough order of magnitude of the shift, but long-range
interactions are required to learn about the higher order
influences of next-nearest neighbors on shifts. However, for
long-range interactions, a much larger number of environments
is needed in order to determine the correlation between
environment and shift.

We exploit these differences to generate a combined SOAP
kernel consisting of a linear combination of the single local
environment kernels35, with weightings of 256 (rc= 2 Å), 128
(rc= 3 Å), 32(rc= 4 Å), 8 (rc= 5 Å and rc= 6 Å), and 1
(rc= 7 Å). This weighting was determined by rough optimization
around values inspired by previous experience35, and by cross-
validation on the CSD-2k training set (as described in
the Supplementary Methods). It is clear that learning with the
combined kernel leads consistently to lower prediction
errors than any of the single kernels, although the improvement
in performance varies between nuclei (see Supplementary
Figures 5–8).

Figure 3a–d shows correlation plots between 1H, 13C, 15N, and
17O chemical shifts calculated by DFT and by ShiftML for the
CSD-500 set trained on the whole CSD-2k combined kernel.
Using the combined kernel, we reach an error between ShiftML
and DFT calculated chemical shifts of 0.49 ppm for 1H (4.3 ppm
for 13C, 13.3 ppm for 15N, and 17.7 ppm for 17O). This is very
comparable with reported DFT chemical shift accuracy for 1H of
0.33–0.43 ppm13,57, while requiring a fraction of the computa-
tional time and cost: less than 1 CPU minute compared to
~62–150 CPU hours for DFT chemical shift calculation on
structures containing 86 atoms (around 350 valence electrons)
(see Supplementary Figure 4). For the other nuclei, the ML
accuracy is slightly lower than reported values (1.9–2.2 ppm for
13C, 5.4 ppm for 15N, and 7.2 ppm for 17O)13,57, which is not

surprising as there are (currently) significantly fewer training
environments for the heteronuclei than for 1H.

The R2 coefficients between the chemical shifts calculated with
DFT and with ShiftML are 0.97 for 1H, 0.99 for 13C, 0.99 for 15N,
and 0.99 for 17O.

Note that the CSD-500 set used for testing is selected randomly
from CSD-61k and not curated. Indeed, we find that many of the
atomic environments in the CSD-500 set with a relatively high
prediction RMSE possess either unusual cavities inside their
crystal structure, possibly indicating an organic cage surrounding
noncrystalline solvent or other atoms, or exhibit strongly
delocalized π-bonding networks. While there is no theoretical
reason preventing the machine learning model from correctly
describing such environments, they are rare and not well
represented within the training set. CSD-500 thus constitutes a
fairly demanding test set.

Predicting shifts for polymorphs. Having evaluated the power of
the trained model to predict the diverse CSD-500 set, we now
look at the capacity to predict potentially subtler differences by
looking at a set of polymorphs of a given structure. Figure 4
shows the correlation between the 1H shifts calculated by GIPAW
DFT and by ShiftML for 30 polymorphs of cocaine and 14
polymorphs of AZD8329, all of which were previously generated
with a CSP procedure16,27. The figure clearly shows that ShiftML
is able to accurately predict the differences in 1H chemical shift
for different polymorphs.

We find a chemical shift prediction error (RMSE) between
GIPAW DFT and ShiftML for 1H for the cocaine polymorphs of
0.37 ppm and for AZD8329 of 0.46 ppm. Note that these values
are slightly less than for the CSD-500 set, which might be
expected when looking at these two fairly typical organic
structures, and suggesting that the randomly selected CSD-500
indeed provides a good overall benchmark.

Note that for these cases the DFT structure optimization and
GIPAW chemical shift calculation were done with a different
DFT program (CASTEP)67, which suggests that ShiftML is robust
with respect to small deviations from the fully optimized
structures. (As shown in the Supplementary Figure 2, performing
the prediction using Quantum Espresso consistently leads to
a comparable prediction accuracy.)

For the heteronuclei we obtain an RMSE between GIPAW DFT
and ShiftML for cocaine of 3.8 ppm for 13C, 12.1 ppm for 15N,
and 15.7 ppm for 17O. For AZD8329 the 15N and 17O RMSEs are
proportionally larger (17.7 and 54.7 ppm), and we attribute this to
the fact that the molecule contains a rather unusual C–O…H–N
/C–O…H–O H-bonded dimer structure, for which the learning is
thus even sparser than for the heteronuclei in general. To
illustrate the unusual nature of this motif, we note that the
calculated 17O shifts using DFT also change by up to 50 ppm for
structures relaxed either by the CASTEP protocol used in ref. 30,
or the Quantum Espresso protocol used here (the RMSE between
ML and DFT for the Quantum Espresso relaxed structures is
reduced to 10.9 and 11.5 ppm for 15N and 17O, respectively). The
RMSE of 4.0 ppm for 13C for AZD8329 is in line with the other
systems.

Predicting experimental shifts and structure determination.
Further, the significance of the method is illustrated by com-
parison to experimentally measured shifts. This comparison is
particularly important since the training protocol did not involve
any experimentally measured chemical shifts. We find that the
predicted shifts are accurate enough to allow crystal structure
determination for both cocaine and AZD8329 from powder
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rc = 3 Årc = 2 Å rc = 4 Å

rc = 5 Å rc = 6 Å rc = 7 Å msk
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Fig. 2 1H chemical shift prediction error of the trained model for the CSD-
500 set. The RMSE prediction error between chemical shifts calculated
with ShiftML and GIPAW DFT is shown for different local environment cut-
off radii, and for the multi-kernel (labeled as msk), as a function of the
training set size
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samples in a chemical shift-driven NMR crystallography
approach.

Figure 5a, b shows the correlation between experimentally
measured 1H chemical shifts and the 1H chemical shifts
calculated by ShiftML for crystal structures of the six molecules
shown in Fig. 6 (numerical values of the experimental chemical
shifts, the crystal structures, and the shifts calculated with
ShiftML are given in the Supplementary Methods and Supple-
mentary Dataset 8). The comparison between experimental and
calculated 1H chemical shifts for all crystal structures (for a total
of 68 shifts) gives an error (RMSE) of 0.39 ppm and a R2

coefficient of 0.99. This compares very favorably to the equivalent
agreement found between GIPAW DFT and experiment which
for this set of structures is a RMSE of 0.38 ppm.

Figure 5c, d shows in blue the RMSE between DFT calculated
and experimental 1H chemical shifts for the 30 polymorphs
predicted by CSP to have the lowest energy for cocaine and the 14
cis polymorphs of AZD8329. For both molecules the only

structure in agreement with the GIPAW DFT calculations, to
below a 1H DFT chemical shift confidence interval of 0.49 ppm13,
is the correct crystal structure. In the same plots we overlay the
result where the experimental shifts are now compared to shifts
predicted with ShiftML. Note that the RMSE between experiment
and the predicted chemical shifts follows the same trends as for
the DFT calculated shifts, and that here again the only structures
below the confidence interval of 0.49 ppm are the two correct
crystal structures. Note, that the cut-off of 0.49 ppm with respect
to experiment has been evaluated for GIPAW DFT chemical
shifts13,57 and to rigorously repeat the CSP procedure for the ML
method, the accuracy should be re-evaluated using more
extensive benchmarking of ShiftML to experiment, which will
be the subject of further work.

Predicting shifts for large structures. Finally, we note that the
accuracy of the method does not depend on the size of the
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structure, and that the prediction time is linear in the number of
atoms. For the structures we calculate here the prediction time
actually appears nearly constant, because it is dominated by the
loading time of the reference SOAP vector (see Fig. 7a). We have
used this method to calculate the NMR spectra (shown in
Fig. 7b–g) for six structures from the CSD having among the
largest numbers of atoms per unit cell (containing only H, C, N,
and O), with between 768 and 1584 atoms per unit cell. (See
Supplementary Figure 10 for the chemical formula). The values of
the predicted chemical shifts are given as CSD-6 in the Supple-
mentary Note 4. Figure 7a shows the comparison between the
GIPAW calculation time and the required ML prediction time.
We estimate that the whole calculation would require around 16
CPU years by GIPAW. ShiftML requires less than 6 CPU minutes
to calculate the shifts for all the compounds.

Discussion
We have presented a ML model based on local environments to
predict chemical shifts of molecular solids containing HCNO to
within current DFT accuracy. The R2 coefficients between the
chemical shifts calculated with DFT and with ShiftML are 0.97 for
1H, 0.99 for 13C, 0.99 for 15N, and 0.99 for 17O. The approach
allows the calculation of chemical shifts for structures with ~100
atoms in less than 1min, reducing the computational cost of
chemical shift predictions in solids by a factor of between five to
ten thousand compared to current DFT chemical shift calcula-
tions, and thereby relieves a major bottleneck in the use of cal-
culated chemical shifts for structure determination in solids.

Far from being just a benchmark of a machine-learning
scheme, the method is accurate enough to be used to determine
structures by comparison to experimental shifts in chemical shift-
based NMR crystallography approaches to structure determina-
tion, as shown here for cocaine and AZD8329. The ML model
only scales linearly with the number of atoms and, for the pre-
diction of individual structures, is dominated by a constant I/O
overhead. Here it allows the calculation of chemical shifts for a set
of six structures with between 768 and 1584 atoms in their unit
cells in less than 6 min (an acceleration of a factor 106 for the
largest structure).

The accuracy of the method is likely to increase further with
the size of the training set, and subsequently with the future
evolution of the accuracy of the method used to calculate the
reference shifts used in training (here DFT), or by using experi-
mental shifts if a large enough set were available. A web version
based on the protocol described here is publicly available at
http://shiftml.epfl.ch.

The model used here can easily be extended to organic solids
including halides or other nuclei, and to network materials such
as oxides, and these will be the subject of further work.

Methods
Computational details. For the SOAP kernels59,60, each atomic environment is
represented as a three-dimensional neighborhood density given by a superposition
of Gaussians, one centered at each of the atom positions in a spherical neigh-
borhood within a cut-off radius rc from the core atom. The Gaussians have a
variance ς2, and a separate density is built for each atomic species. The kernel is
then constructed as the symmetrized overlap between the amplitudes representing
X and X′. This degree of overlap thus measures the similarity between the envir-
onments X and X′.

The SOAP and GPR parameters are given in the Supplementary Methods.
SOAP-based structural kernels contain several adjustable hyper-parameters, which
are discussed in ref. 60. However, we have not systematically explored the full
parametric space here, instead we chose reasonable values of the parameters
without extensive fine-tuning, based on previous experience35 and with some
optimization by cross-validation on the CSD-2k training set (see Supplementary
Methods for details). We also combine kernels computed for different cutoff radii
to capture the contributions to shifts from different length scales35, as is described
in detail above. The calculations of the local environment, the similarity kernel and
the weighted correlations were done using the glosim2 package68.

In summary, the Supplementary Information contains details on the structure
selection, the crystal structure prediction procedure, the DFT calculations, the GPR
method, the SOAP kernels, the FPS algorithm, the detection procedure of unusual
environments, the NMR crystallography approach, the DFT calculation time
estimates, the prediction parameters optimization, the learning curves and the
evaluation curves for 1H, 13C, 15N, and 17O. Additionally we also provide the
ShifML predicted and GIPAW chemical shieldings for all cocaine and AZD8329
polymorphs as well as the geometries, the assigned experimental chemical shifts
and the chemical shifts calculated with GIPAW DFT and ShiftML for the
comparison to experimentally measured shifts. The Supplementary Information
also contains the chemical formula and predicted chemical shieldings of the CSD-6
set predicted with ShiftML, the Refcodes for CSD-2k and CSD-500 and the relaxed
geometries and GIPAW DFT calculated chemical shifts of all investigated crystal
structures.

Code availability. The machine learning code to calculate the SOAP environ-
ments, the kernels, and the chemical shifts is called glosim2, and is publicly
available at https://github.com/cosmo-epfl/glosim2. The DFT codes used to opti-
mize geometry and calculate chemical shifts are available from the corresponding
developers.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information. In particular, all crystal-
lographic structures used are referenced in the Supplementary Information and are
publicly available at the Cambridge Structural Database. The relaxed crystal
structures with the chemical shieldings calculated by GIPAW DFT and ShiftML are
included in the supplementary information files and in the Supplementary
Datasets.
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