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Metaplastic and energy-efficient biocompa-
tible graphene artificial synaptic transistors
for enhanced accuracy neuromorphic
computing

Dmitry Kireev 1,2,4, Samuel Liu 1,4, Harrison Jin 1, T. Patrick Xiao3,
Christopher H. Bennett3, Deji Akinwande 1,2 & Jean Anne C. Incorvia 1,2

CMOS-based computing systems that employ the von Neumann architecture
are relatively limited when it comes to parallel data storage and processing. In
contrast, the human brain is a living computational signal processing unit that
operates with extreme parallelism and energy efficiency. Although numerous
neuromorphic electronic devices have emerged in the last decade, most of
them are rigid or contain materials that are toxic to biological systems. In this
work, we report on biocompatible bilayer graphene-based artificial synaptic
transistors (BLAST) capable of mimicking synaptic behavior. The BLAST
devices leverage a dry ion-selective membrane, enabling long-term potentia-
tion, with ~50 aJ/µm2 switching energy efficiency, at least an order of magni-
tude lower than previous reports on two-dimensional material-based artificial
synapses. The devices show unique metaplasticity, a useful feature for gen-
eralizable deep neural networks, andwe demonstrate thatmetaplastic BLASTs
outperform ideal linear synapses in classic image classification tasks. With
switching energy well below the 1 fJ energy estimated per biological synapse,
the proposed devices are powerful candidates for bio-interfaced online
learning, bridging the gap between artificial and biological neural networks.

As the world becomes more interconnected and data-driven, effective
deployment of data-intensive computation methods becomes more
critical. Large and complex data structures require constant extra-
polation, interpolation, and classification, which are ill-suited for
memory-constrained von Neumann architectures1. A promising
approach for overcoming the power and latency shortfalls of tradi-
tional computing is through massively parallel neuromorphic
systems2,3. A wide variety of devices have been proposed to build such
systems, from mature technologies such as metal-oxide4,5 and phase
change memories6,7 to emerging devices such as electrochemical8 and
magnetic memories9–12. Most of these systems, however, employ rigid

materials, making them less suited for direct integration with biolo-
gicalmatter. Direct interfacing of artificial neuromorphic systems with
biological living neurons is a highly ambitious goal, which in the long
term may lead to effective brain implants and creation of artificial
tissue. There have recently been device innovations to this end utiliz-
ing organic materials such asmaltose-ascorbic acid13, zein14, PVA15, and
cellulose16 but with various deficiencies in synaptic performance. Two-
dimensional (2D) materials are a promising material class for
bioelectronics17,18 and neuromorphics19–21 due to their unique electro-
nic properties and atomically thin structure, allowing for impercep-
tible interfacing with tissue. However, existing 2D-material based
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neuromorphic systems often employ elements that would induce
toxicity when interacting with biological systems, e.g., involving ele-
ments like Li+ ionic carriers22,23 which directly impact the nervous
system24. Other 2D carbon-based systems have non-ideal conductance
responses that negatively impact performance in neuromorphic
applications25–27. As a result, new device innovations are needed for
future neuromorphic computing solutions that can directly integrate
with biological tissue.

The biocompatible graphene-based artificial synaptic transis-
tors (BLAST) introduced in this work are a combination of two
flexible, soft, and biocompatible elements: Nafion and graphene.
Nafion plays the role of a solid polymeric electrolyte made of a
negatively charged polysulfonated backbone28 with mobile islands
of positively charged water/proton clusters (Fig. 1a). When Nafion
is in an environment with a high concentration of protons, channels
are formed in the material matrix, allowing for high mobility
transport of protons29. In contrast, when there is a low concentra-
tion of protons, the protonic charge carriers exist in the form of
semi-mobile clusters30. When a current pulse is applied through the
Nafion, we hypothesize that the positively charged clusters move in
the opposite direction of electron current and provide an effective
change in the local electrical double layer (EDL) at the Nafion-
graphene interface, yielding high-precision conductance states for
synaptic operation in artificial neural networks. Altogether, the
proposed devices feature favorable synaptic characteristics and
energy efficiency down to 50 aJ/µm2. We evaluate this behavior
through neuromorphic simulations on several classification tasks
using a prototypical neural network and show that the BLAST
devices feature metaplasticity that allows online learning perfor-
mance exceeding ideal linear, numerical synapse results.

Results
In this work, two kinds of BLAST devices were fabricated: macroscale
(mBLASTs, 10–100mm2 in area) andmicroscale (µBLASTs, ~400 µm2 in
area). The mBLASTs were fabricated using 180 µm thick Nafion-117,
adhesive conductive gold tape to form source and drain electrodes,
and graphene electronic tattoos31,32 supported by 200 nm thick PMMA
(details in Methods). It is important to note here that both graphene
and Nafion are known to be biocompatible substrates for cellular
interfaces. Since a few decades of its discovery, Nafion has been stu-
died for biocompatibility as a bare substrate and has also been widely
accepted as a coating material for numerous in vivo biosensing
applications33–35. Graphene, despite the original claims of cytotoxicity,
has gained trust in the biomedical research community as a highly
biocompatible substrate. Unlike the nm-sized flakes of exfoliated
graphene, CVD-grown monolayer graphene supported by a substrate
is known to not alter any cellular function36, and often serves as an
advantageous substrate for cell growth37–39. To make mBLASTs, we
leverage the previously developed large-scale graphene electronic
tattoos (GETs) that are transferred on top of the Nafion, self-adhering
and forming a tight interface between the graphene and Nafion. The
water-assisted transfer, though rapid (<10 s), leads to hydration of the
Nafion membrane; hence the used Nafion cannot be considered
completely dry, leading to relatively increased mobility of proton
clusters29. The fabricateddevices, as shown in Fig. 1a, arehighlyflexible
and transparent. The average bilayer graphene channel width is 4mm,
and length 3–5mm, yielding an average area of 15 ± 2mm2. In a sepa-
rate experiment, we varied the area of mBLAST devices and recorded
the change in properties. The gold electrode used to apply synaptic
gate potential through the Nafion typically outsizes the graphene
channel itself to ensure that the whole graphene-Nafion interface is

Fig. 1 | BLAST configuration and functionality. a Photograph of a transparent
BLASTdevice.b3Dschematic of theBLASTdevice showing source (S), drain (D), and
gate (G) electrodes. c Cross-sectional schematic of BLAST device operation in high
and low conductance states. Nafion (teal) contains mobile positively charged clus-
ters of protons (dark red) carried through the membrane; source, drain, and gate
gold contacts are shown in yellow with source grounded. The pre-synaptic write
pulse is labeled IG and the corresponding post-synaptic read current change is
labeled ID. Applied post-synaptic voltage (green) is labeled VD. d Measured BLAST
conductance vs. time as the gate current is periodically pulsed, showing distinct and

repeatable conductance levels. Thecolor/directionand lengthof thedepictedpulses
represents the sign and relative amplitude of the applied pulse, respectively.
e Transfer characteristics with forward and reverse sweep at various sweep rates
(11mV/sec – blue, 55mV/sec – green, and 110mV/sec – yellow). Solid lines represent
drain-source current; Dashed lines represent gate-source current. f Performance for
positive and then negative trains of 20 write pulses each while gradually increasing
current pulse amplitudes from 1 µA (black) to 10 µA (yellow) for 1ms duration,
showing that conductanceweights canbemodulatedby the gate-source current and
desired synapse characteristics of high symmetry and linearity.
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used effectively. The device schematics and cross-section can be seen
in Fig. 1b, c and additional schematic details can be found in Supple-
mentary Fig. 1. The channel conductance of the synaptic device
increases in response to negative current pulses applied through the
Nafion membrane and decreases in response to positive current pul-
ses, with the amplitude of conductance change correlating with the
amplitude of applied pulse (Fig. 1d). The response is symmetrical,
reversible, and scalable.

We hypothesize that positive (negative) current pulses cause the
semi-mobile positively charged proton-concentrated clusters within
Nafion to move toward (away) from the graphene interface, shifting
the interface capacitance and affecting the electrical double layer,
which consecutively affects the charge carriers’ density and graphene
channel conductance. To corroborate the hypothesis, we gathered
transfer curves of the BLAST devices, shown in Fig. 1e, by fixing drain
voltage VD =0.1 V, sweeping gate voltage VG from 0V to +2.5 V at
varying speeds, andmeasuring both the drain current (ID, solid curves)
and gate current (IG, dashed curves). Themeasurements show that the
charge neutrality point (CNP) of the graphene is ~2 V, whichmeans the
graphene is highly p-doped, which is expected considering the gra-
phene was transferred using wet-etch approach. Faster sweeping rate
results in increased hysteresis in gate current IG and a slight leftward
shift on thebackward sweep,which is expectedbehavior for ambipolar
transistors40. The proton accumulation near the graphene interface is
shifting the Fermi energy closer to the CNP, resulting in a decreased
conductance. We also observe a slight decrease in minimum ID (see
Supplementary Fig. 2), which may be an indication that a limited
hydrogen adsorption on graphene is happening41. It is also noted that
the leakage current is very high in this case. However, this is an artifact
of the large area of the device at around 15mm2. Supplementary Fig. 3
shows a transfer curve of a µBLAST where the gate current is on the
order of nA atmaximumwith a drain current on the order of 100 µA, an
expected result for an electrolytic graphene transistor. The leakage
current in electrolytic graphene transistors can additionally be
explained by the reduction of oxygen in the environment42.

Figure 1f shows change in device conductance as a response of
cycling pulse trains (positive and negative) for a fixed absolute value
current magnitude IG. This is repeated for 5 different current magni-
tudes, and the result shows that the response is highly reversible and
modulated by the strength of the pulse amplitude. To show that the
use of graphene is essential in the function of this device, we char-
acterize alternative devices by replacing the active channel layer with
another common semiconductor, PEDOT:PSS (see Supplementary
Fig. 4). The control devices show no conductance modulation upon
current pulses applied through the Nafion gate, because PEDOT:PSS
requires bulk electrochemical reactions with mobile protons to mod-
ulate the conductance8,43. Since the Nafion is not fully hydrated and
there is no proton source at the gate, there are no freely moving
protons to deploy29,30. Hence, the observed effect is related to the
hybrid interface between graphene and Nafion. We hypothesize that
the proton clusters migrate toward the graphene-Nafion interface,
forming an electrical double layer and either hole- or electron-doping
graphene, a similar mechanism to that seen in supercapacitors with
carbon-based electrodes44. Our observed surface effect requires far
fewer protons to accomplish a conductance change than the bulk
electrochemical reaction in PEDOT:PSS due to the atomically thin
nature of graphene. Coupled with the slow kinetics of the proton
cluster movement within the dry Nafion matrix, long-term potentia-
tion can be explained. It should be noted that voltage pulses can also
be used in place of current pulses with the addition of a switch at the
gate to open the circuit when a pulse is not being delivered, a common
technique to enhance state retention in electrochemical devices8,45. In
the caseof theBLASTs, current pulses are useddue to easeof use in the
experimental setup and to promote the linearity and symmetry of
synaptic response because the amount of charge delivered to the

device mediates the change in conductance. These characteristics will
be described in the subsequent section.

High linearity and symmetry in synapse response are essential
figures of merit for efficient backpropagation training of neural
networks46. The conductance evolution behavior of the mBLAST
device is linear and symmetric, indicating the potential use in online
learning applications. This is evaluatedby applying a ramp test: a series
of repeated positive and negative spikes cycling the device across its
dynamic range. Linearity and symmetry are calculated by collapsing 50
repeated ramping cycles into a single ramp (see Fig. 2a), obtaining the
mean and standard deviation conductance of the ramps performed.
Non-linearity parameters calculated using previously reported
methodology47 described in Supplementary Note 1 are δP =0:89 and
δD =0:76, indicating that performance is approximately linear (δ < 1,
where δ =0 is ideal linearity) and highly symmetric since both direc-
tions have the same sign and nearly the same magnitude. As for the
number of states achievable, there are 100 explicit conductance states
shown in these devices in Fig. 2b. In other experiments, we achieved
300 (see Supplementary Fig. 5) and a maximum of 512 (see Supple-
mentary Fig. 6) specifically defined conduction states, which is more
than achieved in other comparable devices. Ultimately, the actual
number of states achievable is directly related to the read and write
noise levels. The mBLAST devices feature an average read noise cal-
culated (see Supplementary Note 1) to be 0.029% and write noise of
around 1.0% (see Fig. 2a, b), corroborating that a high number of
effective states can be functionally achieved in the device. The on/off
ratio is also high and spans in the range of 200-500%, which is com-
parable to or even exceeds results of competing ionic devices27,45,48

(see SupplementaryTable 1). It shouldbenoted thatwhile larger on/off
ratios compared to what is shown in Fig. 2a, b can be accomplished by
delivering larger write pulses, on/off ratios above 200% are often not
desirable in neural network training applications due to the degrada-
tion of linearity and symmetry (see Supplementary Fig. 7). However,
due to the low read and write noise characterized, the effective num-
ber of states should still be high with the caveat that sufficiently high
resolution read circuitry can be implemented in the system.

In order to get a complete picture of conductance state control,
the relationship between a conductance change (ΔG) per current pulse
of different durations and amplitudes is investigated. Mapping of the
conductance change as a function of the pulse duration and amplitude
(Fig. 2c) shows that ΔG has an almost linear dependence on the pulse
duration and pulse amplitudes. It can be seen (Fig. 2d, e) that ΔG
increases linearly with the increase in either only pulse amplitude or
pulse duration. Furthermore, there is an evident asymmetry in the
response, which becomes more pronounced at higher pulse duration
and amplitude. A long positive pulse at high amplitude will result in a
much larger magnitude in conductance change than a long negative
pulse of high amplitude. However, at lower pulse duration, the ΔG is
approximately the same magnitude for opposite polarity pulses and
generally has a linear dependencewith pulse amplitude. The change in
conductance for 50ms long pulses deviates from this linear trend, but
this is possibly due to the need for a larger magnitude current pulse to
overcome intrinsic energy barriers in ion transport within the dry
matrix of Nafion.

Finally, we study how channel area affects device performance by
building devices with different channel areas, varied from ~10mm2 to
~100mm2. For the experiments, both pulse amplitude andduration are
kept constant, and a clear decline in energy normalized conductance
change (ΔG=G0, %/nJ) magnitude is observed (see Fig. 2f) with
increasing the device area. Though a linear trend (R = −0.93) cannot be
concluded due to the appearance of two area-dependent clusters, a
general decrease in conductance change as area increases is evident.
This is corroborated when only considering devices with channel area
larger than 1mm2 (R= � 0:7) (see Supplementary Fig. 9). This means
that application of the same gate pulses to smaller devices results in
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larger effective charge-per-area, resulting inmore effective shift in the
graphene Fermi level and showing scalability of the BLAST.

To characterize the endurance of a graphene/Nafion synapse,
long-term pulse cycling (ramp of 20 pulses with 10 µA amplitude and
1ms duration) is performed for more than ten million cycles (see
Fig. 3a). No device performance degradation was seen for up to 107

cycles, which is the maximum capacity of our measurement set-up,
and not the limit of mBLAST performance. As one can see from the
averaged and collapsed ramp (Fig. 3b), the performance for the first
106 cycles is highly uniform. A more granular representation of the
change in ramping characteristics between 106 and 107 cycles is shown
in Supplementary Fig. 10. Starting from ~2 × 106 cycles, there is a drop
in conductance, which saturates at ~4 × 106 cycles, and is very uniform
afterward. Furthermore, when approaching 107 cycles, there is a slight
increase in theminimumconductance, alongwith other changes in the
response shapeof the ramp. It is important tonote that this asymmetry
happens only at the lowest conduction points when negative pulses
are applied through the gate. This means that median electrostatic
charge is gradually shifted, reducing the conductance of the graphene
device until the CNP is reached (Dirac point, at approx. +1.8 V, see
Fig. 1d). A further change in electrostatic charge will further shift the
Fermi level into electron-doping regime, increasing the channel con-
ductance. This feature changes device linearity, but due to the similar

magnitude of non-linearity and symmetry, conductance changes per-
formed after 107 pulses would still be effective.

Retention time is another essential figure of merit for synaptic
transistors and many neuromorphic computation systems47. In this
work, we report on long retention times exceeding 400 seconds (s),
shown in Fig. 2b. Another example of this is shown in Fig. 3d, where 50
current pulses are delivered to the device and measurement is con-
tinued, allowing the device state to relax. Retention time here refers to
the time required for 10% decay of the effective conductance range.
Some neuromorphic devices report on much longer retention
times8,49; however, when working with biologically relevant systems,
the average frequency of events is <1 Hz.Hence, 400 s retention time is
adequate. Additionally, due to the dependence of Nafion ion con-
ductivity on hydration, there is a possibility to tune the retention by
controlling the moisture level in the Nafion membrane50. The dom-
inanceof short-termpotentiation depends on the conductance regime
of the device, where changes in conductance are primarily short-term
when the conductance is near maximum and minimum (see Supple-
mentary Fig. 11). For example, if a positive conductance change is
applied when the device is nearmaximum conductance, the change in
conductance will only be retained for several seconds before con-
ductancedecays to the value preceding the change. This is an attribute
that is common to ionic synaptic transistors of various types51,52. In the
timescale of 1 pulse/sec (see Fig. 3e), the device exhibits long-term

Fig. 2 | Performancemetrics of themacroscale BLAST devices. a Conductance
per pulse number (20 negative and 20 positive pulses). The black line depicts the
mean over 50 measurements, and the blue cloud represents the standard devia-
tion. Nonlinearity values for potentiation and depression were found to be δP =
0.89 and δD = 0.76. Averagewrite noise was found to be σwrite = 1.97%. b Stepwise
increase in device conductance upon a series of 100 consecutive pulses (each pre-
synaptic pulse is 10 µA, 100ms). The inset shows the state density distribution of
20 states, which do not overlap, indicating extremely lowwrite noise at 0.029% of
the dynamic range. c Color plot of conductance change intensity with varied pre-

synaptic pulse amplitude and duration. Supplementary Fig. 8 contains the log-log
version of the plot that better represents distribution at lower pulse amplitudes
and durations. d Absolute change in conductance (ΔG) with varied pulse ampli-
tude (pulse duration is constant, 10ms). e Absolute change in conductance (ΔG)
with variedpulseduration (pulse amplitude is constant, 1 µA). fPercentage change
from initial conductancenormalized by energy dissipatedas a functionof channel
area. The black dotted line depicts a line of linear fit with a correlation coefficient
of R = −0.93.

Article https://doi.org/10.1038/s41467-022-32078-6

Nature Communications |         (2022) 13:4386 4



plasticity (no conductance decay is present at the scale). As a result,
mBLASTs can be operated in variable conductance ranges depending
on the balance of needs between retention and dynamic conductance
range. It should be noted that the limited retention time of the BLAST
devices eliminates the possibility of use in inference-related applica-
tions due to the high retention times necessary for those systems.
However, in learning-related applications such as a continuously
updating biological interface, the retention time shown here is suffi-
cient. The most important figures of merit for neural network training
and by extension, continuous learning, are low-energy dissipation per
update, favorable synaptic plasticity, and good endurance53,54. Even in
the case of adoption in neural network accelerators, though non-tri-
vial, a solution to short retention time can be to use devices that have
favorable synaptic characteristics during training (BLASTs), and to
then transfer the weights to memory with long retention time for
inference when training is finished55. As a result, the targeted applica-
tion of the BLASTs is for neural network training.

As mentioned previously, for effective online learning, individual
write pulses must be energy efficient. Devices of varying area from
~10mm2 to ~100mm2 were fabricated and tested by applying a set
current pulse of 1 µA amplitude, 10ms duration and recording the
change in conductance. The calculation of chargemodulation through
current spike and energy per spike calculation are given in Supple-
mentary Note 2. The energy dissipation per device area is shown in
Fig. 4a and is normalized to reflect the energy required to change the
conductance of the device by 1% (chosen to approximate a minimum
achievable step due to write noise and read noise). The area-
normalized energy dissipation per write pulse is very low, far below

1 f J, the energy dissipation of a biological synapse. It is evident that
there is a weak trend of increasing the energy with smaller device area,
with µBLASTs exceeding 1 fJ/µm2 in energy dissipation, but the results
still indicate that device scaling still greatly benefits the devices. These
results still exceed or match comparable organic and 2D devices at a
competitive speed (see Fig. 4b and Supplementary Table 1).

It is known that Nafion proton conductivity increases with
increased temperature28. We conducted experiments with anmBLAST
device characterized at temperatures in the range of 0 °C to 80 °C
showing marked differences in device performance. As seen in Fig. 3f,
the average performance of the synaptic transistor in terms of ΔG
improves when temperature is raised from0 °C to 40 °C (from ~9 µS to
~11 µS), followed by a decrease down to 4 µS at 80 °C. Additionally,
while there is no significant change in linearity, there is an increase in
write noise up to 22% at 80 °C, shown in Supplementary Fig. 12. We
associate the decrease in performance with reduction of Nafion
hydration due to annealing at temperatures above 40 °C. In
bioelectronics-related applications, however, these temperatures
should never be reached, and device performance is robust at the
relevant temperatures.

The effect of different drain voltage potential VD on mBLAST
performance was also characterized. We found that modulation of VD

has no effect on the maximum and minimum conductance of the
synapse (see Supplementary Fig. 14) anddoes not have a clear effect on
either linearity or write noise. As a result, the chosen read voltage does
not affect device functionality.

Although the aforementioned mBLASTs are biocompatible, fea-
ture superior energy efficiency, and have outstanding neuromorphic

Fig. 3 | Endurance and retention characteristics of mBLAST. a Endurance ramp
testing using20positive andnegative pulses per rampof anmBLASTat 105, 106, and
107 pulses. b Collapsed ramps averaged across 2 × 105 cycles prior to the cycle
number indicated in the legend. The colored cloud corresponds to the write noise
of each snapshot. cNonlinearity parameterδ calculatedasa functionof the number

of cycles. The orange dashed line depicts perfect linearity. d Conductance relaxa-
tion after 50 pulses are delivered to mBLAST to bring the device to minimum and
maximum conductance. e Conductance over time with 5 pulses delivered at a one
second period. f Average change in conductance as a function of temperature in
Celsius.
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plasticity characteristics, the devices are still rather large. In order to
implement more complex neuromorphic functionalities, the device
sizes must be scaled down, which we achieved by building microscale
devices (µBLASTs). The µBLASTs weremade usingUV-lithographywith
HD-8820 passivated graphene field-effect transistors (GFETs, see
Fig. 5a)56. On top of the pre-passivated GFET array, a Nafion-117 con-
taining solution was spin-coated and hard-baked, repeating to obtain
three layers of Nafion, with the total thickness of ~650nm. This high
thickness ensures there is no short between the top gate and bottom
contacts and thinner Nafion could be used. Similar performance
synaptic behavior is observed in the µBLASTs (Fig. 5b), with sig-
nificantly lower currents required to change the conduction state of
the device compared to the larger mBLASTs. The retention time
characterized in the µBLASTs is also found to be similar to that of the
mBLASTs, both in the range of over 100 s (see Supplementary Fig. 15).
Some performance characteristics are notably different compared to
themacroscale devices. Firstly, it is important to note that reduction of
size yielded an increase in normalized energy dissipation (see Fig. 4a).
For devices with channel dimensions 40 µm× 10 µm, write energy
dissipation is found to be 2.55 ± 0.39 fJ/µm2 (N =4) for a single update.
This is most likely due to the usage of a liquid-phase Nafion source

material, which is not chemically prepared like thicker Nafion films57. It
is possible that hard-baking the spin-coated Nafion results in less
moisture, reducing the density of protonic clusters compared to the
preprocessed film. Due to the potential use ofmicroscale devices in an
array, read power dissipation needs to be as low as possible to mini-
mize energy dissipation in a crossbar in inference mode. Because of
thehigh conductanceof graphene, a low readvoltage at 100mVcanbe
used. A low read power shown in Fig. 5b between approximately 2.5
and 5.0 µW is obtained (see Supplementary Note 3 for calculation).
Assuming high frequency read operations are possible (between 1 ns
and 100ns), read energy can easily be sub-pJ. The read energy dis-
sipation can be further improved by optimizing the read voltage to be
as small as possible. Figure 5c shows sampled ramp data for four
40 µm× 10 µm devices with conductance and ΔG ranges within similar
ranges of operation. This data is then used to construct the ΔG vs. G
lookup table46 (LUT) graphs presented in Fig. 5d for the four µBLAST
devices. The color-coded plots describe the cumulative distribution
function likelihood that a given ΔG is greater than the expected
experimental ΔG. Nonlinearity parameters are also presented for each
distribution, and it is evident that there was greater non-linearity for
the µBLASTs during positive updates and a relatively linear response
for the negative updates, indicating that plasticity is asymmetric.While
asymmetric update response is typically considered non-ideal for
applications like backpropagation training46,47, we show that such
asymmetry of experimental data can yield algorithmic benefits in
compute-limited situations.

After analyzing the device characteristics of the mBLASTs and
µBLASTs, the experimental conductance update characteristics are
used to simulate online learning neuromorphic tasks. The experi-
mental device data is used to construct LUTs that can be directly
sampled by the crossbar simulator, allowing the simulation to account
for linearity, symmetry, andwrite noise directly from the experimental
results. The following three classification tasks were chosen: (1) Mod-
ified National Institute of Standards and Technology (MNIST)58 hand-
written digits recognition, (2) University of California-Irvine Human
Activity Recognition (UCI-HAR)59 dataset for movement classification
from biometric sensor data, and (3) Fashion-MNIST60 clothing article
classification. The mBLAST devices were applied on MNIST and UCI-
HAR,while the performance of the µBLASTswas evaluated onUCI-HAR
and the more complex Fashion-MNIST datasets. Training is accom-
plished by simulating a small multilayer perceptron with two synaptic
weight layers L1 and L2 using CrossSim61, a physics-rich neuromorphic
crossbar simulator. See Methods for more details on the training
simulation setup.

Training performance of the mBLASTs on MNIST as well as the
application-relevant UCI-HAR dataset was close to ideal, i.e., matching
the test accuracy of a comparison network implemented using
numeric weights with 64-bit resolution and ideal backpropagation62

updates (see Fig. 6a, b), reaching ~98% test accuracy on MNIST and
~95% test accuracyonUCI-HAR after 20 epochs. Thiswas a direct result
of the desirable characteristics of linearity and symmetry quantified
previously (see Fig. 2a), along with low write noise.

Due to the unique non-linear and asymmetric update of the
µBLASTs, online training performance of a multilayer perceptron on
UCI-HAR learned more slowly than ideal synaptic updates, seen in
Fig. 6c. However, after 20 epochs, the difference in classification
accuracy between the numeric weights and the BLAST synapses was
less than 1%, indicating sufficient synapse expressivity to learn a task at
the difficulty of UCI-HAR. Training the network on Fashion-MNIST
yielded a surprising result (as evident from Fig. 6d): the µBLAST
synapse training performance significantly exceeded that of the ideal
numeric weights. The improvement in classification accuracy is more
pronounced when utilizing the measured synaptic properties of a
single device (D1) compared to when the variation across all four
devices (D1-4) is accounted for, indicating that D1 has plasticity

Fig. 4 | Comparative performance of BLAST devices. a Energy dissipation nor-
malized by device area and 1% change in conductance as a function of device area.
b Benchmarking figure, comparing the BLAST devices (red stars) to other organic
polymer-based devices (orange circles) and 2Dmaterial based charge trap (purple
squares), electrochemical (blue triangles), RRAM (green rhombus) and FET (gray
hexagons) devices. The details and references can be found in Supplementary
Table 1 and Supplementary Fig. 12.
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characteristics that should be investigated more closely. See Supple-
mentary Fig. 16 for a learning rate sweep confirming this effect. We
hypothesize that this improvement in learning is attributed to the
unique shape of the synaptic response (see Fig. 5d), where ΔG is larger
at low conductance values and smaller at high conductance values. In
other works from others and ourselves, similar update responses,
known as metaplasticity, have been shown to be beneficial for online
streamed learning63,64 and to combat catastrophic forgetting63.

To ascertain the functional effect of the metaplastic synapse
property, we modified the numeric updates to emulate the LUT of D1.
This was done by including a multiplier that depends linearly on the
weight value for positive updates while the negative updates were left
unchanged. A graphical representation of the update is shown in
Supplementary Fig. 17. The resulting test accuracy, shown by the
numeric-metaplastic curve in Fig. 6d, closely matches that of experi-
mental LUT1, showing that it is indeed themetaplastic updateproperty
of the µBLAST device that contributes directly to the boost in
performance.

To understand how the synaptic metaplasticity affects the high-
level properties of the neural network, we examine the final trained
weight distributions of two networks: one trained using fully numeric
weight updates (without metaplasticity) and one trained using
µBLASTs. The representative distributions for the two neural network
layers are plotted in in Fig. 6e, f (see Supplementary Fig. 18 for full
dataset, including the weight distributions of a numeric metaplastic
synapse network). In layer 1, the numeric weights have a remarkably
uniform distribution in values, while for µBLASTs, the weight dis-
tribution visibly tapers off away from zero (see Fig. 6e). This effect is

more pronounced in layer 2, where there is a prominent peak inweight
distribution around zero that is absent from the numeric case. The
tendency of the weight distributions to cluster around small absolute
values is a natural consequence of the devicemetaplasticity. The LUTs
plot (Fig. 5d) suggests that as the conductance of the device increases,
the change in conductance inducedby a givenpulse is smaller. This has
an effect that is equivalent to weight decay regularization65, which
penalizes large weight values to avoid overfitting to the training set
and thus improves the ability to generalize to new examples. This
effect is also similar to weight normalization66, a technique inspired by
batch normalization67, both of which are used to train well-regularized
neural networks with superior generalizability. The benefit of this
regularizationwas larger for Fashion-MNIST than for themuch simpler
UCI-HAR classification task, likely because the small multilayer per-
ceptron was relatively under-parameterized for Fashion-MNIST but
not for UCI-HAR. Our results indicate that the µBLAST devices can be
used to realize hardware-integrated regularizationby taking advantage
of metaplasticity. In addition, this result can be extrapolated to other
types of devices with similar nonlinear and asymmetric conductance
response characteristics where for the same input, there are small
conductance changes when updating toward the boundary of the
conductance range and large conductance changes when the opposite
is true. Two possible candidates that exhibit this behavior can be
identified in refs. 68,69, but are not limited to these examples. The
general value of this result motivates a further study of plasticity
tuning beyond the established linear and symmetric model.

In conclusion, we have demonstrated a novel solid electrolyte
gated graphene device with unique artificial synapse behavior. We

Fig. 5 | Performance metrics of the µBLAST devices. a Schematic of the 32
µBLASTs array, featuring metal feedlines (red), graphene channel (green), passi-
vated with polyimide and covered with Nafion (blue). b µBLAST conductance
cycling per alternating positive and negative trains of 20 write pulses (10 nA mag-
nitude and 5ms duration). Read power dissipation is also shown. c Average change

in conductance of four nominally identical µBLAST devices showing an overlap in
dynamic range and plasticity. d Heat maps of the cumulative distribution function
for the four µBLAST devices, showing the unique metaplastic behavior for positive
spikes. On each graph, the color code is normalized from 0 to 1, representing the
probability that ΔG is greater than the expected value of ΔG.
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experimentally revealed that these bio-compatible devices operate at
low energy density (<50 aJ/µm2) at >10 kHz speeds, competitive with
other 2D materials-based devices and allowing the potential for the
interfacing of biological and artificial synapses. Neural network simu-
lations show that the low read and write noise, coupled with the linear
and symmetric synaptic characteristics of themBLASTs allow for near-
ideal classification. More importantly, the µBLASTs are demonstrated
to be metaplastic synapses that realize weight normalization, a weight
regularization algorithm used to train generalizable neural networks.
This allows the performance of µBLAST networks to exceed the clas-
sification accuracy achieved by ideal linear numeric weights on diffi-
cult tasks. These characteristics make BLAST devices promising
candidates in the intersection of bioelectronics and neuromorphic
computing.

Methods
Growth of graphene/PMMA stack
The graphene electronic tattoos were fabricated starting with mono-
layer CVD grown large-scale graphene on copper, purchased from
Grolltex. A~2 × 2 in2 square was then cut out and spin-coated with
PMMA (PMMA 950 A4) to yield a ~200 nm thick layer. To do so, the
copper/graphene stack must be placed on a silicon wafer with the
graphene facing up. Kapton tape is then used to secure all sides of the
copper/graphene stack to the wafer such that a watertight seal is
formed under the copper to prevent PMMA from leaking underneath
the stack. Afterwards, PMMA (950 A4) is spin-coated onto the stack at
~2500 rpm for 60 s. The sample is then baked on a hotplate at 200 °C
for 15–20min before it is ready for etching.

Graphene/PMMA stack transfer onto tattoo paper
The PMMA/graphene/Cu foil is then placed into ammoniumpersulfate
((NH4)2S2O8, 0.1M) to etch away the copper. The PMMA/graphene film
is then cleaned in a series of water washing steps and then transferred
onto a temporary tattoo paper. The graphene/PMMA/tattoo paper is
then dried and cut into arbitrary desired locations. In order to transfer
the graphene/PMMA onto an arbitrary surface, it is first soaked in
water for ~5–10min.

mBLAST device fabrication
The macroscale BLAST devices were fabricated in multiple steps, by
combining Nafion 117, PMMA/graphene, conductive adhesive gold
tape, and gold/EVA/PET film. The Gold/EVA/PET film is used to form a
tight back-gate contact. The fabrication starts by evaporating
~60–90nm of gold onto an ethylene vinyl acetate (EVA) film. After
preparing the gold EVA gate, it is brought in contact with a piece of
Nafion-117 of the desired dimension (typically from 5 × 5mm to
15 × 15mm). This step is performed on a hotplate (at ~150 °C) for no
longer than 15 s. Following the application of the Nafion strip, adhesive
gold contacts are placed 3–10mm apart from each other, perpendi-
cularly from the gate, on topof theNafion to form the source anddrain
terminals. The GETs (~5–15 cm length and 3–10mm width) are pre-
pared for transfer onto the BLAST device starting by soaking in DI
water for 5–10min. The graphene should show signs of slight separa-
tion from the tattoo paper when sufficiently soaked. The GET can then
be placed on top of the Nafion and transferred onto the top of the
device such that the graphene contacts both gold source-drain con-
tacts and forms a channel across the Nafion.

Fig. 6 | Neuromorphic crossbar simulation training results. a, b Online training
simulation of multilayer perceptron with mBLAST devices using the experimental
data shown in Fig. 5d applied on MNIST (a), and UCI-HAR (b). c, d Simulation of a
µBLASTcrossbar using the experimental data shown in Fig. 4 appliedonUCI-HAR (c),
and Fashion-MNIST (d). Insets in a–d depict the data type for MNIST (handwritten

digits) UCI-HAR (human activity signals) and Fashion-MNIST (clothing articles)
neuromorphic tasks. e, f Weight distribution after 20 epochs in layer 1
(e), and layer 2 (f) of the multilayer perceptron for a crossbar consisting of numeric
weights and synapses derived fromDevice-1. Layer 1 has 235,500weights and layer 2
has 3010 weights. The detailed dataset is shown in Supplementary Fig. 18.
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µBLAST device fabrication
CVD grown graphene was covered with a 200nm thin layer of PMMA
for transfer. After etching copper in ammoniumpersulfate (see above),
the graphene was transferred onto the wafer with pre-fabricated Au/Ti
(10/50nm thick) markers. A photoresist was used to protect the gra-
phene channel areas during exposure to oxygen plasma. The stack of
10 nm Ti and 90nm Au was e-beam assisted evaporated on the wafer
through a pre-defined structure of lift-off resists to form source and
drain electrical connections. Photostructurable polyimide, HD8820
was used in the last step to form the passivation. Spin- coated at
5000 rpm, exposed at i-line UV light, developed in 0.26% TMAH, and
hard baked at 350 °C, the polyimide forms a 3 µm thick passivation.
The deviceswere then diced and spin-coatedwith the liquid Nafion-117
containing solution (Sigma–Aldrich) three times (3000 rpm, 150 °C
bake for 20mins), forming a 666.7 ± 28.9 µm thick layer.

Pulse and synaptic measurements
The three-terminal devices were measured using high-precision
source/measure unit Agilent 2902B. One of the SMUs is used to
apply 0.1 V of the drain-source potential, while the gate is used in the
current-pulsing mode to apply conductance changes.

Pulse and relax
Two pulse train tests were used to characterize conductance change
due to periodic pulsing. This was done by sending either 50 or 250
consecutive write current pulses with corresponding widths and
amplitudes of 100 µs and 100 µA, 1ms and 10 µA, 10ms and 1 µA, and
100ms and 100nA. All pulse trains were conducted with both positive
and negative pulses. The pulses were followed with a 150–200 s relax
to observe conductance retention.

Ramp and level
A pulse ramp experiment ran multiple sequences of a train of 20
negative pulses followed by a train of 20 positive pulses. The level
experiment consisted of an arbitrary sequenceof negative andpositive
current pulses of 10, 20, and 30 µA that were pulsed through the gate
every 5 s at a pulse width of 1ms. Both tests were used to demonstrate
distinct and repeatable conductance levels.

Temperature tests
The temperature dependence test measured macroscale device per-
formance at varying temperatures (0 °C, 25 °C, 40 °C, 60 °C, and
80 °C). The 0° test was performed inside of an insulated Styrofoam
container filled with ice. The macro device was lowered onto ice using
a petri dish and connected to the Keysight B2902A using wires thin
enough as to not disturb the insulating seal. At 25°, 40°, 60°, and 80°,
thedevicewas secured to the topof a hotplate usingKapton tapewhile
a thermocouple was used to verify the temperature. The above-
mentioned tests were performed at each temperaturewith aminimum
timeof 30min after each temperature change to ensure the devicewas
successfully brought to temperature.

Neuromorphic computing simulations
Neural network training simulation results and synaptic update lookup
tables were generated from experimental data using CrossSim61. Dur-
ing a weight update, the ideal backpropagation update is first calcu-
lated. To account for synaptic device nonlinearity and write noise, the
probabilistic LUT of device updates is queried to sample a con-
ductance change ΔG that depends on the current value of the con-
ductance G of a synapse device. To model device-to-device process
variations, each device in the simulated array is randomly assigned to
one of four (three) LUTs, each of which is constructed from a different
experimentally characterized μBLAST (mBLAST) device. To represent
both positive and negative weights, a single weight value is encoded in
the difference in conductancebetween twopaired BLASTdevices. This

is done for two reasons: (1) computing the difference in analog reduces
the required dynamic range of the peripheral circuits, (2) using two
devices per weight, rather than a fixed analog offset for all devices,
avoids coupling the variability and noise in the offset resistor into all
the results, which effectively amplifies the variability. When a weight is
updated, the conductance of both devices in the pair are updated. The
weights are trained using stochastic gradient descent with a batch size
of 1, i.e. training samples were shown one at a time. A two-layer MLP
was trained for each task, where a sigmoid activation is used after the
first layer and a softmax is used after the second layer. TheMNIST and
Fashion-MNIST networks use a 785 × 300 weight matrix for the first
layer and a 301 × 10weightmatrix for the second layer (including bias).
The UCI-HAR MLP has a 577 × 200 matrix and a 201 × 6 matrix for the
first and second layer, respectively.

Associated content
Supplementary Information is available and includes comparison
table; Supplementary Notes with calculations of nonlinearity, read and
write noise, and energy dissipation; control experiments; additional
schematics; detailed datasets and figures.

Data availability
The data generated in this study, presented in the Main Text figures,
are provided in the Supplementary Information/Source Data. Addi-
tional data is available on reasonable request to the corresponding
author. Source data are provided with this paper.

Code availability
Code available on reasonable request to the corresponding author.
CrossSim crossbar simulator available at https://cross-sim.sandia.gov/.
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