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Abstract: It is well known that, under plastic deformation, dislocations are not only created but also
move through the crystal, and their mobility is impeded by their interaction with the crystal structure.
At high stress and temperature, this “drag” is dominated by phonon wind, i.e., phonons scattering
off dislocations. Employing the semi-isotropic approach discussed in detail in a previous paper
(J. Phys. Chem. Solids 2019, 124, 24–35), we discuss here the approximate functional dependence of
dislocation drag B on dislocation velocity in various regimes between a few percent of transverse
sound speed cT and cT (where cT is the effective average transverse sound speed of the polycrystal).
In doing so, we find an effective functional form for dislocation drag B(v) for different slip systems
and dislocation characters at fixed (room) temperature and low pressure.
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1. Introduction

Many modern material strength models, for example those in Refs. [1–7], are based on dislocation
dynamics. However, dislocation mobility, especially in the high temperature and high stress regime,
is poorly understood theoretically. Moving dislocations experience a drag due to their interaction
with the crystal structure, and this drag coefficient B determines the dislocation glide time between
obstacles. The lack of a well-established functional form for B(v, T, . . .) has led many researchers to
assume B to be a constant (or a constant over a simple “relativistic” factor) as a fist order approximation
within their strength models. Thus, better insight into the true functional form of B could improve
those models.

Different mechanisms dominate dislocation drag in different regimes. However, at temperatures
comparable to or higher than the Debye temperature and at high stress (leading to dislocation velocities
in the range 0.01 . v/cS < 1, where cS denotes the lowest shear wave speed corresponding to
the direction of dislocation glide), phonons scattering off dislocations (commonly referred to as
“phonon wind”) constitutes the dominating effect. The lower end of this range is known as the
“viscous” regime where B(v) at given temperature and pressure is known to be roughly constant.
However, with increasing stress and thus increasing dislocation velocity, B exhibits a non-linear
velocity dependence. This is seen in numerous molecular dynamics (MD) simulations (see e.g., [8–12]
and references therein), but also within the recent theoretical framework in Refs. [13,14].

In Ref. [13], the theory developed by Alshits and collaborators [15] is taken to the next level by
including not only the full velocity dependence of B, but also longitudinal phonons (in addition to
the dominating contribution of transverse phonons) as well as an anisotropic dislocation field and
single crystal elastic constants. Hence, this model developed having polycrystals in mind, keeps
the phonon spectrum isotropic (for simplicity), but dislocations are modeled according to the single
crystal symmetry (bcc, fcc, hcp, etc.) in order to take into account their anisotropy to some extent.
This “semi-isotropic” approach constitutes an intermediate step in an ongoing long-term endeavor to
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include all anisotropic effects and the true phonon spectrum (which is beyond the scope of the current
work). Nonetheless, valuable insights were already gained, e.g., the non-trivial dependence of the
drag coefficient on the dislocation character angle ϑ (between line sense and Burgers vector).

For now, the model is also restricted to the subsonic regime where v < cT. The question whether
dislocations in metals can reach supersonic speeds is still under debate, although numerous MD
simulations suggest it is possible [8,11,16–19]; see also the recent discussion on interpreting those
results in the context of line tension and dislocation shape [20]. For recent literature on supersonic
dislocations, (see, e.g., [21–23] and references therein).

Here, our main goal is to highlight the effective functional dependence of B on the dislocation
velocity within the theory of [13] (and its numerical implementation of Ref. [24]), and to explain how to
derive simple analytic representations of B(v) that are amenable to subsequent use in applications
(such as material strength models). We also present new results for metals and slip systems not
presented in [13] (i.e., prismatic and pyramidal slip for hcp metals). Thus, the current work in a sense
complements Ref. [13] and the theory developed there.

2. Phonon Wind in the Semi-Isotropic Approach

The drag coefficient B of a dislocation is defined as the proportionality coefficient of the force
F = Bv needed to maintain dislocation velocity v. It is related to the dissipation D per unit length
due to phonon scattering via D = Bv2, and takes the form [25,26]

B =
4π

h̄v2 ∑
s′ ,s′′

∑
q′ ,q′′

∫
d2q Ωq|Γs′s′′(~q

′
,~q
′′
,~q)|2(nq′′ − nq′)δ(~q

′ −~q ′′ −~q)δ(ωq′ −ωq′′ −Ωq) ,

Γs′s′′(~q
′
,~q
′′
,~q) =

h̄
4ρ
√

ωq′ωq′′
∑
i,j,k

dkk′(~q)w
∗
q′iwq′′ j ∑

i′ j′k′
q′i′q
′′
j′ Ã

i′ j′k′

ijk , (1)

where ~q
′′

and ~q
′

are the wave vectors of incoming and outgoing phonons, s′ and s′′ label their
polarizations (two transverse and one longitudinal), and~q is the wave vector associated with the
dislocation field in Fourier space, dkk′ . In contrast to the phonons (which are quantized and have
discrete wave vectors determined from the perfect lattice), the dislocation is modeled as a classical
field in the continuum limit. Assuming an infinitely long, straight dislocation, its only spatial
dependence is within the plane perpendicular to the dislocation line. The sums over discrete phonon
momenta can subsequently be approximated as integrals over the first Brillouin zone. ωq′ , ωq′′ are
the phonon frequencies presently depending linearly on the wave vector length in accordance with
the isotropic Debye approximation, i.e., ωq′ = cs′ |~q

′ | where cs′ is the sound speed of a phonon with
polarization s′ (either transverse cT or longitudinal cL). Ωq = |~q ·~v| is the energy transfer whenever
a phonon scatters on the dislocation. nq′ denotes the equilibrium phonon distribution function
nq′ = (exp(h̄ωq′/kBT)− 1)−1, which controls the number of scattering events per unit time. h̄ is Planck’s
constant, ρ is the material density, and the two Dirac delta functions in the second line of Equation (1)
encode momentum and energy conservation within each scattering event. Γ finally represents the
associated matrix element, or scattering probability. As such, it depends on the (anisotropic) dislocation
displacement gradient field dkk′ , the (quantized, isotropic) phonons whose orthonormal polarization
vectors are presently denoted by wqi := wi(~q, s), and a linear combination of second (SOEC) and

third order elastic constants (TOEC) of the anisotropic single crystal grains of a polycrystal, Ãi′ j′k′

ijk .
For technical details on the theory, we refer to [13] as well as [14,15].
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2.1. Steady State Dislocations and Slip Geometries

The displacement gradient field in the continuum limit and within the realm of linear elasticity of
a dislocation moving at constant velocity, can be determined from solving the equations of motion
(e.o.m.) and the (leading order) stress–strain relations known as Hooke’s law:

∂iσij = ρüj , σij = Cijklεkl = Cijkluk,l , (2)

where we have introduced the notation uk,l := ∂luk for the gradient of the displacement field uk,

and üj :=
∂2uj
∂t2 for the time derivatives. For constant velocity vi, this system of equations can

be rewritten as Ĉijkluk,il = 0 with “effective” elastic constants Ĉijkl :=
(

Cijkl − ρvivlδjk

)
(see [27]).

Upon introducing perpendicular unit vectors ~m0 and ~n0, which are normal to the sense vector~t of
the dislocation, i.e.,~t = ~m0 ×~n0, the solution takes the form uj,k(r, φ) = ũj,k(φ)/r where ũj,k(φ) is a
function of Burgers vector, ~m,~n, and Ĉijkl [28] (p. 476):

ũj,k =
bl
2π

{
nk

[
(nn)−1(nm)·S

]
jl
−mkSjl + nk(nn)−1

ji Kil

}
,

S = − 1
2π

∫ 2π

0
(nn)−1(nm) dφ , K = − 1

2π

∫ 2π

0

[
(mn)(nn)−1(nm)− (mm)

]
dφ , (3)

with the shorthand notation (ab)jk := aiĈijklbl . Variables r and φ are polar coordinates in the plane
spanned by ~m = ~m0(ϑ) cos φ +~n0 sin φ and ~n = ~n0 cos φ − ~m0(ϑ) sin φ, where ~n0 is the slip plane
normal and ~m0(ϑ) is perpendicular to ~n0 and ~t(ϑ) = 1

b

[
~b cos ϑ +~b×~n0 sin ϑ

]
. As such, ~m0(ϑ)

depends on the dislocation character angle ϑ and is parallel to ~v. The important feature to note is that
ũj,k(φ) includes terms proportional to (nn)−1 and hence exhibits divergences whenever det(nn) = 0.
This happens at certain combinations of polar angle φ and critical velocity |~vc|. As shown in Ref. [20],
critical velocities are typically close to (and sometimes equal to) the lowest shear wave speed associated
with the direction of~v in the single crystal. All dislocation displacement gradients computed with the
present method are hence restricted to (constant) velocities v that are smaller than vc.

As noted in the previous section, dislocation field uj,k(r, φ) (more precisely its Fourier transform
djk(~q)) enters Γ within Equation (1), and thus the drag coefficient B depends quadratically on uj,k.
For simplicity, we presently only consider perfect dislocations; incorporating more realistic models of
the dislocation core as well as the effect of partial dislocations into the dislocation drag coefficient are
beyond the scope of the present paper and we leave those considerations to future work. For recent
advances on the theoretical modeling of dislocation cores (albeit disconnected from phonon wind
theory), see [29–33] and references therein.

The slip systems we have considered here are:

~bfcc = bfcc
√

2
(1, 1, 0) , bfcc = a√

2
, ~nfcc

0 = 1√
3
(−1, 1,−1) ,

~bbcc = bbcc
√

3
(1,−1, 1) , bbcc = a

√
3

2 , ~nbcc
0 = 1√

2
(1, 1, 0) ,

~bhcp = bhcp (−1, 0, 0) , bhcp = a, ~nhcp-basal
0 = (0, 0, 1) ,

~nhcp-prismatic
0 = (0,−1, 0) , ~nhcp-pyramidal

0 = (0,−a, c) /
√

a2 + c2

(4)

where a and c are the lattice constants given in Tables 1 and 2, and ~b and ~n0 denote the Burgers
vector and slip plane normals, respectively (see Refs. [13,20] for details). For the case of close-packed
hexagonal (hcp) crystals, we assume the basal plane is normal to the third axis in Cartesian crystal
coordinates. The three hcp slip systems we consider, basal, prismatic, and pyramidal slip, share the
same Burgers vector but have different slip plane normals. All except for the bcc slip system above
lead to expressions that are symmetric with respect to ϑ→ −ϑ, and all slip systems are π-periodic.
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In Tables 1 and 2, we list all input data that were used in the computation of the drag coefficient
below. For the effective Lamé constants of the polycrystal, we have chosen to use the separate
experimental values (where available) listed in those tables rather than analytically averaging over
the single crystal values. The only exceptions are Mo and Zr due to lack of experimental data, and
because the Voigt and Reuss bounds are very close to each other in those cases. In fact, for SOEC of
cubic crystals, analytic averaging would be a viable avenue as well (assuming negligible texturing),
but not so much for hcp and other crystals, see [34] and references therein. (The single crystal averages
for the Lamé constants of cubic crystals agree well — within a few percent — with the experimental
results listed in Table 1, with the exception of Ni whose averaged shear modulus is ∼ 11% higher than
the measured value, and also Au whose averaged λ is ∼ 12% lower than the measured value.)

Table 1. List of input data for cubic crystals used in the calculation of the drag coefficient;
all elastic constants are given in units of GPa. The references we used to compile these data are:
Ref. [35] (Section 12) (lattice parameters a and densities ρ), Refs. [36] (p. 10) and [37] (effective Lamé
constants of the polycrystal except for Mo), Ref. [35] (Section 12) (single crystal SOEC and Zener
anisotropy ratio A := 2c44/(c11 − c12)), and Refs. [38–43] (TOEC). The Lamé constants of Mo (marked
with *) are analytical averages of the single crystal SOEC (see, e.g., [34]). The conventions for the single
crystal elastic constants are those of Brugger [44].

Ag(fcc) Al(fcc) Au(fcc) Cu(fcc) Fe(bcc) Mo(bcc) Nb(bcc) Ni(fcc)

a (Å) 4.09 4.05 4.08 3.61 2.87 3.15 3.30 3.52
ρ (g/ccm) 10.50 2.70 19.30 8.96 7.87 10.20 8.57 8.90
λ (GPa) 83.6 58.1 198.0 105.5 115.5 176.4 * 144.5 126.1
µ (GPa) 30.3 26.1 27.0 48.3 81.6 125.0 * 37.5 76.0

c11 123.99 106.75 192.44 168.30 226.00 463.70 246.50 248.10
c12 93.67 60.41 162.98 121.20 140.00 157.80 134.50 154.90
c44 46.12 28.34 42.00 75.70 116.00 109.20 28.73 124.20
A 3.04 1.22 2.85 3.21 2.70 0.71 0.51 2.67

c111 −843 −1076 −1729 −1271 −2720 −3557 −2564 −2040
c112 −529 −315 −922 −814 −608 −1333 −1140 −1030
c123 189 36 −233 −50 −578 −617 −467 −210
c144 56 −23 −13 −3 −836 −269 −343 −140
c166 −637 −340 −648 −780 −530 −893 −168 −920
c456 83 −30 −12 −95 −720 −555 137 −70

Table 2. List of input data for hcp crystals used in the calculation of the drag coefficient;
all elastic constants are given in units of GPa. The references we used to compile these data are:
Ref. [35] (Section 12) (lattice parameters a, c and densities ρ), Refs. [36] (p. 10) and [37] (effective Lamé
constants of the polycrystal except for Zr), Ref. [35] (Section 12) (single crystal SOEC), and Refs. [45–49]
(TOEC). The Lamé constants of Zr (marked with *) are analytical averages of the single crystal SOEC
(see, e.g. [34]). The conventions for the single crystal elastic constants are those of Brugger [44].

(hcp) Cd Mg Ti Zn Zr

a (Å) 2.98 3.21 2.95 2.67 3.23
c (Å) 5.62 5.21 4.68 4.95 5.15

ρ (g/ccm) 8.69 1.74 4.51 7.13 6.52
λ (GPa) 28.8 24.1 78.5 43.1 71.3 *
µ (GPa) 19.2 17.3 43.8 43.4 36.0 *

c11 114.50 59.50 162.40 163.68 143.40
c12 39.50 26.12 92.00 36.40 72.80
c44 19.85 16.35 46.70 38.79 32.00
c13 39.90 21.80 69.00 53.00 65.30
c33 50.85 61.55 180.70 63.47 164.80
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Table 2. Cont.

(hcp) Cd Mg Ti Zn Zr

c111 −2060 −663 −1358 −1760 −767
c112 −114 −178 −1105 −440 −697
c123 −110 −76 −162 −210 37
c144 227 −30 −263 −10 37
c113 −197 30 17 −270 −96
c133 −268 −86 −383 −350 −271
c155 −332 −58 117 250 −271
c222 −2020 −864 −2306 −2410 −1450
c333 −516 −726 −1617 −720 −2154
c344 −171 −193 −383 −440 −271

2.2. The Low Velocity Limit

In the limit of small velocity v, small meaning v � cT and v � cS (where cT is the effective
polycrystalline transverse sound speed and cS is the lowest shear wave speed of the single crystal in
the direction of~v), drag coefficient B simplifies to

B ≈ 4π

h̄ ∑
s′ ,s′′

∫
BZ

d3q′

(2π)3

∫
BZ

d2q
(2π)2 |Γs′s′′(~q

′
,~q
′−~q,~q, v = 0)|2

× (~q · v̂)2 ∂(−nq′)

∂ωq′
δ(ωq′ −ωq′−q) + C v +O(v2) , (5)

where v̂ denotes the unit vector in the direction of~v. Explicit numerical calculations for a number of
metals show that the first order velocity correction has a negative coefficient C < 0. To understand why
this is the case, we note that the dislocation field itself depends only on the square of its velocity and
thus its Taylor expansion around small v has no linear term. Furthermore, since ωq′ = cs′q′ and Γ scales
as 1/ωq′ωq′′ , the drag coefficient depends on the sound speeds as 1/c3

s′c
2
s′′ . Since cT ∼ cL/2, the largest

contribution to B at low velocity v is due to the purely transverse branch (where both incoming
and outgoing phonons are transverse), as already observed in earlier work [13,14,25]. In this case,
it is convenient to introduce a dimensionless integration variable proportional to the ratio t ∝ |~q ′ |/|~q|.
The energy conserving delta function then restricts the integration range of this new variable t such
that it shrinks with growing dislocation velocity v (see [13,14]). This is the dominating effect and the
reason for negative C.

2.3. High Velocity Limit

Our use of an isotropic Debye phonon spectrum introduces the limitation v < cT on our present
theory. Nonetheless, B does not diverge at v = cT: All divergences within B are inherited from the
poles present in the dislocation field, as pointed out in Section 2.1 above. Indeed, those appear at
critical velocities vc, which depend on the slip geometry, material constants, as well as the dislocation
character ϑ. To determine the highest degree of divergence, we first recall the study done in Ref. [14] in
the purely isotropic limit and only for the transverse phonon modes: There it is found that the highest
degree of divergence of a dislocation field for pure edge is 1/(1− β2

T)
m with βT := v/cT and m = 1 at

polar angle φ = 0 (or π), whereas the one for pure screw exhibited the milder divergence of m = 1/2.
Within B, where the dislocation field enters quadratically and angles φ are integrated over, this leads to
initial estimates for the degree of divergence of B of m = 3/2 for pure edge and m = 1/2 for pure
screw. However, within the purely transverse branch, the kinematic terms in Γ additionally suppresses
the degree of divergence by 1, ultimately leading to B ∼ 1/(1− β2

T)
m as βT → 1 with m = 1/2 for

edge and finite B for screw dislocations.
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In the more general semi-isotropic case considered here, this latter cancellation cannot occur
because now we have divergences at vc(ϑ), whereas the kinematic terms in Γ coming from the phonons
only know about cT and cL. Similarly, the cancellation leading to the milder divergence of the pure
screw dislocation in the isotropic limit is indeed special to the strictly isotropic case: For an isotropic

screw dislocation, S·~b→~0, K·~b ∼
(

0, 0,
√

1− β2
T

)
, and (nn)−1 ∼ 1/(1− β2

T) within Equation (3) yield
the milder divergence noted above. Finally, one must also not forget that edge and screw dislocations
decouple only in the isotropic limit, but not in general, which is why mixed dislocations cannot be
represented as superpositions of edge and screw in “real” crystals.

To sum up: we presently expect the highest degree of divergence of the drag coefficient B(v, ϑ)

at v → vc(ϑ) to be 1/(1 − v2/v2
c)

m with m = 3/2 for arbitrary dislocation characters ϑ. Indeed,
this expectation is confirmed by numerical results, where the asymptotic region cannot be well
represented by fitting functions with m < 3/2.

3. Results and Their Effective Functional Form

Based on the analysis of the previous section, the simplest form of a fitting function for the drag
coefficient at fixed temperature, pressure, and dislocation character angle which captures its velocity
dependence in the small v as well as in the asymptotic regime v→ vc is given by

B(ϑ) ≈ C0(ϑ)− C1(ϑ)x + C2(ϑ)

(
1

(1− x2)3/2 − 1
)

,

x =
v

vc(ϑ)
= βT

cT

vc(ϑ)
. (6)

As illustrated in Figure 1 for the example of Ni at room temperature and ambient pressure for
a number of dislocation character angles ranging from pure screw (ϑ = 0) to pure edge (ϑ = π/2),
Equation (6) is perfectly sufficient in some cases. Corresponding fitting parameters (in units of µPa s)
and critical velocities—all dependent on ϑ—are listed in the figure legends and titles. However,
if B shows a stronger v dependence in the intermediate region, which is the case for a number of metals
and slip systems, additional terms are required to improve the fits. Candidates for such additional
terms include of course any polynomial xk with k ≥ 2 or subleading divergences (which are always
present), e.g., (1− x2)−m with 0 < m < 3/2 or ln(1− x2). Our goal is to keep B simple and the
number of fitting parameters small. Empirically, we found that adding only one additional term,
(1− x2)−1/2, greatly improves the fits in most cases where Equation (6) is insufficient.

Hence, better fits to the drag coefficient from phonon wind for a dislocation of fixed character
angle ϑ are achieved using the function

B(ϑ) ≈ C0(ϑ)− C1(ϑ)x + C2(ϑ)

(
1√

1− x2
− 1
)
+ C3(ϑ)

(
1

(1− x2)3/2 − 1
)

,

x =
v

vc(ϑ)
= βT

cT

vc(ϑ)
. (7)

Once again, it depends on the velocity in ratio to the critical velocity vc(ϑ). Note that, since (nn)
is a 3× 3 matrix, one always has three solutions for det(nn) = 0, and each can be represented as vc(φ).
The branch with the smallest value for vc will lead to a divergence in (nn)−1 first. However, that
solution need not always lead to a divergent drag coefficient since kinematics restrict the range of
polar angle φ. This happens for example for pure screw dislocations in fcc metals where B diverges at
a larger critical velocity vc than the dislocation field itself.



Materials 2019, 12, 948 7 of 14

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
βt

0.00

0.01

0.02

0.03

0.04

0.05

0.06

B
[m

Pa
s]

Ni: ϑ=0 (screw), βcrit
t =1.036

C0 =8.64, C1 =5.44, C2 =0.15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
βt

0.00

0.01

0.02

0.03

0.04

0.05

0.06

B
[m

Pa
s]

Ni: ϑ=π/12, βcrit
t =0.839

C0 =9.07, C1 =5.09, C2 =0.01

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
βt

0.00

0.01

0.02

0.03

0.04

0.05

0.06

B
[m

Pa
s]

Ni: ϑ=π/6, βcrit
t =0.783

C0 =9.43, C1 =6.13, C2 =0.26

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
βt

0.00

0.01

0.02

0.03

0.04

0.05

0.06

B
[m

Pa
s]

Ni: ϑ=π/4, βcrit
t =0.839

C0 =9.46, C1 =7.39, C2 =0.75

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
βt

0.00

0.01

0.02

0.03

0.04

0.05

0.06

B
[m

Pa
s]

Ni: ϑ=π/3, βcrit
t =0.925

C0 =9.10, C1 =7.78, C2 =1.10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
βt

0.00

0.01

0.02

0.03

0.04

0.05

0.06

B
[m

Pa
s]

Ni: ϑ=5π/12, βcrit
t =0.839

C0 =9.11, C1 =7.73, C2 =0.90

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
βt

0.00

0.01

0.02

0.03

0.04

0.05

0.06

B
[m

Pa
s]

Ni: ϑ=π/2 (edge), βcrit
t =0.783

C0 =9.06, C1 =7.81, C2 =1.00

Figure 1. We show the drag coefficient B(βT) from phonon wind for dislocations in Ni of various
character angles ϑ. The dashed lines represent the three-parameter fitting functions with fitting
parameters Ci in units of µPa s, critical velocity βcrit

t = vc/cT, and βT = v/cT. The solid lines show
the results of numerically evaluating B according to Equation (1) using the software in Ref. [24], see
Ref. [13] for details on the method.

According values for vc corresponding to divergences in B, as well as the five fitting parameters
Ci for pure screw and edge dislocations, and for B averaged over all dislocation character angles,
and each for the various metals computed (at room temperature and ambient pressure), are listed in
Tables 3–6. (Averages were computed as mean values from B(ϑ) for 91 character angles, 0 ≤ ϑ ≤ π/2
with B(−ϑ) = B(ϑ), for fcc and hcp metals, and from 181 character angles, −π/2 < ϑ ≤ π/2, for bcc
metals using [24].) Comparisons of these fits to the numerically computed results for B are shown in
Figures 2–5 as a function of velocity over effective transverse sound speed of the polycrystal, βT = v/cT.
Fits using Equation (7) can of course be derived for any other character angle ϑ. All numerical results
presented here can be reproduced with the software in Ref. [24] developed by the present author.

With the exception of Ag, Au, and Cd, most metals shown here have B well below 0.04 mPas in
the low velocity regime, for the most part due to lower values of their transverse sound speeds cT

(see Tables 3 and 4).
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Table 3. List of critical velocities vc (m/s), and fitting function coefficients Ci (µPa s) for some cubic
crystals. The critical velocities are given in units of m/s as well as in ratio to cT. The fits are only
valid up to 0.99cT and do not capture the asymptotic behavior for those metals/dislocations whose
critical velocity is larger than this value. Superscripts “e”, “s”, and “av” refer to “edge”, “screw”,
and “average”, respectively. Furthermore, vav

c coincides with the smallest critical velocity for all
dislocation characters ϑ within the slip system.

Ag(fcc) Al(fcc) Au(fcc) Cu(fcc) Fe(bcc) Mo(bcc) Nb(bcc) Ni(fcc)

cT 1699 3109 1183 2322 3220 3501 2092 2922
ve

c /cT 0.707 0.942 0.739 0.698 0.852 1.033 1.026 0.783
ve

c 1202 2929 874 1621 2745 3615 2147 2288
Ce

0 55.89 7.84 79.17 25.30 21.79 7.18 22.42 9.06
Ce

1 37.63 6.54 56.08 18.49 17.99 8.25 23.08 7.81
Ce

2 0.00 0.00 0.00 0.00 0.00 0.00 7.70 0.00
Ce

3 4.85 1.25 5.83 2.38 4.18 2.44 3.98 1.00
vs

c/cT 0.973 1.005 0.996 0.976 0.803 0.987 0.955 1.036
vs

c 1652 3126 1178 2267 2585 3457 1997 3027
Cs

0 70.26 8.43 89.52 30.02 20.42 7.01 20.56 8.90
Cs

1 54.70 7.28 80.20 20.14 15.96 6.15 18.08 6.81
Cs

2 14.87 2.96 26.88 1.32 5.45 2.76 10.38 2.12
Cs

3 1.38 0.00 0.74 0.92 0.14 0.02 0.00 0.03
vav

c /cT 0.707 0.942 0.739 0.698 0.726 0.935 0.875 0.783
vav

c 1202 2929 874 1621 2337 3272 1831 2288
Cav

0 65.50 8.71 88.01 28.91 23.00 7.10 21.77 9.13
Cav

1 47.73 9.02 69.83 20.25 14.37 6.12 19.28 6.37
Cav

2 14.79 5.46 19.38 6.13 5.42 5.36 13.12 2.23
Cav

3 0.32 0.22 0.37 0.14 0.05 0.10 0.09 0.07

Table 4. List of critical velocities vc (m/s), and fitting function coefficients Ci (µPa s) for basal slip.
The critical velocities are given in units of m/s as well as in ratio to cT. The fits are only valid up to
0.99cT and do not capture the asymptotic behavior for those metals/dislocations whose critical velocity
is larger than this value. Superscripts “e”, “s”, and “av” refer to “edge”, “screw”, and “average”,
respectively. Furthermore, vav

c coincides with the smallest critical velocity for all dislocation characters
ϑ within the basal slip system.

Basal Cd Mg Ti Zn Zr

cT 1486 3153 3118 2466 2350
ve

c /cT 1.017 0.972 1.033 0.943 0.943
ve

c 1511 3065 3219 2326 2215
Ce

0 67.80 3.37 7.59 10.18 4.61
Ce

1 79.08 4.53 10.40 18.71 4.61
Ce

2 0.00 0.00 1.18 0.00 1.25
Ce

3 15.60 1.09 2.05 8.54 0.64
vs

c/cT 1.398 0.982 0.896 1.211 0.990
vs

c 2077 3097 2795 2987 2327
Cs

0 102.79 3.88 11.79 13.62 7.60
Cs

1 157.86 2.68 8.21 13.32 6.25
Cs

2 162.12 2.88 8.92 6.80 5.58
Cs

3 0.00 0.00 0.04 0.00 0.01
vav

c /cT 1.017 0.972 0.896 0.943 0.943
vav

c 1511 3065 2795 2326 2215
Cav

0 85.14 3.55 9.45 13.28 5.97
Cav

1 94.67 2.91 6.70 20.08 4.98
Cav

2 40.73 0.67 5.90 0.00 2.40
Cav

3 5.22 0.54 0.00 5.40 0.30
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Table 5. List of critical velocities vc (m/s), and fitting function coefficients Ci (µPa s) for prismatic slip.
The critical velocities are given in units of m/s as well as in ratio to cT. The fits are only valid up to
0.99cT and do not capture the asymptotic behavior for those metals/dislocations whose critical velocity
is larger than this value. Superscripts “e”, “s”, and “av” refer to “edge”, “screw”, and “average”,
respectively. Furthermore, vav

c coincides with the smallest critical velocity for all dislocation characters
ϑ within the prismatic slip system.

Prismatic Cd Mg Ti Zn Zr

cT 1486 3153 3118 2466 2350
ve

c /cT 1.398 0.982 0.896 1.211 0.990
ve

c 2077 3097 2795 2987 2327
Ce

0 72.75 6.88 18.34 12.13 12.61
Ce

1 98.25 10.56 28.28 16.52 18.57
Ce

2 81.91 0.00 0.00 18.94 0.00
Ce

3 0.00 2.80 6.99 0.66 4.65
vs

c/cT 1.017 0.972 1.033 0.945 0.943
vs

c 1511 3065 3219 2332 2215
Cs

0 91.85 7.65 19.30 16.80 13.08
Cs

1 59.25 6.21 17.41 13.04 12.39
Cs

2 32.17 0.44 0.95 8.37 1.42
Cs

3 0.00 0.01 0.09 0.02 0.00
vav

c /cT 0.948 0.972 0.896 0.724 0.943
vav

c 1409 3065 2795 1786 2215
Cav

0 77.00 8.10 17.44 15.65 12.00
Cav

1 47.08 11.10 16.39 9.88 15.58
Cav

2 19.87 6.16 0.54 8.73 10.75
Cav

3 0.00 0.45 1.55 0.00 0.02

Table 6. List of critical velocities vc (m/s), and fitting function coefficients Ci (µPa s) for pyramidal slip.
The critical velocities are given in units of m/s as well as in ratio to cT. The fits are only valid up to
0.99cT and do not capture the asymptotic behavior for those metals/dislocations whose critical velocity
is larger than this value. Superscripts “e”, “s”, and “av” refer to “edge”, “screw”, and “average”,
respectively. Furthermore, vav

c coincides with the smallest critical velocity for all dislocation characters
ϑ within the pyramidal slip system.

Pyramidal Cd Mg Ti Zn Zr

cT 1486 3153 3118 2466 2350
ve

c /cT 1.017 0.972 0.896 0.945 0.943
ve

c 1511 3065 2795 2332 2215
Ce

0 65.30 3.97 8.92 9.58 6.02
Ce

1 65.48 4.92 11.86 15.05 8.68
Ce

2 5.02 0.00 0.00 0.00 8.38
Ce

3 11.70 1.31 2.45 5.80 0.48
vs

c/cT 1.278 0.979 0.930 1.132 0.976
vs

c 1900 3088 2898 2792 2294
Cs

0 100.41 4.94 14.13 14.14 9.17
Cs

1 126.97 3.47 10.47 10.11 7.81
Cs

2 97.54 2.02 6.06 1.65 3.67
Cs

3 0.00 0.00 0.03 0.09 0.01
vav

c /cT 0.975 0.972 0.896 0.775 0.943
vav

c 1450 3065 2795 1911 2215
Cav

0 83.61 5.10 12.20 13.34 7.66
Cav

1 87.21 6.76 11.80 11.41 8.49
Cav

2 49.38 5.56 5.97 9.78 6.14
Cav

3 0.83 0.25 0.48 0.00 0.06
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Figures 1–5 show that B(v, ϑ) at ambient temperature and pressure are well represented by
Equation (7) (or even Equation (6)), especially in light of the uncertainty in our current model for B,
which is hard to quantify. (In our example of nickel, both Equations (6) and (7), yield exactly the
same fit for pure edge dislocations, whereas, in the case of screw dislocations, the four-parameter
Equation (7) slightly improves an already decent fit by making use of the additional term 1/

√
1− x2,

thereby changing also the values of the three other fitting parameters.)
For one, we considered only isotropic phonons, whose spectrum deviates from the true one

especially in the high frequency regime. Furthermore, we have neglected the dislocation core
as well as the separation of dislocations into partials. However, the uncertainties in the experimental
(or computational) determination of the TOEC also have a large effect on the accuracy of our present
predictions. We also need to stress that the present model is limited to the subsonic regime, i.e.,
v < vc(ϑ) and v < cT. Furthermore, only straight dislocations moving at constant velocity were
considered, i.e., the effect of acceleration or changes in shape are not (yet) considered. Finally, the stress
field required to reach velocities close to vc will likely lead to sizeable temperature and pressure
gradients, which would have to be considered in future improvements to B as well. A first attempt at
incorporating the temperature dependence into B is currently in progress [50].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
βt

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11

B
[m

Pa
s]

pure screw

Ag
Al
Au

Cu
Fe
Mo

Nb
Ni

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
βt

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11

B
[m

Pa
s]

pure edge

Ag
Al
Au

Cu
Fe
Mo

Nb
Ni

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
βt

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11

B
[m

Pa
s]

averaged

Ag
Al
Au

Cu
Fe
Mo

Nb
Ni

Figure 2. We show the drag coefficient B(βT) from phonon wind for pure screw and edge dislocations
as well as B averaged over all character angles ϑ for five fcc and three bcc metals. The dashed lines
represent the fitting functions and βT = v/cT.
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Figure 3. We show the drag coefficient B(βT) from phonon wind for pure screw and edge dislocations
as well as averaged over all character angles ϑ for basal slip of five hcp metals. Dashed lines represent
the fitting functions and βT = v/cT.
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Figure 4. We show the drag coefficient B(βT) from phonon wind for pure screw and edge dislocations
as well as averaged over all character angles ϑ for prismatic slip of five hcp metals. Dashed lines
represent the fitting functions and βT = v/cT.
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Figure 5. We show the drag coefficient B(βT) from phonon wind for pure screw and edge dislocations
as well as averaged over all character angles ϑ for pyramidal slip of five hcp metals. Dashed lines
represent the fitting functions and βT = v/cT.

Direct comparison of B to experiments is limited to the low velocity regime (low meaning the
viscous regime of βT ∼ 0.01): As (in part) pointed out in Ref. [13], our predictions for B(βT ∼ 0.01)
agree well with experimental results for Al (ranging from ∼ 0.005 mPas to ∼ 0.06 mPas, cf. [51–53])
and Cu (ranging from ∼0.0079 mPas to ∼0.08 mPas, cf. [54–58]. MD simulation results are in the range
∼0.007–0.2 mPas for Al [8,59,60], and ∼0.016–0.022 mPas for Cu [10,61].

Our predictions are lower than experimental results for Fe (∼0.34 mPas for edge and∼0.661 mPas
for screw, cf. [62]) and Zn for both basal slip (0.035 mPas for edge and ∼0.034 mPas for screw, cf. [63])
as well as for pyramidal slip (0.27 mPas for edge and ∼0.16 mPas for screw, cf. [64]).

Our drag coefficient for Mo is lower than the MD-simulation value of ∼0.078 mPas for edge
dislocations reported in [65]. Similarly, our drag coefficient for Ni is lower than the MD-simulation
results of 0.0321 mPas for edge dislocations reported in [65], and ∼0.015 mPas for edge dislocations
reported in [8,12,66], albeit close to the latter.
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