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Abstract
At the beginning of this century, the Human Genome Project produced the first
drafts of the human genome sequence. Following this, large-scale functional
genomics studies were initiated to understand the molecular basis underlying
the translation of the instructions encoded in the genome into the biological
traits of organisms. Instrumental in the ensuing revolution in functional
genomics were the rapid advances in massively parallel sequencing
technologies as well as the development of a wide diversity of protocols that
make use of these technologies to understand cellular behavior at the
molecular level. Here, we review recent advances in functional genomic
methods, discuss some of their current capabilities and limitations, and briefly
sketch future directions within the field.
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Introduction
Progress in genomics during the last decade has been largely  
dependent on the development of methods for massively paral-
lel sequencing of large numbers (up to a few hundred million 
per experiment in some cases) of short DNA sequences, where 
a single sequence read is about 50 to 150 base pairs. These  
methods—often referred to as next-generation sequencing 
(NGS)—are used for genome sequencing, but their high  
throughput also makes them very attractive for functional  
genomics assays, where the primary goal is to annotate genome 
regions with their biological function. This often requires 
quantitative estimates, which typically are derived from read  
counts. A myriad of experimental protocols and the accom-
panying bioinformatic pipelines have been designed that  
leverage the high-throughput capabilities of NGS to monitor a 
wide variety of molecular phenotypes reflecting very diverse  
genomic functions.

In this review, we summarize the protocols that are most  
frequently applied in functional genomics. Although oligonu-
cleotide array-based methods for genotyping and gene expres-
sion are still widely used for large population screens because of 
the low cost and straightforward bioinformatics, genome tiling 
arrays, which were instrumental in the emergence of functional  
genomics1, have largely been substituted by sequencing- 
based methods. Our review thus focuses on these. We also  
discuss recently developed methodologies for large-scale  
perturbation experiments that can probe the functionality of 
genomic loci in a massively parallel fashion. We discuss the limi-
tations of short read length, efforts toward developing long read  
sequencing technologies, and novel approaches to analyze the 
behavior of single cells and cells in the context of their tissue 
of origin. We conclude by discussing the role of large-scale 
international consortia and future directions in functional  
genomics.

Genomic protocols
Chromatin can be divided into the transcriptionally active open 
euchromatin and the transcriptionally silent heterochromatin 
or closed chromatin. The ATAC-seq (assay for transposase- 
accessible chromatin using sequencing) protocol uses trans-
posases acting on accessible chromatin to create DNA fragments,  
which then are sequenced to identify open genomic regions in 
a particular cell type or condition2. The number of cells from  
which the DNA is extracted is important, as too few cells may 
cause excessive digestion, leading to reads mapping to closed 
chromatin regions, whereas an excess of cells can cause insuffi-
cient digestion, creating long fragments that may be difficult to  
sequence3. The methylation status of DNA can be assayed by 
using endonuclease digestion by methylation-dependent restric-
tion enzymes, by using bisulfite treatment to convert unmethyl-
ated cytosine to uracil (which is recognized as thymine during 
sequencing), or by using methylation-dependent antibodies  
to immunoprecipitate methylated chromatin followed by  
sequencing (ChIP-seq)4. False positives may occur if unmeth-
ylated cytosines fail to convert to uracil and are interpreted as  
methylated cytosines. It is essential to minimize DNA degra-
dation during bisulfite treatment, as DNA fragmentation will 

hamper polymerase chain reaction (PCR) amplification. Tet-
assisted bisulfite sequencing5 can be used to resolve 5-methylcy-
tosine and 5-hydroxymethylcytosine, both of which are found in  
mammalian genomes6,7 but are indistinguishable in traditional 
bisulfite sequencing. ChIP-seq-based approaches do not give  
single-nucleotide resolution of DNA methylation and are affected 
by genomic variations in CpG density.

Based on the availability of a suitable antibody, ChIP-seq can 
also be used to assay histone modifications8 or the binding  
affinities of transcription factors to genomic regions9,10. Improve-
ments to the ChIP-seq protocol have allowed greater resolu-
tion while reducing the number of cells required11,12. The use 
of a sensitive but specific antibody is essential for obtaining  
high-quality ChIP-seq data. Genomic assays typically produce 
an “epigenomic profile” along the genome (by mapping reads  
obtained by the assay to the genome). To combine and integrate 
epigenomic profiles produced by different assays (for instance,  
ChIP-seq from multiple histone modifications), segmentation 
algorithms are employed (for instance, 13,14). These algorithms  
partition the genome into regions (segments) of similar profiles 
over all assays.

Transcriptome protocols
Quantitative profiling of the transcriptional output of the genome 
relies on sequencing libraries of cDNA fragments derived from 
RNA (RNA-seq)15. Sequence reads are subsequently assembled  
bioinformatically to reconstruct the full-length transcript 
sequence16,17 and to quantify the expression levels of annotated 
genes16,17. Cap analysis gene expression (CAGE), in contrast, 
specifically sequences the 5′ end of transcripts to pinpoint the  
transcription start site and therefore the promoter region of 
each transcript18. CAGE uses a random oligonucleotide as the  
primer for the reverse transcription reaction, instead of an  
oligo-dT primer against the poly(A)-tail, allowing both poly(A)+ 
and poly(A)− transcripts—such as certain long non-coding 
RNA (lncRNAs)—to be profiled. Specific RNA fractions can be 
selected for inclusion in the sequencing libraries depending on  
their size, the chemical group at their 5′ end, the presence or  
absence of a poly(A) tail, or subcellular localization in the  
cytoplasm, nucleoplasm, or chromatin fraction19–21. These frac-
tions may correspond to different classes of RNA or different 
stages in the pathway of RNA synthesis and post-processing.  
Protocols to assess the RNA-interacting partners include  
ribosome profiling22 to identify mRNAs undergoing transla-
tion as well as various protocols based on high-throughput 
sequencing of RNA after cross-linking and immunoprecipitation  
(CLIP-seq and its variants)23 to find transcripts bound to a specific 
protein. RNA modifications24 such as methylation of adenosine 
nucleotides25 can be identified by methylation-dependent  
immunoprecipitation of RNA followed by sequencing26,27.

Profiling of short non-coding RNAs—in particular, micro-
RNAs (miRNAs)—typically relies on the ligation of oligo-
nucleotide adapters to the 3′ and 5′ end of the short RNA 
followed by reverse transcription and PCR amplification  
making use of primer sequences in the adapters28. Performing  
ligation of the 5′ adapter after reverse transcription allows ligation 

Page 3 of 10

F1000Research 2018, 7(F1000 Faculty Rev):1968 Last updated: 21 DEC 2018



to the 5′ end of the cDNA, avoiding biases due to the presence of  
any modifications at the 5′ end of the short RNA molecule29. 
To avoid biases introduced by oligonucleotide adapter ligation 
to the 3′ end, polyadenylation of the short RNA may be used  
instead. However, a disadvantage of this approach is that it does 
not allow the identification of the exact 3′ end of the short RNA, 
which is unfortunate, as addition and removal of nucleotides—in 
particular, adenosines—to the 3′ end of miRNAs are prevalent 
and may play a regulatory role in miRNA stabilization and  
degradation30–32.

Regulation of expression in the 3D context of the 
genome
The 3D structure of the genome in the nucleus provides the  
physical architecture for expression regulation. Hi-C libraries33, 
which are produced by chemical cross-linking, DNA fragmen-
tation, proximity ligation, and high-throughput sequencing 
of ligated fragments, have shown that chromatin is organized 
in topologically associating domains, each consisting of chro-
mosome regions that frequently interact with each other, and 
chromatin looping in which distal regulatory regions such 
as enhancers and promoters come in close physical proxim-
ity to each other. ChIA-PET (chromatin interaction analysis by 
paired-end tag sequencing)34 combines proximity ligation of  
DNA fragments with chromatin immunoprecipitation of specific 
proteins to globally detect the chromatin interactions in which  
they participate.

As transcripts produced at regulatory sites35,36 may mediate dis-
tal interactions37, identifying the chromatin binding sites of  
regulatory RNAs is of central importance. Chromatin isolation by 
RNA purification (ChIRP-seq)38 uses tiling oligonucleotides to 
pull down a specific lncRNA together with the protein and DNA  
bound to it, followed by sequencing of the DNA component 
to determine the exact binding positions of the lncRNA to  
chromatin. For unbiased mapping of RNA–chromatin inter-
actions, on a genome-wide scale, several protocols related to  
Hi-C have been developed that rely on proximity ligation of 
DNA to RNA using a bivalent oligonucleotide linker molecule:  
MARGI (mapping RNA–genome interactions)39, global RNA 
interactions with DNA by deep sequencing (GRID-seq)40, and  
chromatin-associated RNA sequencing (ChAR-seq)41.

High-throughput genomic perturbations
Although chromatin features and transcriptional activity at a 
genomic region can be indicative of a biological role, ultimately 
the function of a genomic region is defined by its contribution  
to the phenotype. Perturbation studies, in which activation or inhi-
bition of specific genomic regions or their products is followed  
by phenotypic or molecular assays of the cellular response,  
can be used to elucidate the functional role of genomic loci.

Recent developments in perturbation technologies now allow 
genomic perturbation experiments to be highly multiplexed, with 
thousands of knockdowns or activations occurring in parallel in 
a population of cells. High-throughput perturbation experiments  
have become feasible in particular because of the development 

of the CRISPR/Cas9 (clustered regularly interspaced short  
palindromic repeats/Cas9) technology42 to edit or otherwise  
modify the genome at specific sites. Whereas programming 
zinc finger nucleases43 and transcription activator-like effector  
nucleases (TALENs)44 to target specific genomic sites required 
extensive protein engineering that limited the scalability of 
these approaches, CRISPR/Cas9 recognizes and cleaves a par-
ticular DNA site using only a single guide RNA, which can 
easily be mass-produced. Nucleotide insertions and deletions 
introduced near the double-strand break by non-homologous 
end-joining can abrogate the expression or function of protein- 
coding genes but may not be sufficient to fully abolish the  
function of lncRNAs. Therefore, dual-CRISPR systems have 
been developed that use a pair of guide RNAs to generate  
double-strand breaks on both sides of a gene of interest,  
followed by non-homologous end-joining to repair the lesion, 
resulting in a full deletion of the gene45,46.

The applicability of this technology can be extended beyond 
genome editing by replacing the endonuclease Cas9 with cata-
lytically inactive Cas9 (dead Cas9, or dCas9), which binds to 
specific genomic sites without inducing cleavage. In CRISPR  
interference (CRISPRi)47, tight binding of CRISPR-dCas9 to 
DNA prevents binding of the transcriptional machinery, effec-
tively shutting down transcript production at the targeted site.  
Improvements to the knockdown efficiency were achieved by 
fusing a Krüppel-associated box (KRAB) repressor domain to 
Cas948, inducing histone modification changes associated with 
repression of expression. Similarly, dCas9 fused to a trans-
activating domain can be used to induce gene expression at  
specific sites48. Epigenome editing can be performed by fusing 
dCas9 with epigenome writers or erasers (for example, a histone  
demethylase)49.

Second-generation CRISPR editing tools allow the conversion of 
specific nucleotides at the genomic target site without inducing 
a double-strand break (for example, to create a novel stop  
codon)50.

Large-scale CRISPR-based screening relies on designing guide 
RNAs in large quantities and introducing them, usually using 
a lentiviral vector, into a population of cells at a sufficiently low  
multiplicity of infection, such that most cells will receive either 
zero or one guide RNA; puromycin selection is applied to exclude 
cells that were not infected. Typically, up to 10 guide RNAs  
are used for a single locus, allowing checks for reproducibility  
and off-target effects due to inadvertent binding of guide RNAs 
elsewhere in the genome. During cell culture, the proportion 
of cells containing guide RNAs that inhibit the expression of 
genes essential for cell growth will decrease. Therefore, genes  
involved in cell growth can be identified by quantifying, 
using NGS, the relative enrichment of each guide RNA after 
culturing51. CRISPRi-mediated knockdowns followed by  
single-cell genome-wide expression profiling (Perturb-seq)52,53 
can be employed to obtain detailed information on the global 
transcriptome response to the perturbation and to observe cell  
state changes that are not easily assessed in a straightforward  
cellular assay.
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For functional genomics, perturbation technologies that target 
DNA have one inherent drawback: it is unclear whether any  
observed phenotype is due to the inhibition of regulatory DNA 
elements at the targeted locus or to any RNA product originat-
ing there. This ambiguity can be avoided by targeting specific  
transcripts directly using locked nucleotide antisense oligonu-
cleotides (ASO gapmers) or by using small interfering RNAs  
(siRNAs) or small hairpin RNAs (shRNAs). Target RNAs bound 
by an ASO gapmer are recognized and cleaved by endonuclease  
RNase H, followed by degradation of the RNA. In contrast, 
the RNA interference (RNAi) pathway relies on processing 
of siRNAs and shRNAs by Dicer and uptake into the RNA- 
induced silencing (RISC) complex, which binds to the target 
RNA, causing its cleavage by Argonaute and degradation by cel-
lular exonucleases. The relative performance of RNAi or RNase 
H-mediated knockdown depends in part on the cellular locali-
zation of the targeted transcripts in either the nucleus or the  
cytoplasm54.

Long read sequencing
Reconstruction of the full-length sequence of long DNA or RNA 
molecules from NGS sequence reads is challenging because 
of their short read length. Two main technologies are being  
developed for long read sequencing (that is, sequencing of sin-
gle molecules several thousand base pairs long). The first relies 
on the ability to detect the incorporation of a single nucleotide 
in an elongating DNA chain, which is synthesized by a DNA  
polymerase attached to the template DNA molecule to be 
sequenced55. The second makes use of the ability to detect 
changes in an electrical field that are induced when a single  
nucleotide in the DNA molecule passes through a pore  
structure56. Long read technologies have been used for “de novo” 
genome sequencing57, resequencing of the human genome58, 
and phased diploid genome assembly59. They have also been  
used for transcript characterization60, since short reads are  
unable to fully resolve the exonic structure of alternative  
transcript isoforms, which usually share a substantial fraction of 
the sequence. One advantage of long read technologies is that 
they are able to directly sequence RNA molecules26,61, elimi-
nating the biases induced during the generation of the cDNA  
libraries inherent to short read NGS.

Capture methods
Because of the large dynamic range of genome activity (for 
instance, gene expression), unbiased sequencing of samples 
to interrogate function genome-wide may be ineffective in  
uncovering sites within the genome with weak activity. There-
fore, depending on the purpose, NGS analysis may be restricted 
to targeted genomic loci captured using oligonucleotide probes.  
Capture has been performed, for instance, to identify and  
characterize the exonic structure of lowly abundant transcripts 
(lncRNAs, in particular) using both short62 and long63 read  
sequencing.

Spatial transcriptomics
Protocols to prepare libraries for NGS typically require a fair  
amount of input material (RNA or chromatin), necessitating large 

numbers of cells to produce a single library. If the samples are 
obtained from heterogeneous biological sources, such as tissues 
and organs, they are likely to contain multiple distinct cell  
types, which interact in a highly structured anatomical envi-
ronment. Bulk sequencing of these samples reflects an average 
across the populations of cells used and is unable to resolve the  
underlying cell types and their position within the tissue sample. 
Recently, spatially resolved omics methods have been developed 
with the aim of performing functional genomics assays while  
retaining positional information64,65. Traced back to single-
molecule fluorescence in situ hybridization (FISH)66, these  
methods have dramatically increased throughput by using  
massively parallel sequencing. For instance, histological sections 
have been positioned on arrayed reverse transcription primers 
with unique positional barcodes to maintain the two-dimensional  
positional information in subsequent RNA-seq analysis67.

Single-cell technologies
Population averages, such as obtained from bulk tissue sequenc-
ing, may further obscure the biological reality of cellular hetero-
geneity even among cells of the same type. For example, genes 
that appear to be lowly expressed on the basis of their population  
average may be highly expressed in a few cells in the popula-
tion and exert their biological role only there. To capture the  
heterogeneity among cells in a population, newer protocols have 
been developed that dramatically lower the amount of input  
material required, allowing profiling of individual cells68. Genome 
sequencing of single cells has been used to identify genomic 
changes in tumor samples and to track their evolution69–74.

Single-cell RNA profiling can assay 50 to 104 cells in parallel 
per experiment, depending on the protocol used; typical cover-
ages are 1,000 to 6,000 genes per cell in case of primary cells and  
5,000 to 10,000 genes for cell lines75. In plate-based methods 
such as STRT (single-cell tagged reverse transcription)76,  
Smart-seq77, and Smart-seq278, 50 to 500 single cells are placed 
in individual wells in 96-well plates, and cell lysis and reverse 
transcription occur in each well. Alternatively, a microfluidic  
chip can be used for cell placement and reactions79.

Cell selection is biased by the cellular size and condition, which 
affects the probability of a cell to be placed successfully in a well. 
In pooled approaches such as CEL-seq80,81, a unique barcode is  
applied to individual cells in the initial stages in the protocol. 
As the barcode is incorporated in the cDNA during reverse tran-
scription, the cDNAs originating from different cells are distin-
guishable and can be pooled for PCR amplification. To further  
increase throughput and reproducibility, in massively parallel  
single-cell RNA-seq, cells are sorted by fluorescence-activated 
cell sorting (FACS) into more homogeneous subpopulations in 
a 384-well plate before single-cell sequencing82. As a poly-T 
primer is typically used for reverse transcription to selectively 
include poly(A)-tailed transcripts into the library while avoiding  
ribosomal RNA, other untailed transcripts such as some lncRNAs 
may be missed. Alternative strategies to reduce the ribosomal 
RNA component include duplex-specific nuclease treatment83 
and using a template-switching reaction to enrich for 5′-capped  
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transcripts84. Droplet-based isolation of single cells85,86 enabled 
massive parallelization with numbers of cells in the range of  
10,000 or more, albeit at lower sensitivity.

As an alternative to single-cell analysis, deconvolution methods 
can be employed to estimate the proportions of constituent cell  
types in bulk tissue transcriptomic samples on the basis of the 
expression of known cell type marker genes82,87.

Functional genomics across species
Comparative genomics methods have also been widely used 
to identify and catalogue functional regions in genomes. The  
underlying assumption is that functional regions are more con-
served through evolution than genomic regions devoid of  
function. Genome sequence comparisons are widely used, in 
particular, to annotate protein-coding genes in newly sequenced 
genomes. However, while protein coding genes are under strong 
selective pressure, other functional regions, such as lncRNA 
genes and regulatory regions, have levels of conservation that 
are often barely distinguishable from background conservation88 
and therefore genome comparisons are, in general, less helpful to  
annotate them. For instance, whereas 80% of human protein-
coding genes can be detected in mouse, fewer than 10% of  
lncRNAs are conserved between the two species89. Comparative 
transcriptomic studies help to further understand to what extent 
the patterns of gene expression and the regulatory networks 
are conserved across species90–92. Particular attention has been  
paid to comparisons between human and mouse given the unique 
role of the mouse as a model of human biology93,94. While 
gene expression levels averaged over RNA samples are corre-
lated between human and mouse89, substantial differences are 
found when comparing the transcriptome of homologous cell  
types95–97. Overall, conservation of the patterns of expres-
sion between human and mouse seems to largely depend on 
the gene. The expression of some genes varies considerably 
across species and little across organs and that of other genes 
varies more across organs than across species. The mouse is 
a particularly good model for the biology of these genes in  
humans98.

Outlook
Massively parallel sequencing has been at the core of most 
large-scale functional genomic projects to date36,99–103. These  
projects have not only generated data resources that are widely 
used by the scientific community but also defined “de facto”  
community standards for experimental protocols and bioinfor-
matic pipelines, placing genomics in general and functional  
genomics in particular within the reach of individual laborato-
ries. As a result of advances in experimental and computational 
methods, functional genomics assays are rapidly expanding  
beyond cell lines and tissue samples, which were mostly profiled 
in these projects, to complex organs, conditions, primary cells, 
and even single cells. Indeed, the Human Cell Atlas consortium 
has formed to characterize each individual cell type in the human 
body104. Functional genomics assays are also being increas-
ingly performed across multiple individuals within a species,  
allowing investigators to specifically link genetic variants to  
molecular phenotypes, as well as across different species. 

Most of these analyses to date have focused on the identifica-
tion of single-nucleotide polymorphisms (SNPs) that affect gene  
expression (expression quantitative trait loci)103,105 but other  
molecular phenotypes, such as methylation and histone modifi-
cations, have also been monitored106. Moving toward personal-
ized genomics, the EN-TEx pilot project is currently carrying out  
multiple functional genomics assays in multiple tissues extracted 
from a few donors107.

How these molecular phenotypes propagate in turn through 
intermediate levels of organizational complexity (cells, tissue,  
organs, and so on) determines how genetic variation ultimately 
impacts the phenotypic traits of organisms. Thanks to advances 
in digital imaging, data on intermediate phenotypes, such as 
tissues and organs, have recently been made available with  
associated genomics and molecular data in areas as diverse as  
cancer108 and neuropathology109. The GTEx project103 has pro-
duced high-resolution histological images for 20,000 human tissue  
samples, together with matching genome and transcriptome 
sequencing data. Methods to identify SNPs associated with  
image-derived organ phenotypes such as neuroanatomical traits 
(that is, cortical thickness110) have been developed, and an upcom-
ing challenge is to relate molecular phenotypes, as monitored 
by functional genomics, to organ phenotypes, as monitored by  
imaging technologies.

We believe that we are still in the infancy of genomic technolo-
gies and there is ample opportunity for progress. The ultimate  
goal is the real-time in vivo multi-omics characterization of all 
of the cells within a multicellular organism—without interfering  
with the system. In the path toward this ideal, less-invasive pro-
tocols and protocols to probe the multiple facets of genome  
function at single-cell resolution (that is, protocols to perform  
multiple functional genomics assays in the same cell) will  
certainly be developed, as will methods able to simultaneously 
integrate data monitoring the behavior of millions of cells. The  
computational challenges associated with the exponential growth 
of data, driven by genomic technologies, will be enormous. 
New algorithms as well as new developments in hardware that  
overcome the limitations of current technological solutions may 
need to be developed.
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