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Purpose: In our previous study, exacerbation of albuminuria was observed in A1 adenosine

receptor knockout (A1AR−/-) mice with diabetic nephropathy (DN), but the mechanism was

unclear. Here, we investigated the relationship of megalin loss and albuminuria, to identify

the protective effect of A1AR in megalin loss associated albuminuria by inhibiting pyrop-

tosis-related caspase-1/IL-18 signaling of DN.

Methods: We successfully collected DN patients' samples and built diabetes mice models

induced by streptozotocin. Megalin, cubilin, and A1AR expression were detected in kidney

tissue samples from DN patients and mice through immunohistochemical and immunofluor-

escent staining. A1AR, caspase-1, interleukin-18 (IL-18) expression were analyzed using

Western blotting in wild-type and A1AR−/- mice. Human renal proximal tubular epithelial

cells (PTC) were cultured with high glucose to observe the effect of A1AR agonist and

antagonist on caspase-1/IL-18 and megalin injury.

Results: The loss of megalin, co-localized with A1AR at PTC, was associated with the level

of albuminuria in diabetic patients and mice. The injury of megalin-cubilin was accompanied

with the A1AR upregulation (1.30±0.1 vs 0.98±0.2, P=0.042), the caspase-1 (1.33±0.1 vs

1.0±0.2, P=0.036), and IL-18 (1.26±0.2 vs 0.96±0.2, P=0.026) signaling activation in mice

with DN. More severe pathological injury, 24 hrs urine albumin excretion (170.8±4.1 μg/d vs

132.0±2.9 μg/d vs 17.9±2.8 μg/d, P<0.001) and megalin-cubilin loss were observed in

A1AR−/- DN mice with more pronounced caspase-1 (1.52±0.03 vs 1.20±0.01, P=0.017)

and IL-18 (1.42±0.02 vs 1.21±0.02, P=0.018) secretion. High glucose could stimulate the

secretion of caspase-1 (1.72 times, P≤0.01) and IL-18 (1.64 times, P≤0.01), which was

abolished by A1AR agonist and aggravated by A1AR antagonist.

Conclusion: A1AR played a protective role in proximal tubular megalin loss associated

albuminuria by inhibiting the pyroptosis-related caspase-1/IL-18 signaling in DN.
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Introduction
Hyperglycemia-induced inflammation plays a very important role in progression of

diabetic nephropathy (DN),1 which is one of the most common and most severe

microvascular complications of diabetes.2 Albuminuria can indicate incipient DN

and independently predict end stage renal disease.3 But the detailed mechanism of

diabetic albuminuria is incompletely understood. Both glomerular filtration and

proximal tubular reabsorption participate in this process,4 while most previous

studies focused only on glomerular lesions.5 Megalin and cubilin, located at the

brush border of proximal renal tubular cells (PTCs),6 are responsible for reabsorp-

tion of 97% of the albumin.7 Megalin loss is associated with albuminuria in a

previous study,8 while the specific mechanism is not well known.
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Pyroptosis, also called necroinflammation, is a pro-

grammed cell necrosis. Caspase-1, as the best-known sensor

molecule subset of pyroptosis, is a crucial intracellular

factor involved in the innate immunity that converts

proIL-18 and proIL-1β to mature forms and triggers the

inflammatory cascade reaction.9 It involves in pyroptosis,

triggering necroptosis of tubular cells in cisplatin-induced

acute kidney injury models.10,11 The same process causes

tubular necrosis in contrast media–related renal dysfunction,

which is entirely reversible by its inhibitor necrostatin-1.12

Whether the megalin loss associated albuminuria is induced

by the pyroptosis signaling caspase-1 and IL-18 in DN has

not been studied before.

A1 adenosine receptor (A1AR), widely distributed in

renal PTCs and glomerular afferent arterioles,13 was

known as an important regulator for renal tubule-glomer-

ular feedback (TGF).14 In our previous study, A1AR dele-

tion aggravated the histologic evidence of glomerular

injury and albuminuria with marked elevation of GFR in

diabetic mice without TGF response. It indicates that TGF

is not required to cause the hyperfiltration associated

albuminuria.15 It is not clear that whether the A1AR con-

tribute to the proximal tubular megalin loss associated

albuminuria. Recently, the protect effect of A1AR was

observed in renal ischemia-reperfusion injury model by

inhibiting the TNF-α and IL-1β,16 which was downstream

molecule of caspase-1. However, the role of the A1AR in

megalin loss associated albuminuria by inhibiting the cas-

pase-1/IL18 signaling activation has not been investigated.

Thus in this study, we firstly to confirm the relationship

between megalin loss and albuminuria in both diabetes

patients and STZ-induced diabetes mice. Then, we estab-

lished diabetes model in A1AR-deficient mice and cultured

HK2 treated with A1AR agonist and antagonist to figure

out the anti-inflammatory effect of A1AR on megalin loss.

In the end to observe whether the effect was mediated by

caspase-1and IL-18 inflammation process.

Materials and methods
All reagents and antibodies used in this

study were listed in Table S1
Patients

Patients with biopsy-confirmed DN admitted to Peking

Union Medical College Hospital (PUMCH) were enrolled

from January 2015 to December 2017. The control group

comprised the kidney slides from patients (n=14) with iso-

lated microscopic hematuria diagnosed as glomerular minor

lesion (GML) without the podocyte injury. The baseline

clinical characteristics of these patients are shown in

Table S2. The detailed pathologies of light microscopy

and electron microscopy about these patients were

described in our previous study.17,18 The study was

approved by the Institutional Ethics Committee at

PUMCH (ID: 2014–2-18), and the experiments were per-

formed with the written informed consent from all subjects.

Animals
Healthy male C57BL/6 mice reared under specific patho-

gen-free conditions (age: 6–7 weeks, weight: 18~22 g) were

obtained from Beijing Vital River Laboratory Animal

Technology Company; A1AR−/-mice were provided by

Professor Jurgen Schnermann in NIDDK of NIH (USA)

and bred in Animal Experimental Center of Peking

University Health Science Center. All mice underwent one

week of adaption (ambient temperature 20–24°C, relative

humidity 50–55%, light cycle 12–12 hrs, free drinking, and

food) prior to the experiment.

Mice were genotyped as the protocol described by

Sun D.19 Tail DNA was isolated and tested with A1AR

and (Neo-R) specific primers generating PCR products of

444 bp from the wild-type (WT) allele and 457 bp from

the mutant allele. Primer sequences were sense A1AR, 5ʹ-G

TACATCTCGGCCTTCC AGG-3ʹ; antisense A1AR, 5ʹ-G

AGAATACCTGGC TGACTAG-3ʹ; sense neo-R, 5ʹ-ACA

A-CAGACAATCGG CTGCTC TGATG-3ʹ; and antisense

neo-R, 5ʹ-TGCGCGCCTTGAGCCTGGCGAAC-3ʹ. The

animal experimental protocol was approved by the

PUMCH Institutional Ethics Committee of Animal Care

and Use (ID: XHDW-2014–0024).

Treatment
Male WT and A1AR −/- mice with matched age, weight,

and blood glucose were randomly divided into four groups

(n=6 per group), including wild-type control group (WT-

Control), wild-type diabetes group (WT-DM), A1AR

knock out control (A1AR−/–Control), and diabetes group

(A1AR−/–DM). For induction of diabetes, mice (n=6 per

group) were injected with STZ (Sigma, USA) (120 mg/kg,

i.p.) dissolved in sodium citrate buffer (pH=4.5) for two

consecutive days.20 Controls mice were treated with

sodium citrate buffer.

Sample collection
Mice weight was recorded weekly. Blood glucose was

measured using tail venipuncture with One Touch Ultra
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Test Strips (Johnson & Johnson, USA). Four weeks after

the successful establishment of the diabetes model, 24-hr

urine collections were made in MMC100 metabolic cage

(Hatteras, USA) at ambient room temperature with unrest-

ricted access to tap water and standard rodent diet. After

centrifugation (3500 rpm*10 mins), urine albumin was

determined by automatic biochemical analysis (AU2700,

Beckman Coulter Inc, USA).15,21 Then, the mice were

anesthetized and sacrificed. After perfusing with 0.9%

pre-cooled saline from the heart and aorta, kidneys were

rapidly dissected and weighed to calculate the kidney

index (kidney weight/body weight). Then, renal cortex

and medulla were separated for the following study.

Histology
Standard staining techniques were used as previously

described.22 Sections of 3 μm were cut from paraffin-

embedded kidney tissues and stained with periodic acid-

schiff, hematoxylin and eosin (HE) for light microscopy

(Olympus, Japan) or stained for immunohistochemistry.

Transmission electron microscope was used to observe

the injury of proximal tubular microvilli and basement

membrane (JEM-1400plus, Japan).

Immunohistochemistry and

immunofluorescence
Immunohistochemical (IHC) staining was performed on

serial sections using standard methods.22 Sections of 3 μm
cut from paraffin-embedded tissuewere deparaffinized, rehy-

drated, and heated with 0.01 mol/L citrate buffer (pH 6.0) to

expose antigen, then incubated with the primary antibody

overnight at 4°C. Secondary antibodies were HRP-conju-

gated goat- anti-rabbit (Immuno Reagents, USA). All section

imageswere captured by the microscope (Eclipse 80i; Nikon,

Japan) equipped with a digital photograph camera (DS-U1;

Nikon, Japan). The analytical measurement of IHC staining

was evaluated by calculating the percentage of positive area

using Image Pro Plus 6.0. Scoring was performed by a

“blinded” investigator on coded slides. At least ten fields

per specimen were randomly selected to cover most of the

cortex for photo-documentation. The micrographs of immu-

nofluorescent stains were captured by confocal laser micro-

scopy (Leica, Germany).

Immunoblotting
Renal cortical and medullary tissues were dissected and

homogenized in ice-cooled isolation buffer. Total protein

was extracted from cortex and HK2 as previously

described and utilized for immunoblotting analysis with

the primary antibodies for A1AR, megalin, caspase-1, and

IL-18.23 The β-actin was used as an internal protein load-

ing control. Secondary antibody was HRP-conjugated goat

anti-rabbit, followed by the detection of immunoblotting

signals with an enhanced chemiluminescence detection

system (Tanon 5200, China). Results were analyzed by

Image J Microsoft (NIH, USA).

Human renal proximal tubular epithelial

cell lines
Human renal PTC lines (HK2) were purchased from Cell

Resource Center of Institute of Basic Medical Sciences,

Chinese Academy of Medical Sciences. They were cul-

tured in DMEM-F12 medium (Gibco, USA) supplemented

with 10% fetal bovine serum (FBS, Gibco, USA) and 1%

penicillin-streptomycin solution, and were subcultured

using 0.25% trypsin-EDTA digestion after confluence.

The cellular morphological characteristics were identified

by phase contrast microscopy, and positive cytokeratin18

and megalin staining were detected by immunofluores-

cence to be confirmed as HKC. DMEM Medium with

low glucose (5 mmol/L), high glucose (25 mmol/L), or

high mannitol (25 mmol/L) were cocultured with HK2

cells for 24 and 72 hrs. Appropriate stimulus concentration

of A1AR agonist (CCPA, 0.1 μmol/L, sigma, USA) and

antagonist (DPCPX, 1 μmol/L, sigma, USA) was selected

by CCK8 and LDH assay to detect the effect of them on

HKC in high glucose environment stimulation for 6, 12,

and 24 hrs. The cells were lysed in RIPA buffer, and

proteins were collected to detect A1AR, Caspase-1, IL18

and megalin expression by immunofluorescent staining

and Western blotting analysis.

Statistical analysis
Unpaired t test (two tailed) was used for comparison

between two groups. One-way ANOVA with Dunnett’s

multiple comparison test was performed for comparison

between multiple groups. P<0.05 was considered statisti-

cally significant. Values were presented as mean ± SEM.

Results
Association between albuminuria and

megalin loss in diabetes patients and mice
After 72 hrs of STZ treatment, diabetes was confirmed

with the random blood glucose higher than 16.7 mmol/
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L, along with polydipsia, polyphagia, polyuria, and

emaciation in both wild-type and A1AR−/- mice. At

week 4 after STZ treatment (Figure 1A), a higher

blood glucose level (P<0.001, mean 28.8±4.5 mmol/L

vs 7.1±0.7 mmol/L; 23.4±5.2 mmol/L vs 6.6±0.4

mmol/L, Figure 1B), and a lower body weight

(P<0.001, mean 20.9±2.1 g vs 28.3±0.8 g; 16.1±2.3 g

vs 26.2±0.8 g, Figure 1C) in A1AR−/- mice and WT

mice treated by STZ were observed than A1AR−/- and

WT control mice. Urine volume (P<0.001, mean 12.3

±0.7 mL vs 2.1±0.3 mL; 10.3±1.6 mL vs 1.8±0.2 mL,

Figure 1D), kidney index (P<0.05, mean 0.12±0.02 vs

0.09±0.01; 0.11±0.02 vs 0.07±0.01, Figure 1E) and

24 hrs urine albumin excretion (P<0.001, mean 170.8

±4.1 μg/d vs 12.3±1.5 μg/d; 132.0±2.9 μg/d vs 17.9

±2.8 μg/d, Figure 1F) were all significantly higher in

diabetic mice than control mice.

The renal pathology of WT-control and A1AR−/–con-

trol mice had no significant difference. While compared to

control mice, mild glomerular and proximal tubular hyper-

trophy was observed in WT-DN group mice（P=0.023）,

A1AR−/–DN mice presented with more severe glomerulo-

megaly, renal tubular hypertrophy, and vacuolization by

light microscope (P=0.003, Figure 2A, 2B). Electron

microscopy showed the typical changes in the early stage

of DN that is thickening of the renal tubular basement

membrane. The thickness in control groups was 110–130

nm, and that in groups with DN was 220–280 nm

(Figure 2C).

Semiquantitative analysis showed that the percentage

of positive area of megalin and cubilin staining in DN

patients significantly decreased compared to GML patients

(Figure 4D, 4E). And the positive area of megalin staining

was negatively as sociated with 24 hrs urine protein in DN
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Figure 1 Successful establishment of type 1 diabetic nephropathy mice model induced by streptozotocin (STZ) for 4 weeks. (A) Flow chart of the mice model in this study.

Blood glucose (B), body weight (C), 24 hrs urine volume (D), kidney weight index (E), and 24 hrs urine albumin excretion (F) were measured at day 0 and day 28 in three

groups of wild-type non-diabetic mice (WT-control), wild-type mice with STZ-induced diabetes (WT-DN), A1AR-knockout mice with STZ-induced diabetes (KO-DN)).

Blood glucose ≥16.7 mmol/L at 72 hrs after STZ-induction was defined to diagnose diabetes. Compared to WT-control mice, WT-DN and KO-DN mice showed significantly
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Abbreviation: Kidney weight index, kidney weight/body weight.
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patients (R2=0.743, P=0.002, Figure 4F) and diabetic mice

(R2=0.859, P<0.001, Figure 3C, 3E), and cubilin either

(Figure 3D and F). It was accompanied with the shorter

microvilli of proximal tubular in DN mice by immune

electron microscopy (Figure 3A and B).

A1AR deletion aggravated caspase1/IL18

activation and megalin injury
Megalin was expressed at the brush border of PTC

(Figure 4A), A1AR was expressed at the cellular mem-

brane of PTC (Figure 4B). They were both located on

PTC (Figure 4C).

The upregulation of A1AR expression was detected by

Western blotting (Figure 5A and E), while the pyroptosis

signaling related protein expression of caspase-1

(P=0.036, Figure 5B and C) and the downstream inflam-

matory cytokine IL-18 (P=0.026, Figure 5B and D) also

increased significantly in WT-DN mice compared to that

in WT-control mice.

While in A1AR−/–DN mice, caspase-1 (P=0.017,

Figure 5F and C) and IL-18 (P=0.018, Figure 5F and D)

protein expression was further more increasing, accompa-

nied by much shorter length of tubular microvilli

(Figure 3A and B) and more decreasing expression of

megalin and cubilin (Figure 3C and D) than in WT-DN

mice.

The protective role of A1AR in megalin

loss via inhibiting caspase-1/il-18 in vitro
In cultured HK2 cells with high glucose, the positive

staining of CD68 (Figure S1A), caspase-1

(Figure S1B), and IL-18 (Figure S1C) was detected

by immunofluorescence. Meanwhile, the upregulation

of caspase-1 (1.76 times, P<0.001, Figure 6A and C)/

IL-18 (1.85 times, P<0.001, Figure 6A and 6D)

expression and downregulation of megalin expression

(0.52 times, P<0.001, Figure 6A and E) were observed

by Western blotting.

In HK2 cells cocultured with high glucose medium and

A1AR antagonist DPCPX, DPCPX further increased cas-

pase-1 (1.96 times, P<0.05, Figure 6B and C)/IL-18 (2.0

times, P<0.05, Figure 6B and D) protein expression and

decreased megalin expression (0.38 times, P<0.05,

Figure 6B and E).

However, in HK2 cells cocultured with high glucose

medium and A1AR agonist CCPA. CCPA inhibited

Figure 2 Representative images of renal histopathological change and tubular basementmembrane. (A andB) Histopathological change in three groups (WT-control,WT-DN and

KO-DN) at four weeks visualized by HE staining (A): Mild glomerulomegaly and brush border damage in proximal tubular epithelial cells, as typically for diabetic nephropathy, were

shown in the WT-DN group while not in the WT-control group (P=0.023). Compared to the WT-DN mice group, KO-DN developed more severe glomerulomegaly (P=0.003),
renal tubular hypertrophy and vacuolization (Original magnification =200×, 400× magnification reveals glomerulus and proximal renal tubule in black boxed area in 200×. Bar

width =200 μm). The black arrows in panel B indicates P=0.023 (WT-DN VS WT-Control), P=0.003 (KO-DN VS KO-Control), P=0.005(KO-DN VS WT-DN). (C). Electron

microscopy showed the typical changes in the early stage of DN that is thickening of the renal tubular basement membrane. The thickness in control groups was 110–130 nm, and

that in groups with DN was 220–280 nm (Original magnification =25000×. Bar width =500 nm). The red arrows showed the tubular basement membrane.

Abbreviation: HE, hematoxylin and eosin.

Dovepress Tian et al

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
1587

http://www.dovepress.com
http://www.dovepress.com


WT-Control
A1A

B

C

D

E F G

A2 A3

B1 B2 B3

WT-DN KO-DN

WT-Control WT-DN KO-DN WT-Control WT-DN KO-DN 0.10
Megalin/Cubilin relative expression

0.15

WT-Control

Megalin

Cubilin

0.15 P=0.014

P=0.012

P=0.003

P=0.001

M
eg

al
in

 re
la

tiv
e 

ex
pr

es
si

on

C
ub

ili
n 

re
la

tiv
e 

ex
pr

es
si

on

U
rin

e 
al

bu
m

in
 e

xc
re

tio
n

(u
g/

d)

0.10

0.05

0.00

0.15 200
Cubilin
Megalin

R2=0.902,P<0.01
R2=0.859,P<0.01

150

100

50

0

0.10

0.05

0.00

WT-DN KO-DN
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microscope showed shortened length and reduced density tubular microvilli in DN mice compared to control mice, further shorter and more sparse density were observed
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Tian et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2019:121588

http://www.dovepress.com
http://www.dovepress.com


A1AR

A

B

C

D

E

F

A1AR

GML

GML

DN

DN

GML DN

1000x

0.15 P<0.001

P=0.002

0.10

0.05

0.00

0.15

0.10

0.05

0.00

400x

400x

DAPI Merge

DAPIMegalin

Megalin

Megalin

Cubilin

0.18

M
eg

al
in

 re
la

tiv
e 

ex
pr

es
si

on

M
eg

al
in

 re
la

tiv
e 

ex
pr

es
si

on
C

ub
ili

n 
re

la
tiv

e 
ex

pr
es

si
on

r=-0.862, P=0.002

0.12

0.06

0.00
0 2 4 6

24hUPro (g)

Merge

Merge

Figure 4 Expression of megalin, cubilin, and A1 adenosine receptor (A1AR) in kidneys of DN patients. (A) A1AR was located at the membrane of PTC by
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caspase-1 (P<0.001, Figure 6B and C)/IL-18 (P<0.001,

Figure 6B and D) expression and improved megalin

(P<0.001, Figure 6B and E) expression obviously.

Discussion
This study confirms that albuminuria was associated with

megalin-cubilin loss in DN patients and animal models.

A1AR deletion aggravated megalin-cubilin loss associated

albuminuria and renal pathological lesions in DN mice,

through activating pyroptosis-related caspase-1/IL-18 sig-

naling. While A1AR agonist could improve megalin loss

via inhibiting caspase-1/IL-18 signaling in HK2 cells. To

our knowledge, this is the first direct evidence of the

protective effects of A1AR on megalin-cubilin loss asso-

ciated albuminuria in DN. We summarized the role of

A1AR in this process as Figure 7.

Microalbuminuria indicates incipient DN and indepen-

dently predicts ESRD.24,25 But the mechanism of protei-

nuria is yet incompletely understood. Recently, decreasing

protein reabsorption at PTC was found to contribute to

diabetic proteinuria.6 Megalin-cubilin are multi-ligand

protein receptors expressed at the brush border membrane

of PTC involved in endocytosis.26 Megalin/LRP2 is

known to bind and endocytosis more than 40 ligands and

including some of the important signaling members in

homeostasis of kidney, diabetes, neural stem cell niche in

brain and eye.27–29 Low-molecular proteinuria due to

failed endocytosis was observed in megalin-knockout rat

and cubilin-deficient dogs.30 Thrailkill K. M. et al, pro-

posed an association of megalin-cubilin with diabetic albu-

minuria, since urine megalin-cubilin ligands were

significantly increased in type 1 diabetes patients with

urine microalbuminuria compared to samples from non-

albuminuria diabetes patients and healthy controls.8 In this

study, we directly observed a significant loss of megalin-

cubilin of PTC in patients and mice models with DN. Our

finding was consistent with the reduction of albumin reab-

sorption of PTC as reported before.7

But the mechanism of megalin loss in diabetes is still

not clear enough. In vitro studies, several mechanisms
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had been investigated that megalin could combine with

advanced glycation end products (AGE). The overload or

accumulation of AGE during the PTC endocytosis and

activation of the renin-angiotensin system could induce

the megalin injury.31,32 In the renal interstitium of

patients with Fanconi syndrome, we observed the asso-

ciation between proinflammatory cytokine IL-1, IL-17,

and megalin injury.18 A. Takeyama et al, also reported

that megalin was downregulated via LPS-TNF-alpha-

ERK1/2 signaling pathway in PTC.33 These data indicate

that proinflammatory cytokines might play an important

role in megalin loss of DN.

In this study, we firstly observed caspase-1/IL-18 sig-

naling activation was associated with megalin loss in mice

with DN. Caspase-1, which could detect endogenous sig-

nals, resulting in activation of IL-1β, IL-18, and other

cytokines, is a well-characterized sensor molecule of the

pyroptosis.34 It had reported that hyperglycemia could

activate the pyroptosis-related proinflammatory cytokine

IL1 family, which then mediated the occurrence and

development of proteinuria through lysosomal damage

and active oxygen cluster.35,36 In vitro PTC study,

NLRP3 also could activate caspase-1 to release cytokines

of the IL-1β, promote endoplasmic reticulum stress and

inflammation, then lead megalin loss. IL-18, is also a

member of the IL-1 family of inflammatory cytokines,

and involved in the development and progression of

DN.37 It is reasonable that the pyroptosis-related cas-

pase1/IL18 signaling is associated with PTC injury and

megalin loss in DN. Furthermore, besides the large num-

ber of clinical studies, recently, based on the inverse-var-

iance weighted method, high IL-18 plasma levels were

proved significantly increase the risk of T2DM in a

Mendelian randomization study.38 Since IL-18 was recog-

nized as the pathogenic mediators in diabetic megalin lost

and proteinuria, it might be a new potential therapeutic

targets.

A1AR, a member of the adenosine receptor family, has

diverse function from role in diabetes and obesity to sleep

deprivation in the human brain.39,40 In our previous study,
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exacerbation of albuminuria was observed in A1AR

knockout (A1AR-/-) mice in the young (10–20w) Akita

diabetic mice, without obvious pathological injury.15 In

early stages of diabetes nephropathy, the upregulation of

SLGT2 in PTC could increase the Na+/glucose reabsorp-

tion, and decrease the Na+ delivery to macula densa,

impaired TGF and then elevate GFR. In the A1AR-/-

diabetes mice, the abolished TGF, induced the more

severer glomerular relaxation and hyperfiltration. But it is

not clear, whether A1AR play a role in the proximal

tubular albumin reabsorption, mediated by megalin loss.15

In this study, A1AR -deficiency was associated with

more increasing activation effect of the caspase-1/IL-18

signaling, and augmented megalin-cubilin loss in DN

mice. In WT mice with DN, the caspase1/IL-18 signaling

could be activated by several well-known reasons, such as

oxidative stress, hypoxia, and hyperglycemia41-43 The

upregulation of A1AR might play an important role in

the anti-inflammatory process, which had been demon-

strated in acute lung injury and renal ischemia-reperfusion

injury model.16,44 In a renal ischemia-reperfusion injury

model, inflammatory factors TNF-α and IL-1β were sup-

pressed by A1AR.16 The A1AR agonist was also reported

to inhibit the IL-18 releases by alleviating macrophage

infiltration.45 Thus, A1AR could protect against megalin

injury in mice with DN through inhibiting the caspase-1/

IL-18 signaling activation. Since megalin loss is obviously

related to albuminuria and inflammation, megalin KO

mouse will be helpful to confirm this conclusion in future

experiments.

Conclusion
A1AR played a protective role in renal proximal tubular

megalin loss associated albuminuria via inhibition of cas-

pase-1/IL-18 signaling in DN.
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Supplementary materials

Table S1 Reagents used in this study

Reagent Manufacturers Product code Application(dilution)

STZ Sigma (USA) S0130 IP (120 mg/kg)

CCPA Sigma (USA) C7938 0.1 umol/L

DPCPX Sigma (USA) C101 1 umol/L

Primary antibody

Megalin Abcam (UK) ab76969 IHC/IF (1:200)

Cubilin Abcam (UK) ab191073 IHC (1:200)

A1AR Abcam (UK) ab12480 IF (1:200)

β-actin Abcam (UK) ab8226 WB (1:2000)

A1AR Abcam (UK) ab82477 WB (1:800)

Caspase-1 Abcam (UK) ab1872 WB (1:2000)

IL-18 Abcam (UK) ab71495 WB (1:1000)

Secondary antibody

Goat anti-Rabbit ZSGB (China) PV9001 IHC (1:200)

Goat anti-Rabbit Abkine (USA) A23210 IF (1:200)

Goat anti-Mouse Abkine (USA) A23410 IF (1:200)

Goat anti-Rabbit Abcam (USA) A21020 WB (1:1000)

Abbreviations: STZ, streptozotocin; A1AR, A1 adenosine receptor; IL18, interleukin 18; IP, intraperitoneal injection; IHC, immunohistochemistry; IF, immunofluorescence;

WB, western blotting.

Table S2 Baseline characteristics of DN patients in biopsy

Groups DN

N=13

GML

N=12

P-value

Male (%) 53.8% 58.3% 0.532

Age (years) 50.8±11.5 40±8 0.28

DM (years) 9.5±4.5 – –

BMI (kg/m2) 25.6±3.4 20.8±2.5 0.0342

HGB (g/L) 114.3±21.6 116.3±13.7 0.685

ALB (g/L) 31.8±5.4 36.5±3.1 0.066

TG (mmol/L) 2.1±1.0 1.6±0.8 0.0714

SCR (μmol/L) 129.6±61.2 79.4±17.3 0.026

24hUPro (g) 5.7±3.8 1.2±0.6 <0.001

HbA1c (%) 7.0±1.2 – –

Abbreviations: DN, diabetic nephropathy; GML, glomerular minor lesion; BMI, body mass index; DM, diabetes mellitus; 24hUP, 24 hr urine protein; HGB, hemoglobin;

ALB, albumin; SCr, serum creatinine; TG, triglyceride; HbAlc, glycated hemoglobin.
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Figure S1 Transdifferentiation of proximal tubular epithelial cell to macrophage in a high glucose environment. (A) Costaining of PTC immunolabeled by cytokeratin (CK)-

18 and macrophage immunolabelled by CD68. Green: cytokeratin (CK)-18; Red: CD68; Blue: DAPI; Merge is CK18 with CD68. (B) Costaining of pyroptosis signaling

immunolabeled by caspase-1 and macrophage immunolabeled by CD68. Green: Caspase-1; Red: CD68; Blue: DAPI; Merge is caspase-1 with CD68. (C) Costaining of

pyroptosis signaling immunolabeled by IL18 and macrophage immunolabeled by CD68Green: IL-18; Red: CD68; Blue: DAPI; Merge is IL-18 with CD68. Original magnification

=400x. Bar width =50 μm.

Abbreviation: DAPI, 4ʹ,6-diamidino-2-phenylindole.
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