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ABSTRACT: In this paper, we describe a computational method for
analyzing results from scattering experiments on dilute solutions of
supraparticles, where each supraparticle is created by the assembly of
nanoparticle mixtures. Taking scattering intensity profiles and nano-
particle mixture composition and size distributions in each supraparticle
as input, this computational approach called computational reverse
engineering analysis for scattering experiments (CREASE) uses a genetic
algorithm to output information about the structure of the assembled
nanoparticles (e.g., real space pair correlation function, extent of
nanoparticle mixing/segregation, sizes of domains) within a supraparticle. We validate this method by taking as input in silico
scattering intensity profiles from coarse-grained molecular simulations of a binary mixture of nanoparticles, forming a close-packed
structure and testing if our computational method can correctly reproduce the nanoparticle structure observed in those simulations.
We test the strengths and limitations of our method using a variety of in silico scattering intensity profiles obtained from simulations
of a spherical or a cubic supraparticle comprising binary nanoparticle mixtures with varying chemistries, with and without dispersity
in sizes, that exhibit well-mixed to strongly segregated structures. The strengths of the presented method include its capability to
analyze scattering intensity profiles even when the wavevector q range is limited, to handily provide all of the pairwise radial
distribution functions, and to correctly determine the extent of segregation/mixing of the nanoparticles assembled in complex
geometries.
KEYWORDS: Small-angle scattering, structure, nanoparticle, assembly, computational analysis, segregation

I. INTRODUCTION

Assembly of nanoparticles is relevant to engineering materials
for a wide array of applications including optics, catalysis,
biomedicine, and electronics.1−5 Among the many different
techniques6−8 used for nanoparticle assembly, emulsion
droplet and thin-film assembly are two common approaches
that generate a micrometer-scale spherical or cuboidal
“supraparticle” assembled from nanometer-scale particles or
nanoparticles.9−15 Supraparticles created using these ap-
proaches have been used as optically active materials exhibiting
colors that can be tuned with nanoparticle structure arrange-
ment and size.14,16−18 Photonic supraparticles, in particular,
produce structural color due to the periodic arrangement of
the nanoparticles,19 which is more easily tunable and more
resistant to degradation than typical absorption-based pig-
ments. Structural characterization of assembled nanoparticles
within these supraparticles is an important step during the
design of materials with tailored optical or photonic properties.
Structural characterization of assembled nanoparticles has

typically been performed using microscopy and scattering
techniques, including small-angle X-ray and neutron scatter-
ing.6,20−27 Transmission electron microscopy (TEM) and
scanning electron microscopy (SEM) are two common
microscopy techniques for characterizing nanoparticle assem-

blies.6,21,22 TEM shoots an electron beam through a thin
sample specimen (up to ∼200 nm thick), with the transmitted
electrons used to create a two-dimensional representation of
the three-dimensional sample.6,21−23 TEM provides high-
resolution images from the atomic to micron length
scales.21−23 SEM utilizes lower electron beam energies and
scans the electron beam in raster fashion across the sample
surface with the machine set to detect backscattered
electrons.6,22,23 SEM is typically used to probe the sample
surface and is crucial for samples that are too thick for TEM
imaging.6 Due to the lower electron beam energy, SEM has a
resolution on the nanometer to micron scale.22 While
microscopy is beneficial for obtaining images of nanoparticle
assemblies, both TEM and SEM suffer from limited sample
area and the tendency for sample bias of “nice looking” images
as representative of the sample.21,22,28 Furthermore, a
microscopy image provides a single snapshot of the assembly
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and not the ensemble average, whereas scattering techniques
provide a method to characterize the entire material.28 More
advanced applications of SEM and TEM have investigated
obtaining 3D data from the sample by combining a large set of
correlated images into a 3D representation.29−31 The focused
ion beam (FIB) SEM system allows for the repeated collection
of SEM images followed by a FIB milling process that
progressively slices the sample to expose a new surface for
imaging.29−31 The 3D reconstruction using TEM requires
obtaining many images at different tilt angles, which are then
aligned to yield the 3D reconstruction with the sample
thickness restriction imposed by TEM.29 Both techniques
require significant data acquisition times to obtain the many
images as well as significant data processing and analysis to
properly reassemble the images.31 Additionally, the data
processing and reconstruction step requires multicomponent
mixtures or porous single-component systems to be sufficiently
different visually to allow the reconstruction algorithm to
correctly identify the different materials or pores: a nontrivial
step that may require specific development of more advanced
segmentation algorithms.32

Small-angle X-ray and neutron scattering (SAXS and SANS)
are well-established techniques for probing assembled particle
structures with a scope ranging from nanoparticle size (few
nanometers) to the assembled domains scale (nanometers to
microns), with the exact resolution depending on the
instrument; for example, the commonly used NGB 30m
SANS instrument at the National Institute of Standards and
Technology is designed for distances from ∼1 to ∼700 nm.33

Because SAXS intensity is based on the electron density
difference between the nanoparticle and the solvent, SAXS is
more sensitive to nanoparticles of heavier elements.21,34 SANS
intensity is based on the neutron scattering length density of a
material that can vary based on element isotope, allowing for
comparatively greater sensitivity to nanoparticles composed of
lighter elements.21,34 In scattering techniques, X-ray or neutron
beams are used on samples, and the elastic scattering of those
beams is measured.6 The scattering intensity of the X-rays or
neutrons (the output from SAXS and SANS experiments)
depends on the nanoparticle form factor, which depends on
the nanoparticle size and shape, and the structure factor, which
captures the spatial correlations of the nanoparticles.6

Contrast-matching of nanoparticle mixtures composed of
multiple chemically distinct nanoparticles is used to reduce
or eliminate the scattering contrast between one of the
nanoparticle chemistries and the solvent leading to the
scattering primarily from the non-contrast-matched nano-
particles, allowing for selective signal acquisition.35,36 Contrast-
matching the solvent to a nanoparticle chemistry in SAXS
requires varying the electron density of the solvent by adding a
contrast agent into the system.37,38 Additionally, anomalous
SAXS or ASAXS is an alternative technique to SAXS for
complicated structures that requires the scattering intensity to
be measured at least three times with X-rays of different
energies.39 By utilizing several different X-ray energies over
multiple scattering experiments, ASAXS can be used to
contrast-match as the scattering power of the components
can vary depending on the X-ray energy used, possibly allowing
isolation of individual components.39 In SANS contrast-
matching, the solvent or nanoparticle(s) is deuterated
appropriately to remove the scattering contrast.35,36,38

Regardless of whether one uses SAXS or SANS, the output
from these techniques is a scattering intensity, I(q), as a

function of scattering wavevector q, which is a function of the
wavelength of radiation and scattering angle. The I(q) versus q
profile contains information about the particle−particle
correlations and periodicity within the assembled structure
between the different components comprising the sam-
ple.36,38,40−42 Interpreting the I(q) versus q typically requires
fitting the scattering data with theoretical models that are
applicable for nanoparticle systems such as the commonly used
hard sphere43,44 and sticky hard sphere45,46 models. These
models have been successfully applied to nanoparticle
dispersions to reproduce experimental scattering results;47,48

however, many of the theoretical models assume a fluid
suspension, so those models gradually fail as the packing
fraction exceeds 0.4.49,50 Furthermore, the investigation of
mixtures of multiple nanoparticle types (size, chemistry) and
geometry (spherical, cubic) further complicates the scattering
profile analysis. Thus, there has been growing interest in
development of computational methods that side-step the
choice of analytical model fits.
One computational method used to analyze nano- to

micron-scale particle dispersions is reverse Monte Carlo
(RMC) simulations. RMC simulations are a class of MC
simulations in which randomly selected particle moves are
accepted or rejected based on how much better the computed
scattering profile of that post-move structure versus pre-move
structure matches the target experimental scattering intensity
profile.51 The structures produced upon accepting MC particle
moves evolve the system toward exhibiting a scattering
intensity profile similar to the target experimental profile.
RMC has been extensively applied to nanoparticle dispersions,
forming aggregates as the method is applicable for low-density
nanoparticle systems;52−54 however, as RMC simulations rely
on a good acceptance rate of the randomly selected particle
moves, it is not as useful for high-density and close-packed
nanoparticle assemblies where the acceptance rate for particle
moves is low using the commonly implemented RMC
algorithm.55 Additionally, RMC simulations typically pro-
gressively iterate on one structure at a time, possibly
converging toward a local optimum instead of the global
optimum. Another method to analyze scattering from nano-
particle aggregates is fractal modeling using the Beaucage
unified model, where the scattering profile is fit to provide
information on the aggregate fractal dimension, aggregate
radius of gyration, and aggregate subunit shape information.56

Work comparing RMC and fractal modeling to determine the
aggregate form factor of silica particles found both approaches
to be similar in final results.57 Oberdisse et al. state the fractal
modeling approach was simpler to implement, but they noted
the RMC approach was free from the fractal modeling
approximations and provides a real space image of the
aggregate.57 We also note a recent study by Larsen et al. that
presented a list of useful analytical structure factors to describe
structural information about the aggregates.58 Along the lines
of RMC simulations, another method, MONSA, seeks to
reconstruct the target structure by fitting experimental
scattering curves. Reference 27 describes MONSA for a
system of polymer-grafted nanoparticles. MONSA generates a
close-packed structure of monodisperse beads and uses an
MC-based approach to classify the beads as one of the
components (in the specific case of that paper−nanoparticle,
polymer graft, or solvent).27 This method excelled for
identifying different polymer-grafted nanoparticle morpholo-
gies;27 however, its reliance on monodisperse beads prevents
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application to nanoparticle assemblies with dispersity. For
high-density and well-ordered crystalline nanoparticle assem-
blies, there are alternative computational methods for
scattering analysis.59,60 Previous work has developed a
scattering formalism for superlattices comprising any arbitrarily
shaped nanoparticles that can predict experimental superlattice
structures.59,60 That method requires fitting the lattice
constant, lattice peak width, Debye−Waller factor (describes
relative variation of particle positions from ideal lattice
positions), a scaling factor, and the particle orientation matrix
to the experimental scattering curve.59,60

There have been far fewer computational methods that can
analyze structure of disordered nanoparticle assemblies at high
density. One recent approach that characterizes nanoparticle
assemblies varying from crystal-like to disordered structures is
SASpdf.61 This approach excelled at identifying the assembly
structure, crystallite sizes of ordered assemblies, and the pair
distribution function (or pdf). However, the authors state that
this method “depends heavily on having good statistics (high
signal-to-noise ratio) throughout the entire diffraction pattern
Ic(q) and the form factor P(q).” They illustrate this point by
showing how noisy data can significantly impact the resulting
pair distribution function.61 Additionally, SASpdf requires the
I(q) to span a sufficiently large q range so that the Fourier
transformation to obtain the pair distribution function is not
too noisy. This large q range requirement may not be achieved
if the scattering instrument resolution only spans a small q
range corresponding to a few nanoparticle diameters; we
discuss this shortcoming later in this paper by applying the
SASpdf approach to one of the cases we examine to contrast
SASpdf against our computational approach presented in this
paper.
Our computational approach for analyzing small angle

scattering profiles from assembled nanoparticles is inspired by
a recently published computational method from our research
laboratory, called CREASE (computational reverse engineering
for scattering experiments), that demonstrated reliable reverse
engineering of polymer micelle structure from experimental
scattering data.62 In that work, CREASE comprised two steps:
the first step was a genetic algorithm step that provides
macroscopic information about the micelle (e.g., core and
corona sizes) for a given experimental scattering profile; the
second step was a molecular reconstruction step that provided
microscopic information (e.g., chain conformations, interfacial
arrangement of monomers) by recreating the polymer chains
within the micelle dimensions obtained from the first step.62

For the given experimental scattering profile, the micelle core
and corona diameters produced by CREASE were more in
agreement with the cryo-TEM measurements than the
analogous results from fitting the scattering profile with a
commonly used polymer micelle analytical model.62 This
successful demonstration of CREASE motivates us to extend
the method for analyzing scattering profiles obtained from
dense, noncrystalline (amorphous), approaching close-packed
arrangement of nanoparticle mixtures.
In this paper, we present a CREASE-inspired, genetic

algorithm (GA) optimization-based approach that can link the
I(q) from a dilute solution of supraparticles to the structural
arrangement of the assembled nanoparticles within a supra-
particle. We first present the details and methodology for the
case of a supraparticle that is made of a binary, chemically
distinct, spherical nanoparticle mixture in either cubic or
spherical confinement. We then validate our approach by

taking as input the in silico experimental scattering profiles
from prior simulations of supraparticles with binary mixtures of
spherical nanoparticles with disperse nanoparticle sizes and
varying extents of mixing and comparing the output of our GA
approach to the known structure. This paper serves as a proof-
of-concept for our approach, and we expect this approach to be
easily extended to other nanoparticle systems with more
complex nanoparticle shapes (core−shell, anisotropic), com-
plex confinement (cylindrical), and gel or glassy systems.

II. APPROACH
We describe in this section the three main parts of our
computational approach: the inputs, the steps within the
genetic algorithm, and the outputs.
II.A. Required Inputs

The input information includes the experimental scattering
intensity, Itarget(q) versus q, the nanoparticle size distribu-
tion(s), and the nanoparticle mixture composition.
For binary (A and B nanoparticles) mixtures explored in this

work, the GA requires the Itarget A(q) and Itarget B(q) scattering
profiles of the A-type nanoparticles and the B-type nano-
particles. In experiments, for solutions of binary nanoparticles,
the Itarget A(q) can be obtained by contrast-matching nano-
particle B chemistries and the solvent, and vice versa for
Itarget B(q).

24,35,36,38,63 For systems where the A and B
nanoparticles have similar scattering densities or electron
densities, we would use the total scattering intensity instead of
the contrast-matched scattering profiles. We could also use
Itarget AB(q) in place of Itarget B(q) as described in the Supporting
Information. In all implementations described in this paper, we
use the Itarget A(q) and Itarget B(q) scattering profiles of the A-
type nanoparticles and the B-type nanoparticles.
The nanoparticle size distribution is input as the type of

distribution (e.g., Gaussian, log-normal) and the parameters of
that distribution (e.g., average diameter, standard deviation).
In experiments, this information would be available from the
characterization of the nanoparticle sizes after their synthesis.
The nanoparticle mixture composition is input as volume
fraction of each nanoparticle chemistry.
In this work, we mainly focus on equal volume fraction (i.e.,

symmetric 1:1 A/B binary mixture) of type A and type B
nanoparticles with results for one asymmetric 1:3 A/B
composition shown in the Supporting Information, each with
a log-normal distribution of nanoparticle diameters with
average nanoparticle diameter of 220 nm and standard
deviation of 9, 15, or 30%. The log-normal distribution of
nanoparticle diameters is discretized by utilizing 11 distinct
groups of nanoparticles, with the groups’ diameters drawn to
match the log-normal distribution (Supporting Information
Figure S1). For the average nanoparticle (220 nm diameter),
the Guinier regime is for q less than 0.00117 Å−1, and the close
contact correlation peak occurs at q = 0.001428 Å−1. Even
though we focus on densely packed symmetric binary mixtures
of solid, spherical nanoparticles, our method can be extended
to incorporate other input nanoparticle shapes or types (e.g.,
cylinders, hollow spheres), mixture compositions (e.g., ternary
mixture), and density regimes (i.e., densities below close-
packed).
II.B. Genetic Algorithm

A GA is an adaptive heuristic search method utilizing
population genetics (natural selection and genetic combina-
tions/mutations) to identify optimal solutions.64 We use a GA
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to optimize the assembled nanoparticle structure whose
computed scattering intensity, Icomp(q), most closely matches
Itarget(q) for both contrast-matched scattering profiles. Figure 1

provides an overview of the GA workflow. In short, the GA
algorithm begins with a population of N different possible
assembled nanoparticles’ structures (termed as “individuals” in
the rest of this paper). We evaluate the “fitness” of every
individual by calculating how closely its Icomp(q) matches the
Itarget(q). In each generation, we identify the best individual
defined as the assembled nanoparticle structure with high
fitness; the probability of being selected for the next generation
is proportional to the individual’s fitness. Each selected
individual undergoes a mutation (i.e., change in structure) to
generate a new individual, and these new individuals then form
the new generation that proceeds to the next iteration of the
algorithm (evaluation, selection, and mutation). The GA
continues this process for multiple generations until the fitness
values of the top 10% of individuals over all generations reach a
plateau value. The output of the GA is the structure
corresponding to the individual with the highest fitness (i.e.,
the structure with an Icomp(q) that best matches Itarget(q)). Due
to the expected variations between GA runs, we conduct three
independent GA runs for each Itarget(q) and average the best
structures from these three GA runs and report the standard
deviation between the three runs as the error.
We describe each of the above steps in more detail below.
Step 1: Generating Individuals (Initial Generation)

and Calculating Icomp(q) for Each Individual. We begin
each GA run by generating a population of 36 random
individuals where each individual is an assembled structure of
20,000 nanoparticles matching the nanoparticle mixture
composition and nanoparticle size distribution input informa-
tion. When deciding how many individuals we should have in
each population, we arrive at a number somewhere between
having a small, computationally efficient population size but
likely lacking in diversity and/or requiring more generations to

find the “best” structure and having a large, diverse population
that requires more computational resources evaluating all
individuals in that population. For our system, we found that
one individual per CPU core in a 36-CPU core machine
provided a sufficiently large population with balanced
computational efficiency and diversity. The choice of 20,000
nanoparticles per individual is arbitrary, but it is sufficient to
ensure suitable resolution for both Icomp(q) and the pairwise
radial distribution functions while balancing the computational
effort required for each step in the GA.
Each individual’s structure is generated by randomly placing

the 20,000 nanoparticles with the input size distribution, in a
simulation box at an initial occupied volume fraction (η) of
0.3. These nanoparticles are brought to a close-packed
structure with η ≈ 0.55−0.6 (depending on nanoparticle
dispersity) using a conjugate gradient energy minimization
technique,65 implemented in the LAMMPS software package.
To bring the nanoparticles to the close-packed state near the
center of the box, we apply an additional energy potential to all
nanoparticles based on the nanoparticle’s x, y, and z position
such that the nanoparticles further from center of the box
(marked as origin) have an energy higher than that of the
nanoparticles closer to the origin. During this step, the
nanoparticles interact via the colloidal Lennard-Jones (cLJ)
potential66 with the Hamaker constant for all pairwise
interactions (HA−A, HA−B, HB−B) initially set to a weak 0.25
kBT to prevent nanoparticle overlap. In simpler terms, the
close-packed structures are generated by biasing the nano-
particles to move toward the origin with the conjugate gradient
method used to minimize that energy gradient (creating the
close-packed nanoparticle structure). We then maintain that
energy gradient while performing a short molecular dynamics
(MD) simulation in the NVT ensemble at T* = 1.0 for
∼10,000 time steps with a time step size of 0.005τ. This short
MD simulation allows the nanoparticles to better pack
especially at high nanoparticle diameter dispersity. While this
conjugate gradient approach more quickly generates close-
packed structures than performing molecular dynamics
simulations in a shrinking confinement9,14,15 or at high
density,67 this structure generation step is a rate-limiting step
in the GA. Reducing the number of nanoparticles per
simulation, reducing nanoparticle size dispersity, or starting
at higher initial η are all ways to speed up this step.
After generating the close-packed structures for each

individual, we perform multiple nanoparticle swaps to generate
a population of diverse initial structures ranging from randomly
mixed nanoparticles to strongly segregated nanoparticles.
Having a diverse initial population is critical for the GA to
prevent premature convergence to a “trapped” solution that is
not the optimal structure. We use two different methods to
swap nanoparticle locations: (a) swap with fixed nanoparticle
distance (FD) and (b) swap with variable nanoparticle
distance (VD). We perform GA runs with each nanoparticle
swap method separately to confirm that the two methods
independently produce similar “best” structures from the GA
run. For both methods, we randomly generate HA−A, HA−B, and
HB−B Hamaker constants to use when selecting nanoparticles
to swap by performing nanoparticle swaps (these Hamaker
constants are different from the 0.25 kBT used when creating
the close-packed structure described earlier). These Hamaker
constants are initially randomly selected in the interval (0,1) as
the GA method does not require a priori knowledge about the
underlying particle interactions. The nanoparticles within each

Figure 1. GA method workflow for reconstructing assembled
nanoparticles’ structure from scattering intensity profiles of nano-
particle mixtures.
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individual structure undergo a randomly chosen 5000 to
5,000,000 number of nanoparticle swap steps. In each swap
step, one randomly selected A nanoparticle is swapped in
position with one randomly selected B nanoparticle. As done
in Monte Carlo simulations, we use the Metropolis acceptance
criterion68 to accept or reject the nanoparticle swap. The pre-
swap and post-swap energies needed for the Metropolis
acceptance criterion are calculated based on the nanoparticles
and their neighbors interacting via the cLJ potential with the
Hamaker constants that were randomly assigned to all the
nanoparticles in that individual. We note that while the cLJ
potential is used in our implementation, other interaction
potentials can be substituted as long as the interaction
potential allows for differentiation of the neighborhood of
the nanoparticles to be swapped.
The two separate swap methodsFD method and VD

methoddiffer only in their calculation of the nanoparticle
separation, visually depicted in Supporting Information Figure
S2. The FD method sets the nanoparticle separation between
adjacent neighbors as the sum of the two nanoparticles’ radii
plus 0.5 nm; the 0.5 nm separation distance is the average
separation distance between close-packed nanoparticles for the
9% dispersity systems. The VD method maintains the
separation distance between the original nanoparticle and its
adjacent neighbors for both the original nanoparticle and the
nanoparticle attempting to swap with the original nanoparticle.
For example, if the separation between the original nano-
particle and two of its adjacent neighbors is 0.4 and 0.6 nm,
then the separation between the nanoparticle attempting to
swap and those two neighbors is 0.4 and 0.6 nm when
calculating the energy for the Metropolis acceptance criteria.
Both methods seek to consider the nanoparticle neighbor-
hoods when attempting the swap. If the nanoparticle swap
move is accepted, the nanoparticle packing fraction is
decreased to η = 0.3 to remove nanoparticle overlap before
being compressed back to close-packed using the same
conjugate gradient method described above.
After generating the first generation of 36 individuals (i.e.,

36 different structures), we calculate the computed scattering
intensity, Icomp(q), for each individual. We calculate the
scattering for A nanoparticles, Icomp A(q), and scattering of B
nanoparticles, Icomp B(q), using the Debye scattering equa-
tion.69,70
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We define Icomp X(q) as the scattering intensity for nanoparticle
X (either nanoparticle A or B) over all NX nanoparticles in the
system. The term rij is the distance between each pair of
nanoparticles, and Vsample is defined so Icomp X(q) is 1.0 at the
lowest q considered to allow easy comparison between Itarget(q)
and Icomp(q). The spherical form factor amplitude f i for each
nanoparticle is defined as71,72
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where Vi is the volume of nanoparticle i, Ri is the radius of
nanoparticle i, and Δρi is the scattering length density

difference between the nanoparticle and solvent. For our
case, we assume Δρi is the same for both nanoparticle types A
and B (and set to 1.0 as Vsample already scales the scattering
profile); however, they are easily adjusted for the system of
interest. For example, Δρi can be set between 0.0 and 1.0 to
correspond to scattering experiments with varying degrees of
contrast-matching from perfectly contrast-matched to no
contrast-match. Additionally, we do not incorporate instru-
ment smearing into our Icomp(q) or Itarget(q) calculations
because our comparisons are against simulated scattering
profiles, but for experimental applications, Icomp(q) should be
adjusted to account for smearing that is typically found in
experimental scattering experiments.73 We calculate Icomp(q)
for q values between 0.001 and 0.0035 Å−1 that correspond to
distances between ∼630 and ∼180 nm (i.e., distances three
times the average nanoparticle diameter and slightly below the
average nanoparticle diameter, respectively). These values are
chosen to ensure fitting was not performed at distances much
smaller than the nanoparticle diameter where the nanoparticle
form factor will dominate the scattering profile or at q values
not easily achievable on experimental scattering instruments
(for example, the commonly used NGB 30m SANS instrument
at the National Institute of Standards and Technology).33

While we choose this q range when fitting, we are not limited
computationally, and we plot the Itarget(q) and Icomp(q) over an
extended q range from 0.0002 to 0.02 Å−1 to demonstrate that
the method is not limited to a specific q range and can provide
insight beyond experimentally measured q values. We found
that, despite fitting over the limited q range, the GA is able to
reproduce correct structures for the cases considered, unlike
the alternative nanoparticle assembly characterization method,
SASpdf,61 described in the Introduction, that fails when
considering a limited q range (Supporting Information Figure
S3). While the Icomp(q) calculation is not the rate-limiting step
in the GA, it does require significant computational time, as the
calculation of eq 1 involves going through all nanoparticles and
their pairwise distances with all other nanoparticles. As the
calculation time increases with the number of q values
considered, the selection of the q range for fitting benefits
from focusing on the regime most impacted by the assembled
nanoparticles’ structure. Addition of machine learning
algorithms (e.g., neural networks) should allow us to compute
the scattering intensity more rapidly and lead to significant
reduction in the GA generation time.74,75

Step 2: Computing Individual Fitness and Selecting
Individuals for Next Generation. For each individual in
every generation, we calculate the individual’s fitness. We
define high fitness as a close similarity between the individual’s
Icomp(q) and Itarget(q) and low fitness as a poor similarity. To
determine similarity, we define a sum of log difference squared
error (SSE) between each contrast-matched Icomp(q) and
Itarget(q).
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We choose this form because of the multiple orders of
magnitude of I(q) values to ensure more equal weighting to all
I(q) values. The ln(Δq) term attempts to adjust for unequal q
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spacing between evaluations of Itarget(q) typically found in
experimental systems. The SSE decreases as the similarity
between Icomp(q) and Itarget(q) increases. For cases where
Itarget(q) comes from experimental scattering with associated
errors, one could also calculate the SSE with a commonly used
χ2 goodness of fit.76 We note that the exact form of SSE can be
varied as long as the error function ensures appropriate error
weighting across the q range to drive the algorithm to low error
structures. We then define the fitness function based on the
SSE.62

= − +X Yfitness (SSE SSE)max (4)

We define SSEmax as the maximum value of SSE for any
individual in the current generation. The definitions for X and
Y are

= −
−

− − −
X c( 1)

max(SSE SSE)
max(SSE SSE) average(SSE SSE)s

max

max max

(5)

= − −Y X(1 )average(SSE SSE)max (6)

where cs is a scaling constant chosen to be 10. Our definition of
fitness ensures that a high fitness corresponds to a Icomp(q)
closely matching Itarget(q). To ensure that low fitness solutions
are not immediately discarded, causing the GA to converge
prematurely, the X and Y variables are used to scale the fitness.
The probability that an individual is selected, or preserved,

for the next generation is proportional to the individual’s
fitness. Akin to natural selection, our GA selection enables the
most fit individuals to continue while removing the least fit
individuals; though, we scale the fitness to ensure the least fit
individuals are more likely to be eliminated, not guaranteed to
be eliminated. Our GA has a population of 36 individuals,
where 27 are selected as described above based on their fitness.
The remaining nine individuals are composed of three copies
of the top three individuals with the highest fitness from any
generation up to that point. This approach seeks to enrich each
generation with high fitness individuals while removing low
fitness individuals. While the addition of multiple copies of the
top three individuals with the highest fitness in any generation
may appear to bias or cause early convergence, this approach is
taken because multiple generations are required to optimize
the individuals to produce the highest overall fitness. Thus, by
supplementing the GA with the best individuals up to that
point, we provide multiple opportunities for the future
generation’s individuals to improve during subsequent
iterations of the GA.
After selecting the next population of individuals, those

individuals must undergo a process to increase diversity and
ensure that no two individuals’ structures are the exact same in
either the current or preceding generations. We accomplish
this by forcing each individual to undergo a mutation in its
structure.
Step 3: Mutating Individuals. In our GA, we utilize

mutations to create a new population of individuals from the
previously selected individuals with the goal of generating new
structures that may have an improved fitness. Before the
structure can be mutated by swapping A and B nanoparticles,
the two swap methods (VD and FD methods) described earlier
must be updated. As previously mentioned, these nanoparticle
swap methods use a unique set of Hamaker constants set by
the GA to determine energetics when attempting to swap
nanoparticles, as detailed in Step 1. To allow the Hamaker

constants to possibly vary between generations, we define a
step where the Hamaker constants themselves can undergo a
mutation or combination event. The mutation step has a
probability of occurrence, PM, whereby one of the individual’s
Hamaker constants is randomly changed within the range
(0,1). The combination step has a probability PC, and the
combination step mixes all three Hamaker constants from two
individuals to create a new sequence of Hamaker constants.
The mutation step allows for the emergence of novel Hamaker
constants, and the combination step creates the opportunity to
generate individuals with a mixture of desirable Hamaker
constants. We allow PM and PC to vary throughout the GA
run to promote continual improvements in individuals’ fitness
where PC begins the GA run at 0.5 and PM at 0.01. We
maintain those values until the 20th generation; after the 20th
generation, if the preceding two generations have had an
improvement in the top three individuals from any generation
then PM decreases by 20% and PC increases by 25%. If the
preceding two generations both failed to have an improvement
in the top three individuals from any generation, then PM
increases by 25% and PC decreases by 20%. These adjustments
seek to balance the introduction of new Hamaker constants
with the refinement of Hamaker constants to converge to a
final optimal structure.
We mutate individual structures by randomly selecting Nswap

A-type nanoparticles and Nswap B-type nanoparticles and
swapping the nanoparticles utilizing the Metropolis acceptance
criterion.68 If the selected nanoparticles do not pass the
Metropolis acceptance criterion,68 the selection process is
repeated by randomly selecting a different group of Nswap A-
type nanoparticles and Nswap B-type nanoparticles. To calculate
the energies used in the Metropolis acceptance criteria, the GA
run utilizes either the fixed nanoparticle distance swap or the
variable nanoparticle distance swap. Nswap is initially set to 200,
but every 10 generations, we halve that value to allow for
higher-resolution refinement as the GA proceeds. If the
nanoparticle swap move is accepted, to accomplish the
nanoparticle swap without a potential overlap, we first expand
the simulation box and nanoparticles to an η = 0.3, where any
nanoparticle overlap after swapping is minimal or nonexistent.
We then compress the simulation box to achieve a close-
packed final structure with η ≈ 0.55−0.6 using the conjugate
gradient protocol explained previously in Step 1. After
obtaining the close-packed structure of nanoparticles for each
individual, the GA checks if the program should terminate (see
Step 4), and if not, the GA returns these new individuals to
Step 2 for fitness calculations.

Step 4: Terminating the GA. The GA step is terminated
when the fitness values of the top 10% of individuals from any
generation plateaus for at least 10 generations. For the work
described here, we find this to occur before the 120th
generation. The Icomp(q) of the A and B nanoparticles and
pairwise radial distribution functions (A−A, A−B, and B−B)
are reported as the average of the individuals with the highest
fitness from three separate GA runs, using each nanoparticle
swap method, with the reported error being the standard
deviation.

II.C. Structures for GA Validation

To prove that the GA can produce the correct structure for a
given scattering profile, we use the GA algorithm to analyze a
range of scattering profiles from in silico experiments (i.e.,
molecular simulations). The procedure for generating in silico
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experimental structures is based on our previously developed
model and simulation methods for assembly of nanoparticle
mixtures in spherical confinement to form a large assembled
supraparticle.14,15 The details are available in those papers, and
a shortened procedure is provided in the Supporting
Information accompanying this paper.
We show that the GA can correctly produce the A and B

nanoparticle mixture structure for input scattering profiles
obtained from simulated structures when the A and B
nanoparticle mixture is randomly mixed, weakly segregated,
and strongly segregated, as shown in Supporting Information
Figure S4. We note that this method aims to determine the
extent of nanoparticle segregation rather than the exact
locations of individual nanoparticles. As the input scattering
profiles are from simulated structures instead of real experi-
ments, we expect the chosen simulation box size (i.e.,
supraparticle diameter) to limit how low in q value one can
calculate a reliable Itarget(q); this is a well-known issue of
simulation box’s finite-size effects.77 As a result, the lowest q
value we use in the GA is also chosen based on this limitation.
The GA is applied to analyze Itarget(q) from simulations of

polydisperse nanoparticle size mixtures with log-normal
distributions with 9, 15, or 30% size dispersity (Supporting
Information Figure S1), which are realistic in experiments. We
note that the GA method as described is not suitable for
monodisperse systems forming crystals for which other
methods described in the Introduction may be more suitable.
If one wanted to apply the GA method for such ordered
crystals, modifications to the close-packed structure forming
process (Step 1) would be required to form a crystalline
structure instead of amorphous structure, but the remaining
GA components would remain applicable. Unless otherwise
mentioned, results are shown for the 9% dispersity. Finally, we
apply the GA method to analyze Itarget(q) from simulations of
assembled nanoparticles in spherical and cubic confinement
(i.e., spherical supraparticle or cubic supraparticle) to
exemplify the GA’s applicability to complex geometries. For
all cases, we confirm the structure returned by the GA matches
the “target” structure corresponding to the Itarget(q) by
ensuring the local structure matches using the radial
distribution function (RDF) from simulations.

III. RESULTS AND DISCUSSION

We evaluate our GA method’s performance on scattering
profiles obtained from simulated experiments because in these
cases we know a priori the true nanoparticle mixture structure
(i.e., the “target” structure) corresponding to that Itarget(q). By
comparing the output structure from our GA method against
the target structure, we can demonstrate how well the GA
method is able to reproduce the target (known) local packing
and domain (mixed or segregated nanoparticles) structure.

III.A. Evaluation of GA Method on Spherical Supraparticle
with Varying Extent of Nanoparticle Segregation and
Nanoparticle Size Dispersity within the Supraparticle

We focus on assembled nanoparticles exhibiting a range of A
and B nanoparticle mixing from random mixing to weak
particle segregation to strong particle segregation (see
snapshots in Supporting Information Figure S4) to serve as
three different tests of the GA method’s capabilities. Addi-
tionally, these assembled nanoparticles (or supraparticle) are in
a spherical geometry, similar to supraballs formed from an
emulsion assembly process.14,15

The random nanoparticle mixing spherical supraparticle
(Figure 2) is obtained when A and B nanoparticles have the

same like and unlike pairwise nanoparticle attractions. The
Itarget A(q) and Itarget B(q) calculated from the target structure
are nearly identical, with both experiencing a gradual decline at
low to medium wavevector q followed by a slight oscillation at
high q corresponding to the nanoparticle form factor (Figure
2a,b). As stated before, we observe large oscillations in
Itarget A(q) and Itarget B(q) at the lowest q, which we attribute to
the finite size of the target (simulated) structure.77 The entire
Itarget(q) shown in the inset images of Figure 2a,b is used as an
input for the GA method. In the main plots in Figure 2a,b, we
show the averaged computed scattering profile, Icomp(q), from
the “best” predicted structures from three separate GA runs
each using the FD and VD nanoparticle swap methods.
Overall, the scattering profiles from the GA method match
closely to the target scattering profile for a large range of q

Figure 2. Evaluation of GA method for scattering intensity profiles
from a simulated spherical supraparticle with random nanoparticle
mixing and symmetric composition. (a,b) Scattering intensity from
the simulated structure, Itarget(q), in black lines and from the GA
method Icomp(q) for both nanoparticle swap methods, VD and FD, in
red and purple lines. The inset images in (a,b) provide the scattering
profiles over the q range considered for the GA method. (c−e) A−A,
B−B, and A−B radial distribution functions for the target structure in
black, the GA method result from the FD method in red, and the VD
method in purple. The inset images in (c−e) provide a zoomed-in
view of the primary RDF peak. (f) Renderings of the target structure
(left) and a representative GA result obtained from the FD method
(right). For the GA method results, for each swap method, we present
the average and standard deviation from three independent GA runs.
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values even for q outside of the range used for fitting the GA
method. The local nanoparticle packing is quantified using the
pairwise radial distribution function, and the comparison
between the target structure and the GA results is shown in
Figure 2c−e. The inset in Figure 2c−e zooms in on the initial
RDF peak to illustrate the match more clearly between the GA
method results and the target structure. For visual reference,
the best structure returned by the GA with the FD swap
method is shown in Figure 2f.
In Supporting Information Figure S5, we present the

Icomp(q) and SSE during the GA run. Supporting Information
Figure S5a,b shows Icomp(q) from the best individual in the
first, 25th, and 50th generation as well as the best overall
individual for both the FD and VD swap methods (for clarity,
only a single GA run is shown). For both FD and VD, there is
a significant improvement in the scattering profile fit from the
first to the 25th generation with only minor improvements
afterward. Supporting Information Figure S5c depicts the SSE
from the best, worst, and average individual for both FD and
VD swap methods for each generation (again only a single GA
run is shown for clarity). Supporting Information Figure S5c
shows that the best individual SSE decreases during the GA
run by about 2 orders of magnitude; the average and worst
individual SSE also decrease during the GA run, but they are
more constant for the first 25−50 generations. This difference
is because, during the GA run, lower SSE individual structures
are selected for future generations, whereas structures with
larger SSE are rejected, improving both the average and worst
individuals over time. Supporting Information Figure S5d
shows the SSE from the best individual for both the FD and
VD swap methods, and each line is the best individual for a
separate GA run. Overall, both FD and VD swap methods
plateau to one of the two SSE values after which the GA is not
able to improve the best individual structure further; however,
the minor difference in SSE of the best structure from the three
separate GA runs does not significantly alter the final structure
from the three GA runs as their RDFs are similar (seen as a
small standard deviation in Figure 2c−e). As seen in Figure 2,
the local structure (RDF) and the global structure Icomp(q)
from the GA match well with the target RDF and Itarget(q) for
random nanoparticle mixing in spherical confinement. We
quantify the difference between the target RDF and the RDF
from the GA using both swap methods in Supporting
Information Figure S5e−g. The value of these differences
between target and GA output RDF is small (all values lie well
within the range of −0.15 to +0.15 for RDF contact values
∼4); this small difference reinforces that the GA method
output structure closely matches the target structure.
Next, we test the GA for a spherical supraparticle that

exhibits slight demixing of A and B nanoparticles forming
small, segregated domains (Figure 3). The Itarget(q) from this
slightly demixed target structure and Icomp(q) output from the
GA method are shown in Figure 3a,b. The Itarget(q) is
characterized by similar features as the random nanoparticle
mixing with a steeper low to medium q decline. Like Figure 2,
the Itarget(q) at the lowest q in Figure 3a,b shows oscillations
related to the finite system size used in the simulated
experiment. As can be seen in Figure 3a,b, the GA method
output possesses a global structure closely matching Itarget(q);
the best structure returned by the GA method with the FD
nanoparticle swap method is shown in Figure 3f, and the RDF
comparison is displayed in Figure 3c−e, with the inset
providing a clearer illustration of the primary peak values.

The primary peak in the A−B RDF obtained from the GA
structure is slightly overestimated as compared to the target
structure, whereas the A−A and B−B RDFs exhibit relatively
good agreement. The difference in RDFs between the target
and the GA structure in Supporting Information Figure S6e−g
shows that differences between the target structure’s RDF and
GA structure’s RDF are slightly larger than the random
nanoparticle mixing especially for the primary contact peak;
nonetheless, these RDF differences are small and confirm our
assessment that the target structure is reproduced by the GA
method.
By examining Supporting Information Figure S6, we can also

understand how the GA progresses in this case. Supporting
Information Figure S6a,b is similar to Supporting Information
Figure S5a,b, with the computed scattering profiles drastically
improving their match to experimental scattering profile from
the first to 25th generation; however, Supporting Information
Figure S6a,b shows a more pronounced improvement from the

Figure 3. Evaluation of GA method for scattering intensity profiles
from a simulated spherical supraparticle with weak nanoparticle
segregation and symmetric composition. (a,b) Scattering intensity
from the simulated structure, Itarget(q), in black lines and from the GA
method, Icomp(q), for both nanoparticle swap methods, VD and FD, in
red and purple lines. The inset images in (a,b) provide the scattering
profiles over the q range considered for the GA method. (c−e) A−A,
B−B, and A−B radial distribution functions for the target structure in
black, the GA method result from the FD method in red, and the VD
method in purple. The inset images in (c−e) provide a zoomed-in
view of the primary RDF peak. (f) Renderings of the target structure
(left) and a representative GA result obtained from the FD method
(right). For the GA method results, for each swap method, we present
the average and standard deviation from three independent GA runs.
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25th to 50th generation, suggesting the GA run requires a few
more generations to achieve a close scattering match with
Itarget(q). Additionally, Supporting Information Figure S6c
shows that the worst and average individual structures improve
with each generation, but they are more dynamic between
generations with rapid changes occurring through the GA run,
unlike Supporting Information Figure S5c. Finally, Supporting
Information Figure S6d is similar to Supporting Information
Figure S5d as both figures show that we can achieve slightly
different plateau SSE values for the best structure from three
different GA runs on the same Itarget(q) and yet achieve similar
final structures (Figure 3).
Next, the GA method is applied to a system with strong

nanoparticle segregation (Figure 4). This system is defined by
a rapid decline in Itarget(q) at low q, followed by subsequent
increase at q corresponding to the nanoparticle diameter, and
finally a decrease at higher q, as seen in Figure 4a,b. This

scattering profile is representative of the formation of large
nanoparticle domains as seen in the image of the target
structure (Figure 4f). After applying the GA method to the
Itarget(q), the resulting Icomp(q) profiles are shown in Figure
4a,b. The Icomp(q) is not able to fully converge to Itarget(q) for
either A or B scattering profile as both Icomp(q) profiles form a
shallower valley at mid-q. The corresponding B−B RDF from
the best structure from GA method also has a small mismatch
at the peak position with a slight overprediction of the primary
peak; the A−B RDF significantly overpredicts the primary peak
(Figure 4c−e). The corresponding differences between the
target RDFs and the GA method’s RDFs presented in
Supporting Information Figure S7e−g show larger difference
values as compared to that seen for random mixing and weak
segregation cases presented in Figures S5e−g and S6e−g. The
significant overprediction of the A−B RDF primary peak in the
GA method’s best structure as compared to the target structure
for this strong segregation case is because the GA method
determines a phase-separated structure without clean (defect-
free) domains with just one nanoparticle type (Figure 4f).
The generation-to-generation changes during the GA runs

(Supporting Information Figure S7a,b) show the largest
improvement in SSE occurring from the first to the 25th
generation. However, Supporting Information Figure S7c,d
shows that the best individuals at the end of the GA run have
SSE that have barely improved from the first generation,
further confirming the GA method’s inability to create phase-
separated structures correctly and to generate clean (defect-
free) segregated nanoparticle domains. The GA runs on
randomly mixed and weakly segregated structures (Supporting
Information Figures S5 and S6), with the GA output structures
quantitatively similar to the target structure achieved SSEs on
the order 10−2, whereas the strongly segregated system
(Supporting Information Figure S7) GA runs’ SSEs are only
on the order 10−1. Although Supporting Information Figure
S7d shows the VD swap method to have the lowest SSE for the
runs, the output structure is similar to the output from the FD
swap method as the difference in SSE is small.
While the results in Figure 4 and Supporting Information

Figure S7 illustrate the GA method’s shortcoming in matching
strongly demixed systems. Practically, in experiments, such
clean, defect-free, strongly demixed, close-packed systems are
not always observed, and experiments may require a biasing
field to achieve such defect-free domains.78 Additionally, while
we have not fine-tuned the GA method for the strongly
demixed case, if one wishes, an alternative (computationally
intensive) approach using neighbor lists to specifically swap
nanoparticles in the wrong nanoparticle domain may result in
defect-free domains. All nanoparticles are ranked based on the
number of neighbors of each type (A or B), and A-type
nanoparticles that are highest ranked as being surrounded by
B-type nanoparticles are swapped with B-type nanoparticles
that are highest ranked as being surrounded by A-type
nanoparticles. The primary drawback would be the need to
have a priori knowledge of the system that our current
implementation of the GA method does not require.
We compare the performance of the GA on both the

random nanoparticle mixing system and the strong nano-
particle segregating system to explore the difference in the GA
method’s output best structure match to the target structure.
Figure 5 shows the sum of log squared errors from the best
overall individual as the GA proceeds, with each run of the GA
shown as a separate line. For the better performing random

Figure 4. Evaluation of GA method for scattering intensity profiles
from a simulated spherical supraparticle with strong nanoparticle
segregation and symmetric composition. (a,b) Scattering intensity
from the simulated structure, Itarget(q), in black lines and from the GA
method, Icomp(q), for both nanoparticle swap methods, VD and FD, in
red and purple lines. The inset images in (a,b) provide the scattering
profiles over the q range considered for the GA method. (c−e) A−A,
B−B, and A−B radial distribution functions for the target structure in
black, the GA method result from the FD method in red, and the VD
method in purple. The inset images in (c−e) provide a zoomed-in
view of the primary RDF peak. (f) Renderings of the target structure
(left) and a representative GA result obtained from the FD method
(right). For the GA method results, for each swap method, we present
the average and standard deviation from three independent GA runs.
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nanoparticle mixing system, the GA initially starts at a higher
SSE (poorer Icomp(q) and Itarget(q) match); however, over the
course of the run, the GA can significantly reduce the SSE
allowing for a close final match between the Icomp(q) and
Itarget(q) and ultimately between the target structure and GA
method’s best structure. In the case of the strong nanoparticle
segregating system, the GA method begins at a lower initial
SSE, but the GA method does not further reduce the SSE
comparatively.
Overall, as expected, the results in Figures 2−5 show that the

GA method does find the assembled nanoparticles’ structure
whose Icomp(q) matches up with the input Itarget(q), and the
better the match between the Icomp(q) and Itarget(q), the closer
is the RDF match between the target structure [that gave the
Itarget(q)] and GA method’s determined structure.
The results in Figures 2−5 were for A and B nanoparticle

size dispersity of 9%; next, we increase the A and B
nanoparticle dispersity to 15% to examine the performance
of the GA method as nanoparticle size dispersity increases. As
before, we examine the same three nanoparticle mixing types
(random mixing, weak segregation, and strong segregation).
The random mixing with 15% nanoparticle dispersity possesses
a similar Itarget(q) as the random mixing structure with 9%
dispersity with dampened oscillations at high q due to the
increased dispersity (Figure 6a,b). Figure 6a,b presents the
Icomp(q) obtained from the GA method, revealing the excellent
match to the Itarget(q). The local packing in the best structures
from the GA method likewise attain high similarity with the
local packing in the target structure (Figure 6c−e). The RDF
difference between target and GA output structure shown in
Supporting Information Figure S8e−g is only slightly larger for
15% dispersity than the corresponding values for 9% dispersity
(Supporting Information Figure S5e−g). Overall, Figure 6
illustrates that increasing the nanoparticle dispersity does not

adversely impact the ability of the GA method to analyze
Itarget(q) for structures with random nanoparticle mixing.
Interestingly, Supporting Information Figure S8c depicts

that the GA SSE per generation for the average and worst
individual for 15% dispersity follows a drastically different
trend than the GA runs for the analogous system at 9%
dispersity (Supporting Information Figure S5), where the SSE
for both trends down toward smaller error. Instead, Supporting
Information Figure S8c shows that the average and worst
individuals appear to maintain a higher SSE than the GA runs
begin with. This oddity is related to the increased dispersity
having a larger impact on the structure formation part of the
GA causing an increased SSE as individuals are not as closely
packed with the larger dispersity. Despite that issue, the best
individuals have low SSE, as can be seen in Supporting
Information Figure S8c,d, and Figure S8d shows that all GA
runs approach a single similar SSE value. Thus, while the
increased nanoparticle dispersity impacts the average and worst

Figure 5. Comparison between sum of log squared error for the best
individual per GA run for a simulated spherical supraparticle with
random nanoparticle mixing and strong nanoparticle segregation. For
the random nanoparticle systems, blue lines are the SSE for the best
individual using the FD nanoparticle swap method (shown for each of
the three GA runs), and cyan lines are the SSE for the best individual
using the VD nanoparticle swap method (shown for each of the three
GA runs). For the strong nanoparticle segregating systems, red lines
are the SSE for the best individual using the FD nanoparticle swap
method (shown for each of the three GA runs), and orange lines are
the SSE for the best individual using the VD nanoparticle swap
method (shown for each of the three GA runs). For all cases, each GA
run is shown as a separate line, and all systems are symmetric in
composition.

Figure 6. Evaluation of GA method for scattering intensity profiles
from a simulated spherical supraparticle with random nanoparticle
mixing, 15% nanoparticle dispersity, and symmetric composition.
(a,b) Scattering intensity from the simulated structure, Itarget(q), in
black lines and from the GA method, Icomp(q), for both nanoparticle
swap methods, VD and FD, in red and purple lines. The inset images
in (a,b) provide the scattering profiles over the q range considered for
the GA method. (c−e) A−A, B−B, and A−B radial distribution
functions for the target structure in black, the GA method result from
the FD method in red, and the VD method in purple. The inset
images in (c−e) provide a zoomed-in view of the primary RDF peak.
(f) Renderings of the target structure (left) and a representative GA
result obtained from the FD method (right). For the GA method
results, for each swap method, we present the average and standard
deviation from three independent GA runs.
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individuals, the GA is still able to improve the best structure to
closely match the target structure.
The weakly segregating nanoparticle system with 15%

nanoparticle size dispersity (Figure 7) shows that increasing

the dispersity almost entirely removes the oscillation at high q
compared to the analogous system with 9% dispersity. After
running the GA method, the resulting structures generate
Icomp(q) that obtains an agreeable match with the Itarget(q), as
seen in Figure 7a,b. The GA method determines that the best
structures have nanoparticles slightly less segregated than the
target structure has (Figure 7c−e). This is seen with the
primary peak in both the A−A and B−B RDFs being nearly
identical to the target structure and the A−B RDF primary
peak being slightly larger for the GA method’s best structure
compared to the target structure. The RDF differences
between target and GA output structure shown in Supporting
Information Figure S9e−g are only slightly larger for this

weakly segregating, 15% dispersity system than the corre-
sponding values for 9% dispersity (Supporting Information
Figure S6e−g) and are similar to those seen for 15% dispersity
random mixing system (Supporting Information Figure S8e−
g). Overall, the GA method RDFs show good agreement with
the target RDF for 15% dispersity and weakly segregating
nanoparticles system, and the visual reference also confirms
this idea (Figure 7f).
Supporting Information Figure S9 provides insight into the

inner workings of the GA run. Unlike in Supporting
Information Figure S8c, Figure S9c shows that the worst and
average individuals per generation achieve lower SSE during
the GA run. Taken together, Supporting Information Figure S9
illustrates that the GA method ability to provide consistently
correct structures does not change with increasing nanoparticle
dispersity to 15%.
The final spherical supraparticle system considered is one

with strong nanoparticle segregation with 15% nanoparticle
dispersity (Figure 8). Based on the previous results from the
strong nanoparticle segregating system at lower dispersity, we
expect the GA method to not be able to determine a structure
with defect-free segregated nanoparticle domains required to
match the target structure. After applying the GA method to
the Itarget(q), the resulting Icomp(q) is shown for comparison
against the Itarget(q) in Figure 8a,b. The Icomp(q) and Itarget(q)
differ largely because the Icomp(q) does not exhibit the dip in
I(q) at mid-q values that is seen in Itarget(q). However, the local
structure shows a reasonable match between the target
structure and the GA method’s structures. The A−A and B−
B RDFs from the GA method’s best structure and the target
structure achieve good agreement even with the primary peak
height, as depicted in Figure 8c,d. From Figure 8e, we see that
the A−B RDF primary peak height is higher for the GA
method’s best structure versus the target structure, similar to
the results we see with strong nanoparticle segregation system
at 9% dispersity with both mismatches caused by nonclean
nanoparticle domains (Figure 4e). As also seen for randomly
mixed and weakly segregating systems, the quantitative
differences between the GA method’s structure and target
structure are slightly larger at 15% dispersity than at 9%
dispersity for this strong nanoparticle segregation, as well.
Unlike the previous systems, Supporting Information Figure

S10a,b shows that the scattering profile from the best
individual has noticeable changes from the first to the 25th
to the 50th generation, whereas all previous systems studied
have little to no changes after the 25th generation. Addition-
ally, this 15% dispersity, strongly segregating nanoparticle
system suffers from the best individual’s SSE remaining
relatively constant throughout the GA run, as can be seen in
Supporting Information Figure S10c,d.
We have also considered using as input Itarget A(q) and

Itarget AB(q), where Itarget AB(q) is the A−B cross-term scattering
profile. We detail the modifications to incorporate the
Itarget AB(q) instead of the Itarget B(q) in the Supporting
Information, with Figure S11 demonstrating that this approach
does not improve our results for the case of strong nanoparticle
segregation.
For these strongly segregating systems, we quantify the

impact of nanoparticle dispersity specifically on the perform-
ance of the GA method by comparing the SSE of the best
structures from the GA method applied to systems with 9 and
15% nanoparticle dispersity. Overall, the 9% nanoparticle
dispersity system achieves a lower SSE than the 15% dispersity

Figure 7. Evaluation of GA method for scattering intensity profiles
from a simulated spherical supraparticle with weak nanoparticle
segregation, 15% nanoparticle dispersity, and symmetric composition.
(a,b) Scattering intensity from the simulated structure, Itarget(q), in
black lines and from the GA method, Icomp(q), for both nanoparticle
swap methods, VD and FD, in red and purple lines. The inset images
in (a,b) provide the scattering profiles over the q range considered for
the GA method. (c−e) A−A, B−B, and A−B radial distribution
functions for the target structure in black, the GA method result from
the FD method in red, and the VD method in purple. The inset
images in (c−e) provide a zoomed-in view of the primary RDF peak.
(f) Renderings of the target structure (left) and a representative GA
result obtained from the FD method (right). For the GA method
results, for each swap method, we present the average and standard
deviation from three independent GA runs.
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system (Figure 9); however, the magnitude of the SSE
difference between the 9 and 15% dispersity systems is minor,
especially compared to the difference in performance between
the strong nanoparticle segregating system and the random
mixing system (Figure 5). Overall, the change in nanoparticle
dispersity has a minor impact on the ability of the GA for
strong nanoparticle segregating systems, with the major issue
remaining its inability to create clean nanoparticle domains.
We resolve this issue at the end of the next section.
We have also considered increasing the nanoparticle size

dispersity to 30% for random nanoparticle mixing (Supporting
Information Figures S12 and S13), weak nanoparticle
segregation (Supporting Information Figures S14 and S15),
and strong nanoparticle segregation (Supporting Information
Figures S16 and S17). We note that the GA method for the
random and weakly segregating cases determines a structure
with a close match between Icomp(q) and Itarget(q). Similar to
the cases of 9 and 15% dispersity, the strongly segregating

system with 30% dispersity overpredicts the A−B RDF due to
the “clean” nanoparticle domains in the target structure. We
note that the error bars for both GA output RDFs are larger for
30% dispersity than seen for previous cases of lower dispersity,
indicating that as dispersity increases, multiple runs are
required to average to the target structure. Furthermore, the
differences between the GA method’s output RDF and the
corresponding target RDF are also larger for 30% dispersity, as
compared to the corresponding 9 and 15% dispersity,
confirming that the GA method’s ability to determine the
target structure gets worse with increasing particle dispersity.
While all the results so far were for a symmetric nanoparticle

composition, we also explore one asymmetric nanoparticle
composition of 1:3 A/B and 9% dispersity in Supporting
Information Figures S18−S23 and present a brief discussion
with those figures.
III.B. Evaluation of GA Method to Analyze Structure of
Assembled Nanoparticles within a Film (or a Cubic
Supraparticle)

After applying the GA method to spherical supraparticles, we
also seek to illustrate the method’s applicability to analyzing
nanoparticles’ structure within a cubic geometry, which would
correspond to a thin-film experiment. As done in the previous
section, the input Itarget(q) for all results in this section are from
simulated experiments. We choose to focus our attention only
on the weakly and strongly nanoparticle segregating cases as
the GA method produced the lesser agreement with target
structures in those cases as compared to the randomly mixed
case in the spherical geometry.
Figure 10 describes the results for a weakly segregating cubic

supraparticle with 9% nanoparticle dispersity. Figure 10a,b
displays the scattering profile comparisons demonstrating the
close match between the Itarget(q) and the Icomp(q). The three
RDFs shown in Figure 10c−e indicate that the structure

Figure 8. Evaluation of GA method for scattering intensity profiles
from a simulated spherical supraparticle with strong nanoparticle
segregation, 15% nanoparticle dispersity, and symmetric composition.
(a,b) Scattering intensity from the simulated structure, Itarget(q), in
black lines and from the GA method, Icomp(q), for both nanoparticle
swap methods, VD and FD, in red and purple lines. The inset images
in (a,b) provide the scattering profiles over the q range considered for
the GA method. (c−e) A−A, B−B, and A−B radial distribution
functions for the target structure in black, the GA method result from
the FD method in red, and the VD method in purple. The inset
images in (c−e) provide a zoomed-in view of the primary RDF peak.
(f) Renderings of the target structure (left) and a representative GA
result obtained from the FD method (right). For the GA method
results, for each swap method, we present the average and standard
deviation from three independent GA runs.

Figure 9. Comparison between sum of log squared error for the best
individual per GA run for a simulated spherical supraparticle with
strong nanoparticle segregation and nanoparticle dispersity of 9 and
15%. For the 9% nanoparticle dispersity systems, blue lines are the
SSE for the best individual using the FD nanoparticle swap method
(shown for each of the three GA runs), and cyan lines are the SSE for
the best individual using the VD nanoparticle swap method (shown
for each of the three GA runs). For the 15% nanoparticle dispersity
systems, red lines are the SSE for the best individual using the FD
nanoparticle swap method (shown for each of the three GA runs),
and orange lines are the SSE for the best individual using the VD
nanoparticle swap method (shown for each of the three GA runs). For
all cases, each GA run is shown as a separate line, and all systems are
symmetric in composition.

ACS Materials Au pubs.acs.org/materialsau Article

https://doi.org/10.1021/acsmaterialsau.1c00015
ACS Mater. Au 2021, 1, 140−156

151

https://pubs.acs.org/doi/suppl/10.1021/acsmaterialsau.1c00015/suppl_file/mg1c00015_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmaterialsau.1c00015/suppl_file/mg1c00015_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmaterialsau.1c00015/suppl_file/mg1c00015_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmaterialsau.1c00015/suppl_file/mg1c00015_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmaterialsau.1c00015/suppl_file/mg1c00015_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmaterialsau.1c00015/suppl_file/mg1c00015_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmaterialsau.1c00015?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialsau.1c00015?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialsau.1c00015?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialsau.1c00015?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialsau.1c00015?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialsau.1c00015?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialsau.1c00015?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialsau.1c00015?fig=fig9&ref=pdf
pubs.acs.org/materialsau?ref=pdf
https://doi.org/10.1021/acsmaterialsau.1c00015?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


determined by the GA method agrees with the target. This is
also confirmed visually in Figure 10f.
Interestingly, the GA method when applied to Itarget(q) from

a cubic supraparticle (Supporting Information Figure S24)
takes more generations to converge to the optimal structure as
compared to the analogous spherical supraparticle (Supporting
Information Figures S6 and S9). This can be seen by
comparing the generation where the SSE plateaus in
Supporting Information Figure S24d with that in Figures S6d
and S9d; the thin film (cubic supraparticle) case requires
nearly double the number of generations as the spherical
supraparticle to converge. The extra generations are required
because the simulated thin-film target structure possesses
similar number of nanoparticles as are in each GA run unlike
the simulated spherical supraparticle, which has roughly 3× the
number of nanoparticles. While more generations are required
before the SSE value plateaus, Supporting Information Figure
S24a,b illustrates that the scattering profile does not vary much

after the 25th generation, suggesting subsequent generations
have only minor impact on the GA method’s best structure.
Ultimately, despite taking more generations to converge, the
GA methods perform as well in analyzing the Itarget(q) from a
cubic target supraparticle as it does for a spherical supra-
particle; this is based on the similar value of differences
between the target RDF and the GA method’s RDF for both
cubic (Supporting Information Figure S24e−g) and spherical
(Supporting Information Figure S6e−g) supraparticles with
weakly segregating nanoparticles.
Figure 11 shows the GA method results for the strong

nanoparticle segregating cubic supraparticle with 9% nano-
particle size dispersity. The scattering profile for this case
exhibits a rapid decline in Itarget(q) at low q, followed by the
increase at q near the nanoparticle diameter, and a further
decline at the highest q (Figure 11a,b). The major difference
between this input Itarget(q) and the analogous Itarget(q) for

Figure 10. Evaluation of GA method for scattering intensity profiles
from a simulated cubic supraparticle with weak nanoparticle
segregation, 9% nanoparticle dispersity, and symmetric composition.
(a,b) Scattering intensity from the simulated structure, Itarget(q), in
black lines and from the GA method, Icomp(q), for both nanoparticle
swap methods, VD and FD, in red and purple lines. The inset images
in (a,b) provide the scattering profiles over the q range considered for
the GA method. (c−e) A−A, B−B, and A−B radial distribution
functions for the target structure in black, the GA method result from
the FD method in red, and the VD method in purple. The inset
images in (c−e) provide a zoomed-in view of the primary RDF peak.
(f) Renderings of the target structure (left) and a representative GA
result obtained from the FD method (right). For the GA method
results, for each swap method, we present the average and standard
deviation from three independent GA runs.

Figure 11. Evaluation of GA method for scattering intensity profiles
from a simulated cubic supraparticle with strong nanoparticle
segregation, 9% nanoparticle dispersity, and symmetric composition.
(a,b) Scattering intensity from the simulated structure, Itarget(q), in
black lines and from the GA method, Icomp(q), for both nanoparticle
swap methods, VD and FD, in red and purple lines. The inset images
in (a,b) provide the scattering profiles over the q range considered for
the GA method. (c−e) A−A, B−B, and A−B radial distribution
functions for the target structure in black, the GA method result from
the FD method in red, and the VD method in purple. The inset
images in (c−e) provide a closer examination of the primary RDF
peak. (f) Renderings of the target structure (left) and a representative
GA result obtained from the FD method (right). For the GA method
results, for each swap method, we present the average and standard
deviation from three independent GA runs.
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strongly segregating spherical supraparticle is the increased
fluctuation for most of the low- and middle-q regions due to
the smaller system size in the simulated experiment (i.e., few
number of nanoparticles in the simulation of the nanoparticles
in cubic geometry). After the GA method was applied to the
Itarget(q), the resulting Icomp(q) are displayed in Figure 11a,b.
Like the analogous spherical supraparticle results, the GA
method outputs a structure with a computed scattering profile
that deviates slightly from Itarget(q). The GA method’s RDFs
have significant deviations for all pairs A−A, B−B, and A−B
(Figure 11c−e) from that of the target structure; as seen in the
analogous spherical case, there is a large overprediction by the
GA method for the A−B RDF. The differences between the
GA method’s RDF and the target RDF are quantified in
Supporting Information Figure S25e−g. As compared to the
9% dispersity spherical geometry, these differences are larger
for the cubic supraparticle for all three RDFs, likely a result of
the smaller number of nanoparticles in the cubic geometry
compared to the spherical supraparticle. This inability of the
GA method to reproduce the target structure arises from the
difficulty to create defect-free nanoparticle domains without
the presence of the other nanoparticle type. Figure 11f shows
the defect-free target structure and the GA method’s structure
with defects (e.g., yellow particles in blue particle domains).
Supporting Information Figure S25 also provides the
progression of the GA method with generations. The thin-
film (cubic) geometry of the simulated structure that provided
input Itarget(q) does not improve the GA method’s ability to
generate structures with neat/pure nanoparticle domains. As
seen in analogous spherical systems with strong nanoparticle
segregation (Supporting Information Figures S7 and S10),
Figure S25c,d shows that the best individuals only marginally
reduce SSE over generations. However, the SSE for these GA
runs are an order of magnitude above the 10−2 value that gives
an output structure with a close match to the target structure
(based on all systems considered in this work). This
shortcoming is not a function of the supraparticle geometry
but instead the strong nanoparticle segregation in the target
structure.
We test if the GA method can perform better if the target

(simulated experiment) structure exhibits strong segregation
with defects (e.g., structures with some nanoparticles of B type
in the A-rich domains, as seen in Figure 12f). This strongly
segregated system with defects is likely more practical than a
clean, defect-free segregated close-packed nanoparticle struc-
ture, the latter requiring biasing fields to achieve.78 Figure
12a,b features the scattering profiles and strikingly reveals a
significantly improved match between Itarget(q) and the GA
method’s generated best Icomp(q). The local packing in the
target structure and the GA determined best structure match
very well (Figure 12c−e), especially considering the relatively
poorer performance of the GA method with strong nano-
particle segregation without defects (see Figures 4 and 8). The
A−A, A−B, and B−B RDFs from the target structure and the
GA produced structure are nearly identical, with the inset
image further elucidating the primary peak position agreement
(Figure 12c−e). This is confirmed quantitatively in Supporting
Information Figure S26e−g with differences between target
RDF and GA method’s RDF being significantly smaller than
that in Supporting Information Figure S25e−g (analogous
system with clean, defect-free target structure). The close
match between the target and the GA best result for this target
structure with strong segregation and defects is illustrated over

the course of the GA run in Supporting Information Figure
S26. For this case, Supporting Information Figure S26a,b
shows that the scattering profile from the first generation
nearly matches with the final, best computed scattering profile.
This is because one of the many initial individuals provides a
scattering profile that is a relatively close match to Itarget(q),
which is confirmed by Supporting Information Figure S26d,
achieving a very low SSE within the first few generations and
maintaining that value throughout the GA run. Thus, the GA
method rapidly converges to a structure that is similar to the
target structure if the target does not have defect-free
nanoparticle domains.

IV. CONCLUSION
In this paper, we present a new computational method for
analyzing experimental scattering profiles from dilute solutions
of supraparticles where each supraparticle comprises binary
mixtures of nanoparticles to determine the extent of nano-

Figure 12. Evaluation of GA method for scattering intensity profiles
from a simulated cubic supraparticle with 9% nanoparticle dispersity,
strong nanoparticle segregation, imperfect nanoparticle domains, and
symmetric composition. (a,b) Scattering intensity from the simulated
structure, Itarget(q), in black lines and from the GA method, Icomp(q),
for both nanoparticle swap methods, VD and FD, in red and purple
lines. The inset images in (a,b) provide the scattering profiles over the
q range considered for the GA method. (c−e) A−A, B−B, and A−B
radial distribution functions for the target structure in black, the GA
method result from the FD method in red, and the VD method in
purple. The inset images in (c−e) provide a closer examination of the
primary RDF peak. (f) Renderings of the target structure (left) and a
representative GA result obtained from the FD method (right). For
the GA method results, for each swap method, we present the average
and standard deviation from three independent GA runs.
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particle segregation and the local packing of the nanoparticles
within each supraparticle. This genetic-algorithm-based
computational analysis method overcomes the limitations of
typical analysis techniques for scattering experiments that
either erroneously extend approximate models to close-packed
nanoparticles or require high-resolution scattering profiles over
a much larger q range. Additionally, the GA method as
presented allows for easy calculation of the cross-term RDF
(A−B RDF) despite only using contrast-matched scattering
profiles.
We evaluate this GA method by analyzing the scattering

profiles from simulated experiments of a single supraparticle
with varying degrees of nanoparticle mixing and size dispersity
for both spherical supraparticle geometry and cubic supra-
particle geometry. For all of the cases considered here, we
demonstrate comparable structures between the simulated
target structure, whose scattering profile is used as input to the
GA, and the output structure determined by the GA method.
The only target structure that exhibits weak agreement with
the GA method’s output structure is the cubic/spherical
supraparticle with strongly segregated pure domains of each
nanoparticle type. The GA method shows remarkable
improvement in determining a structure close to the target
structure if the target structure has strongly segregated
domains with a few defects (i.e., presence of the nanoparticle
of other type).
The demonstration of successful development and imple-

mentation of this GA-based computational method for
scattering analysis of assembled mixtures of spherical nano-
particles in cubic/spherical geometries promises future avenues
include extending this GA method to analyze anisotropic
nanoparticles mixtures, blends of polymers in confinement, and
structure of spherical micelles packing. For example, by
maintaining a similar GA framework as our previous work
which determined the form factor of complex micelle
structures,62,79,80 we foresee the ability to combine this paper’s
approach to our earlier papers’ approaches and determine both
the form factor, P(q), of a complex micelle as well as the
structure/correlation of multiple micelles, S(q).
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