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Abstract

MIR-491 is commonly co-deleted with its adjacent CDKN2A on chromosome 9p21.3 in 

glioblastoma (GBM). However, it is not known whether deletion of MIR-491 is only a passenger 

event or plays an important role. Small-RNA sequencing of samples from GBM patients 

demonstrated that both mature products of MIR-491 (miR-491-5p and -3p) are downregulated in 

tumors compared to normal brain. The integration of GBM data from The Cancer Genome Atlas 

(TCGA), miRNA target prediction and reporter assays showed that miR-491-5p directly targets 

EGFR, CDK6, and Bcl-xL, whereas miR-491-3p targets IGFBP2 and CDK6. Functionally, 

miR-491-3p inhibited glioma cell invasion; overexpression of both miR-491-5p and -3p inhibited 

proliferation of glioma cell lines and impaired the propagation of glioma stem cells (GSCs), 

thereby prolonging survival of xenograft mice. Moreover, knockdown of miR-491-5p in primary 

Ink4a-Arf-null mouse glial progenitor cells exacerbated cell proliferation and invasion. Therefore, 

MIR-491 is a tumor suppressor gene that, by utilizing both mature forms, coordinately controls 

key cancer hallmarks: proliferation, invasion, and stem cell propagation.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*Correspondence: Wei Zhang, PhD, Department of Pathology, Unit 85, The University of Texas MD Anderson Cancer Center, 1515 
Holcombe Blvd., Houston, TX 77030; telephone: 713-745-1103; fax: 713-792-5549; wzhang@mdanderson.org.. 

CONFLICT OF INTEREST
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Oncogene. Author manuscript; available in PMC 2015 September 26.

Published in final edited form as:
Oncogene. 2015 March 26; 34(13): 1619–1628. doi:10.1038/onc.2014.98.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


Keywords

miR-491; CDKN2A; glioma stem cell; GBM; IGFBP2; CDK6; EGFR

INTRODUCTION

Genome instability is the prevalent cancer characteristic, having a major role in enabling the 

development of different cancer hallmarks1. It is commonly manifested by the deletion of 

chromosomal regions2, leading often to inactivation of tumor suppressor genes. The best 

recognized deleted tumor suppressor genes include PTEN (10q23)2, RB1 (13q14)3, TP53 

(17p13)3, and CDKN2A (9p21.3, encoding p16INK4a and p14ARF)4-7 4-7. However, whether 

the concurrently deleted genes within these regions play important roles or only serve as 

passenger events in cancer pathogenesis is not well established.

MicroRNAs (miRNAs) are ~21-nt single-stranded small RNAs that modulate gene 

expression by targeting the 3′-untranslated region (3′-UTR) of mRNAs and promoting RNA 

degradation and/or inhibiting its translation8. MiRNAs play important roles in various 

cellular processes by simultaneously regulating the expression levels of hundreds of genes8. 

They have also been shown to function as key players in cancer by regulating the expression 

of various oncogenes and tumor suppressors9. By analyzing The Cancer Genome Atlas 

(TCGA) data from different cancer types, we found that a microRNA-encoding gene, 

MIR-491, is commonly deleted together with CDKN2A in many cancers, including 

glioblastoma multiforme (GBM). MIR-491 produces two mature miRNAs, miR-491-5p and 

miR-491-3p. Although miR-491-5p has been shown to induce apoptosis of colon cancer 

cells by targeting Bcl-xL10 and to inhibit migration of glioma cells by targeting MMP-911, 

the biological function of miR-491-3p in GBM is not characterized and most importantly, 

systematic investigation of coordinate role of the two mature miRNAs generated from the 

same precursor in GBM pathogenesis has been poorly studied.

In this study, we sought to investigate whether MIR-491 functions as a tumor suppressor 

gene in GBM. We found that expressions of both miR-491-3p and miR-491-5p were 

downregulated in GBM compared with normal brain. Integrated analysis of 388 GBM 

samples from TCGA coupled with miRNA-mRNA prediction tools identified several key 

oncogenes, including IGFBP2, CDK6, EGFR, and Bcl-xL, as targets of miR-491-5p and -3p. 

We confirmed that IGFBP2 and CDK6 can be regulated directly by miR-491-3p, while 

EGFR, CDK6, and Bcl-xL can be targeted by miR-491-5p. Forced expression of miR-491-3p 

inhibited glioma cell invasion by regulating IGFBP2, while global restoration of 

miR-491-5p and miR-491-3p restricted glioma growth and GSC propagation by 

coordinately regulating EGFR, CDK6, and IGFBP2, consequently prolonging the survival of 

xenograft mice. We also showed that knockdown of miR-491-5p in primary Ink4a-Arf-null 

mouse glial progenitors could further promote cell proliferation and invasion. Our results 

suggest that both miR-491-5p and -3p functions as key tumor suppressors by coordinately 

suppressing several important oncogenes in GBM.
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RESULTS

miR-491-5p and -3p expression are downregulated in GBM and inversely correlated with 
expression of IGFBP2, EGFR, CDK6, and Bcl-xL

Human MIR-491 is approximately 1.25 Mb distal to the CDKN2A gene located on 

chromosome 9p21.3, which is frequently deleted in a variety of cancers, including GBM 

(Figure 1a and b). MIR-491 typically exhibits a similar copy alteration pattern as CDKN2A, 

a well-recognized tumor suppressor (Figure 1b). The miR-491 stem-loop produces two 

mature forms, miR-491-5p (major) and miR-491-3p (minor) (Figure S1A). TCGA genome-

wide SNP array data from 388 GBM patients showed that genomic local deletion of 

MIR-491 leads to a significant decrease in expression of miR-491-5p (P < 0.0001, Figure 

1c), the only form for which expression values are available due to technology limitations 

(Agilent 8×15K Human miRNA-specific microarray). By analyzing the whole-transcriptome 

and small-RNA deep-sequencing data from pooled GBM and normal brain samples12, 13, we 

found that both miR-491-5p and miR491-3p were present and their expression levels (read 

numbers) were markedly higher in the normal brain than in GBM (Figure 1f).

Because these two mature forms are derived from the same precursor, we speculated that 

their expression levels are correlated with each other. This is supported by TCGA 

endometrial and breast cancer data that have the expression data available for both mature 

forms (Figure 1d). Therefore, we used miR-491-5p GBM expression data from TCGA to 

represent both miR-491-5p and miR-491-3p expression levels and coupled this with 

miRNA-mRNA target predictions from Targetscan to identify the candidate targets of 

miR-491-5p and -3p. 681 genes were identified to be significantly and inversely correlated 

with miR-491-5p (P < 0.05), among which 211 genes are predicted targets of miR-491-3p 

and 526 genes are predicted targets of miR-491-5p; 56 genes are predicted to be targeted by 

both (Figure S1b). IGFBP2, a predicted target of miR-491-3p, and CDK6, a predicted target 

of both miR-491-3p and -5p, are among the genes that exhibit the greatest statistical 

significance of negative correlation with miR-491 expression (Figure S1b). Details of these 

putative targets and of their associations with the two miR-491 mature forms are 

summarized in Supplemental Table S1.

Pathway analysis of these putative targets showed that the two mature forms of miR-491 

differentially regulate multiple signaling pathways associated with different cancer 

hallmarks (Figure 1e). In particular, PTEN and apoptosis signaling pathways, which involve 

the EGFR and BCL2L1 (also known as Bcl-xL) genes, are significantly enriched (Fisher's 

exact test) in the miR-491-5p targets, while ILK and glioma signaling pathways, involving 

the IGFBP2 and CDK6 genes, are significantly enriched in the miR-491-3p targets (Figure 

1e). Indeed, our whole-transcriptome sequencing data (performed in parallel to the miRNA 

deep-sequencing data) showed that the normalized RPKM (Reads Per Kilobase of exon 

model per Million mapped reads) values of IGFBP2, EGFR, CDK6, and Bcl-xL were higher 

in GBM samples than in normal brain (Figure 1g), as expected. We therefore hypothesized 

that the loss of miR-491 may contribute to upregulation of these oncogenes, with significant 

effects on tumor progression.

Li et al. Page 3

Oncogene. Author manuscript; available in PMC 2015 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



miR-491-5p and/or miR-491-3p directly target IGFBP2, EGFR, CDK6, and Bcl-xL and 
regulate GBM cell proliferation

According to Targetscan prediction, the binding sites for miR-491-5p are present on the 3′-

UTRs of EGFR, Bcl-xL, and CDK6, whereas those of miR-491-3p are present on the 3′-

UTRs of IGFBP2 and CDK6. We transfected U251 glioma cells (expressing all of these 

genes) with mimics of these two miRNAs, individually or together, and found that IGFBP2 

protein was downregulated by miR-491-3p, but not by -5p; EGFR and Bcl-xL were 

downregulated by miR-491-5p, but not by -3p; and CDK6 was downregulated by both 

(Figure 2a). Reporter assays in which the 3′-UTRs of these oncogenes (either containing the 

predicted binding sites or not) were fused downstream of luciferase further confirmed that 

the binding sites within EGFR (for miR-491-5p), IGFBP2 (for miR-491-3p) and CDK6 F1 

(for both), but not CDK6 F3 (for miR-491-3p) are functionally relevant (Figure S2). The 3′-

UTR of Bcl-xL has been shown to be a direct target of miR-491-5p10. Together, these data 

indicate that miR-491-5p regulates EGFR, CDK6, and Bcl-xL, while miR-491-3p regulates 

IGFBP2 and CDK6 by directly targeting the corresponding 3′-UTR.

Because both miR-491-5p and miR-491-3p are transcribed concomitantly in most cells, we 

investigated the consequence of overall miR-491 restoration by transfecting miR-491-5p and 

miR-491-3p together (referred to as miR-491 hereafter) into U251 and T98G GBM cell 

lines, in which p16 is inactivated due to CDKN2A deletion14, 15 and miR-491-5p and -3p 

were downregulated compared with the normal brain tissues according to the q-PCR results 

(Figure S3). It was shown that miR-491 significantly suppressed the growth of U251 and 

T98G cells, measured by MTT assay (Figure 2b) and anchorage-independent soft agar 

colony formation assay (Figure 2c). Furthermore, miR-491 overexpression dramatically 

decreased the proportion of proliferating cells when measured with BrdU incorporation 

assay (Figure 2d), whereas miR-491 had no significant effect on cell apoptosis (Figure S4). 

Thus, miR-491 directly regulates IGFBP2, EGFR, CDK6, and Bcl-xL expression and 

represses glioma cell proliferation.

miR-491-3p inhibits GBM cell invasion by regulating IGFBP2

As a mature form of microRNA, the function of miR-491-3p is poorly characterized and we 

for the first time show that miR-491-3p regulates IGFBP2. To evaluate this regulatory 

relationship in vivo, we performed immunohistochemical staining and in situ hybridization 

analysis measuring IGFBP2 and miR-491-3p, respectively, on a tissue microarray (TMA) 

representing 146 brain tumor cases (106 GBMs, 37 lower grade astrocytomas, 3 

oligoastrocytomas). We observed a significant negative correlation between IGFBP2 protein 

level and miR-491-3p level (Figure 3a and b), underscoring the biologic relevance of such 

regulation.

Since IGFBP2 has been shown to be an important regulator of cell migration and invasion in 

different types of cancer16-18, we examined whether miR-491-3p is involved in cell 

invasion. Upon transfection, miR-491-3p markedly inhibited invasion of both U251 and 

T98G cells (Figure 3c and d, with representative photographs shown in Figure S5) as 

efficiently as knockdown of IGFBP2 via siRNA. We further examined whether IGFBP2 is a 

key contributor for miR-491-3p's function by performing a rescue experiment. The stable 
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U251 cells overexpressing either GFP (U251-GFP) or IGFBP2-EGFP (U251-IGFBP2) were 

established and transfected with miR-491-3p mimics. In U251-GFP, ectopic expression of 

miR-491-3p resulted in obvious IGFBP2 downregulation (Figure 3e, lower panel) and 50% 

less cell invasion than control cells (Figure 3e, upper panel). In U251-IGFBP2, miR-491-3p 

suppressed the endogenous IGFBP2, but not exogenous IGFBP2-EGFP, whose transcript 

does not contain the 3′-UTR of IGFBP2 (Figure 3e). Overexpression of IGFBP2-EGFP 

increased cell invasion by 20% compared with that of U251-GFP (Figure 3e), which is 

consistent with previously published findings19. miR-491-3p decreased cell invasion by only 

30% in U251-IGFBP2 cells compared to 50% in U251-GFP cells (Figure 3e), suggesting 

that overexpression of IGFBP2 can partly reverse the inhibitory effect of miR-491-3p on cell 

invasion. These results indicate that miR-491-3p inhibits cell invasion at least partially 

through downregulation of IGFBP2. Taken together with the previous study showing that 

miR-491-5p targets MMP-9 and inhibits glioma cell invasion11, it can be concluded that 

both mature forms of miR-491 are suppressors of glioma invasiveness.

miR-491 impairs GSC propagation in vitro and in vivo

Increasing evidence indicates that glioma stem-like cells (GSC) are the driving force for 

progression and recurrence of aggressive gliomas20. Since IGFBP2 and EGFR have been 

shown to play important roles in GSC propagation or maintenance21-23, we examined how 

miR-491 affects GSC cells by using two patient-derived GSC lines, GSC 11 and GSC 6-27, 

which grow as neurospheres in serum-free medium supplemented with EGF and bFGF24, 25. 

Both GSC 11 and GSC 6-27 are deleted for CDKN2A, as determined by Oncoscan copy 

number analysis. The multilineage differentiation potential of the GSCs was confirmed 

through examination of differentiation markers upon induction with retinoic acid (RA) or 

forskolin (FSK) (Figure S6). Based on the results of q-PCR, the expression levels of 

miR-491-5p and miR-491-3p were downregulated compared with the normal brain control 

(Figure S3). Thus, we transfected miR-491-5p and miR-491-3p together into GSC 11 or 

GSC 6-27 and then examined the resultant phenotypes. Overexpression of miR-491 

significantly inhibited growth of GSCs, as indicated by significant reductions in sphere size 

and number (Figure 4a and S7a). Furthermore, miR-491 impaired the self-renewal ability of 

these neurospheres, which were demonstrated by a significant decrease of secondary and 

tertiary sphere formation upon serial dilutions (Figure 4b and S7b). Such effects were 

accompanied by inhibition of cell proliferation (Figure 4c and S7c) and induction of 

apoptosis (Figure 4d and S7d), which was also reflected as PARP cleavage (Figure 4f and 

S7f). The downregulation of IGFBP2, EGFR, CDK6, and Bcl-xL caused by miR-491 in 

these experiments was confirmed by Western blot analysis (Figure 4e and S7e). 

Phosphorylated AKT, a known downstream signal for both IGFBP226 and EGFR27, was 

markedly reduced by miR-491 (Figure 4f and S7f). Furthermore, exogenous miR-491 led to 

considerable decreases in the levels of Sox2 and Nestin, both known stem/progenitor cell 

markers, in GSC 11 and GSC 6-27 cells, respectively (Figure 4f and S7f). This is consistent 

with the published finding that IGFBP2 knockdown leads to decreases in Nestin and Sox221. 

Finally, miR-491 increased expression of astrocytic differentiation marker GFAP in both 

GSCs (Figure 4f and S7f). Collectively, these data indicate that miR-491 controls the 

propagation of GSCs by regulating their proliferation, apoptosis, and differentiation.
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We then sought to determine whether the effects of miR-491 on GSCs are mediated by their 

targets, IGFBP2, CDK6, EGFR, and Bcl-xL. To this end, we first observed the effect of 

knockdown of each of these genes on cell behavior. As shown, the knockdown efficiencies 

of siRNA or esiRNA were confirmed by Western blot (Figure S8a and b); knockdown of 

any of these genes caused significant inhibition of neurosphere formation by both GSC 11 

and GSC 6-27 (Figure S8c and d), as evinced by reductions in both sphere number and size. 

BrdU incorporation assay and apoptosis assay showed that knockdown of IGFBP2, CDK6, 

or EGFR significantly inhibited GSC proliferation (Figure S8e), whereas knockdown of Bcl-

xL induced a moderate apoptosis in both GSCs, with statistical significance in GSC 11 

(Figure S8f). Further, for rescue experiments, we overexpressed IGFBP2, CDK6, EGFR, or 

Bcl-xL via expression vectors that lacked the respective 3′-UTR region and thus could not 

be inhibited by miR-491 (Figure 4g), and then examined their effects on miR-491's function 

in GSC 11. This forced expression of IGFBP2, CDK6, or EGFR, but not Bcl-xL, rescued 

inhibition of neurosphere formation by miR-491 (Figure 4h).

Finally, we examined whether miR-491 inhibits GBM tumor growth and affects host 

survival in vivo. GSC 11 cells were transfected with control mimics, miR-491-5p and -3p 

together, or left untreated. Twenty-four hours later, 1×105 cells were orthotopically 

transplanted into the brain of immunocompromised mice (10 mice/group). We found that the 

mice implanted with untreated GSC 11 or cells transfected with the control mimics died 

significantly earlier (within 70-86 days of implantation) than mice implanted with miR-491–

transfected cells (90-105 days) (P < 0.0001, log-rank test) (Figure 4i). The difference in 

survival observed between the group implanted with untreated cells and the group implanted 

with controls was not significant.

Knockdown of miR-491-5p enhances proliferation and invasion of Ink4a-Arf-null mouse 
glial progenitors

Because of its location being adjacent to CDKN2A (encoding p16INK4a) on chr9p21.3, loss 

of MIR-491 commonly occurs concurrently with loss of CDKN2A in human GBM (Figure 

1a and b). This raises a possibility that the strong impact of p16INK4A loss on tumorigenesis 

may mask the effect of MIR-491 loss. Therefore, we determined whether knockdown of 

miR-491 is still impactful in the context of CDKN2A deletion. The binding sites for 

miR-491-5p but not miR-491-3p are evolutionarily conserved between human and mouse 

for the 3′-UTRs of CDK6, EGFR, and Bcl-xL and the regulatory role of miR-491-5p in these 

mouse genes was confirmed by Western blot (Figure S9). We thus examined the 

consequence of miR-491-5p knockdown in primary murine Ink4a-Arf-null glial progenitor 

cells. Western blot showed that transfection of miR-491-5p hairpin inhibitors reduced the 

levels of miR-491-5p by more than 50% (Figure 5a) and consequently increased the levels 

of mouse CDK6, EGFR, and Bcl-xL (Figure 5b). Consistent with this, miR-491-5p 

knockdown significantly increased the cell viability of Ink4a-Arf-null glial progenitor cells 

(Figure 5c), promoted cell proliferation (Figure 5d), and enhanced cell invasion (Figure 5e). 

Collectively, these data support the notion that loss of MIR-491 is a critical genetic event 

and not merely a passenger concomitant to CDKN2A loss in GBM with 9p21.3 deletion.
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DISCUSSION

GBM is one of the most lethal cancers and novel therapeutic interventions are urgently 

needed28. Extensive genetic and molecular studies, especially comprehensive profiling 

studies in TCGA, have characterized GBM-related oncogenes (e.g., EGFR, PDGFRA, 

CDK6) and tumor suppressor genes (e.g., PTEN, CDKN2A, Arf, TP53, NF1)29, 30. Gene 

copy number changes and mutations account for only a fraction of these alterations. Further, 

even for one of the most druggable events, EGFR amplification and overexpression, 

targeting EGFR alone has shown minimal therapeutic outcome in GBM patients31, 32. It is 

the consensus in the field that multiple pathways need to be targeted preferentially via a 

converging regulator. The most significant discoveries from this study are the identification 

and characterization of MIR-491 as a key inactivated tumor-suppressing non–protein-coding 

gene. Most importantly, it can integrate the regulation of multiple GBM hallmarks by 

directly targeting a number of oncogenes that are known to be important for GBM.

Although MIR-491 is located in a region (9p21.3) that is most recognizable for GBMs 

because of its frequent deletion, the importance of this miRNA has not been fully 

recognized. One possible reason is that MIR-491 is overshadowed by its better-known 

neighbor, CDKN2A (encoding p16INK4a and p14ARF), in the same chromosomal region. 

Indeed, although Ink4a-Arf null mouse models develop various spontaneous tumors at an 

early age and the glial cells of these mice are more vulnerable to PDGFB induced high-

grade glioma, glioma is not among the spontaneous tumor types that develop in these 

mice33. This may be a hint that CDKN2A deletion itself is not sufficient for glioma 

development and other co-occurring oncogenic events within this locus are also needed, 

which await further in-depth investigation.

Indeed, our previous studies showed that p16INKA downregulation co-occurs with IGFBP2 

overexpression33. IGFBP2 is a recently recognized oncogene in glioma26, promoting 

invasion19, 34, angiogenesis35, and expansion of stem cells21. But the mechanism for the 

frequent IGFBP2 overexpression in GBM has been elusive. In contrast to EGFR and 

PDGFRA, IGFBP2 copy number in GBM is largely neutral (Figure S10). In this study, we 

determined that decreased expression of miR-491-3p due to genomic deletion is a key 

mechanism for elevated IGFBP2 expression via the target site on IGFBP2 3′-UTR. 

Moreover, we show that miR-491-3p is not only present in GBM, endometrial cancer, and 

breast cancer, but also is functional in glioma cell lines and GSC. Through regulation of 

IGFBP2, miR-491-3p is involved in regulation of glioma cell invasion and GSC 

propagation, both driving forces for GBM recurrence. Notably, either complete 9p21.3 loss 

or IGFBP2 overexpression was associated with poor prognosis of GBM36, 37. Our current 

study clearly reveals the molecular mechanism underlying these two prognostic events.

The glioma cell lines we tested were all CDKN2A deleted and show significant 

downregulation of miR-491 expression (Figure S3). Restoration of miR-491 in these cell 

lines resulted in inhibition in cell malignant behavior. Conversely, knockdown of 

miR-491-5p in the murine astrocytes (intact MIR-491 in the context of CDKN2A knockout), 

promoted cell growth and invasion. These data indicated that MIR-491 function as a tumor 

suppressor gene even with the molecular background of CDKN2A deletion.. Interestingly, 
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KIAA1797/FOCAD38, which is the host gene of MIR-491, was recently reported to possess 

tumor suppressive activities in glioma. Spatial proximity of MIR-491 with these well-

recognized tumor suppressor genes implied its tumor suppressive role in GBM. Moreover, 

the relationship of these tumor suppressor genes appear to be interesting and certainly 

deserves a systematic investigation in the future.

Our investigation revealed that MIR-491 is a master tumor suppressor gene that utilizes both 

mature forms to control the key hallmarks of GBM: uncontrolled cell proliferation, invasion, 

and stem cell propagation. Restoration of overall miR-491 blocked the growth of both GBM 

cell lines and patient-derived GSCs, with decreased expression of IGFBP2, CDK6, and 

EGFR contributing to miR-491's function in GSCs. Although IGFBP221 and 

EGFR23, 27, 39, 40 have been established to play important roles in GSC maintenance and 

propagation, here we showed for the first time that CDK6, another important proto-

oncogene in GBM, is also implicated in regulation of GSC behavior. This is supported by 

the study showing that Cdk6 deficiency prevents the expansion of neuronally committed 

precursors 41. Our study and others’42 also showed that Bcl-xL is involved in GSC 

apoptosis, but its overexpression does not completely abrogate the function of miR-491, 

given that the regulation of other targets by miR-491 is sufficient to inhibit GSC 

propagation. Because GSCs are believed to be responsible for recurrence of GBM after 

surgery and chemotherapy, we propose that miR-491-5p and -3p, by acting as key GSC 

regulators, may provide a new agent for GBM treatment.

miRNAs are an attractive class of therapeutic tools because of their stability and small size 

and several miRNAs have been shown to suppress GSCs43-46. Mesenchymal stem cells47-49 

and nanoparticle-mediated delivery approaches50 are being tested actively. In this study, we 

tried lentiviral miR-491 to infect GSCs but we were unable to establish stable clones 

because of the inhibitory role of miR-491. Therefore, we performed in vivo experiments by 

transfecting GSC 11 cells with miR-491 mimics twenty-four hours before injecting them 

into the brains of mice. Our results show that the inhibitory role of transfected miR-491 

mimics is sufficient to slow down tumor growth in vivo and prolong the host survival. With 

improvement of delivery technologies, miR-491 may emerge as a highly attractive 

therapeutic tool that simultaneously puts a brake on multiple oncogenic pathways in both 

GSCs and non-GSCs.

In summary, we propose that genomic deletion of 9p21.3 leads to concurrent loss of two key 

tumor suppressors: MIR-491 and CDKN2A. MIR-491 produces two mature forms, 

miR-491-5p and miR-491-3p, which suppress glioma growth, invasiveness and GSC 

propagation, by coordinately targeting IGFBP2, EGFR, CDK6, and Bcl-xL (Figure 5f). 

Further, because of existence of MIR-491deletion in a broad spectrum of cancer types, 

miR-491 holds promise as a broad therapeutic agent especially for cancers with 

chromosome 9p21.3 deletion.

MATERIALS AND METHODS

Many basic experimental procedures, including vector construction, luciferase reporter 

assay, real-time PCR, Western blot, MTT, colony-formation, soft-agar assay, neurosphere 
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formation, BrdU incorporation assay, cell apoptosis detection, and cell invasion assays are 

described in Supplemental Methods.

Tumor samples and RNA sequencing

Twenty human GBM samples were acquired from The University of Texas MD Anderson 

Cancer Center's Brain Tumor Center tissue bank under an institutional review board–

approved protocol. GBM samples were pooled for SOLiD sequencing according to tumor 

type (four pools of five samples each). An additional pool of normal brain tissue samples 

(adult brain RNA sample pool, n = 23; Ambion, Carlsbad, CA) was used as reference. RNA 

extraction, library preparation, and transcriptome and small-RNA sequencing were 

performed as described previously13. Briefly, library preparation for both whole-

transcriptome sequencing and small-RNA sequencing was performed according to the 

protocols of Applied Biosystems Incorporated (Carlsbad, CA). Sequencing runs were 

performed using Applied Biosystems’ SOLiD System version 3.5 for both whole-

transcriptome sequencing and small-RNA sequencing, which yielded over 610 million and 

230 million 50-nt sequencing reads, respectively. Sequencing reads were aligned against 

transcript sequences from the National Center for Biotechnology Information reference 

sequence build version 38 using Bowtie version 0.12.5. Expression levels of miRNA and 

mRNA were determined by Reads, and Reads Per Kilobase of exon model per Million 

mapped reads (RPKM value), respectively.

Materials, cell culture, and transfection

U251 and T98G, obtained from American Type Culture Collection (Manassas, VA), were 

cultured in DMEM/F12 supplemented with 10% FBS. GSC cells were isolated from GBM 

tumor(s) that were removed from patients as previously described25, 51, 52 and cultured in 

neural stem cell (NSC) medium [DMEM-F12 (1:1) supplemented with B27 (Invitrogen, 

Carlsbad, CA), 20 ng/ml bFGF, and 20 ng/ml EGF (Sigma, St. Louis, MO)]. The details are 

described in Supplemental Information. Primary murine astrocytes were isolated from Ntv-

a;Ink4a-Arf null mice as described previously26, 33 and maintained in DMEM with 10% 

FBS. All the cells were incubated at 37°C in an atmosphere containing 5% CO2 and 20% 

O2.

The miR-491-5p and miR-491-3p mimics, miR-491-5p hairpin inhibitor, and the 

corresponding negative controls were from Dharmacon (Chicago, IL). siRNAs targeting 

IGFBP2 and CDK6, endoribonuclease prepared siRNA pools (esiRNAs) targeting EGFR 

and Bcl-xL, and scrambled negative siRNA control were from Sigma. miRNA mimic or 

siRNA was transected at a final concentration of 25 nM or 50 nM, using Lipofectamine 

RNAiMax (Invitrogen). pcDNA3.1(+)-Bcl-xL was generated by subcloning Bcl-xL 

fragment from pSFFV-neo Bcl-xL (Addgene plasmid 8749)53 into the EcoRI site of 

pcDNA3.1(+). pCMV-CDK6 was from Addgene (plasmid 1868)54. pcDNA6-EGFR was 

provided by Dr. Mien-Chie Hung (MD Anderson Cancer Center). U251 cells stably 

expressing IGFBP2-EGFP and GFP were obtained by transfecting the cells with pEGFP-N3-

IGFBP2 vector and pcDNA3-GFP vector (generated in our laboratory) using Lipofectamine 

2000 (Invitrogen) respectively, subsequently selecting with 500 μg/mL G418 (Life 

Technologies, Grand Island, NY), and pooling the resultant single clones together. For GSC 
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rescue experiment, GSC 11 were transfected with IGFBP2-, CKD6-, EGFR-, or Bcl-xL–

expressing constructs or empty pcDNA3.1(+) vector using the Amaxa Mouse Stem Cell 

Nucleofector Kit (Lonza, Allendale, NJ). Briefly, 106 GSCs were electroporated with 2 μg 

of indicated plasmid using the predefined Nucleofector program A-033 according to the 

manufacturer's instructions. Twenty-four hours later, cells were transfected with miR-491 

mimics or control mimics using Lipofectamine RNAiMax (Invitrogen).

Tissue microarray construction, miRNA in situ hybridization, and immunohistochemical 
analysis

Tissue microarray (TMA) was constructed as described in Supplemental Information. 

miRNA in situ hybridization was performed as previously described55. Expression of hsa-

miR-491-3p was detected by the double-DIG-labeled miRCURY LNA detection probe, hsa-

miR-491-3p (38603-15; Exiqon, Woburn, MA). The details are described in Supplemental 

Information. Immunohistochemical staining was performed with a goat antibody against 

human IGFBP2 (1:300, SC-6001; Santa Cruz Biotechnology) and the HRP-DAB–based Cell 

and Tissue Staining Kit (R&D Systems, Minneapolis, MN). Intensity levels in tumor cells 

were manually quantified using a scoring system from 0 to 3 (0 = no signal, 1 = weak signal, 

2 = intermediate signal, and 3 = strong signal). The staining for miR-491-3p was generally 

even throughout the tumor area. If the staining varied among regions within one sample, the 

average value of expression levels was marked as the expression level for that case. 

Altogether 146 cases (106 GBMs, 37 lower grade astrocytomas, and 3 oligoastrocytomas) 

were included in the final analysis. When the score for miR-491-3p was <2, miR-491-3p 

was considered to be expressed at a low level. TMA was examined and scored by two 

blinded neuropathologists.

Intracranial xenograft transplantation

Male athymic mice (nu/nu) were implanted in the brain with GSC 11 cells untreated, 

transfected with control mimics, or transfected with miR-491-5p and -3p together according 

to institution-approved protocols (10 mice per group). Briefly, mice were anesthetized with 

0.25 ml of a cocktail of ketamine 10 mg/ml and xylazine 1 mg/ml, and cells were implanted 

by using cranial guide screws. A Hamilton syringe and microinfusion syringe pump (0.5 μl/

min; Harvard Apparatus, Holliston, MA) were used to implant 1×105 cells into the brain of 

each mouse (10 mice simultaneously). Upon detection of an external tumor or obvious 

declining health, mice were killed by intracardiac perfusion of PBS and 4% 

paraformaldehyde according to IACUC guidelines. The mice survival was evaluated with 

Kaplan-Meier survival analysis.

Bioinformatics and statistical analysis

Gene expression data, chromosomal copy number variation data, miRNA expression data, 

and patient clinical data were obtained from the TCGA data portal (https://tcga-

data.nci.nih.gov/tcga/findArchives.htm). For the purpose of integrative analysis, a core set 

of 388 samples was identified for which all the data types were available. Because of a 

limitation in technology, GBM miRNA expression data were available only for the major 

form of miR-491, miR-491-5p (Agilent 8x15K Human miRNA-specific microarray). 
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Pearson correlation analysis was performed using Matlab software. The two-sided Student t-

test was used to assess the statistic difference unless otherwise specified. A P-value of less 

than 0.05 was considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. miR-491-5p and -3p are downregulated in GBM and their expression inversely 
correlated with that of IGFBP2, EGFR, CDK6, and Bcl-xL
(a) Deletion of 9p21.3 is frequent in TCGA GBM data. Segmented DNA copy-number data 

from SNP arrays are shown. Each row represents a patient; deleted regions are shown in 

blue. (b) Chromosomal copy number variations (CNV) of both CDKN2A and MIR-491 in 

different cancer types from TCGA. GBM, glioblastoma multiforme; LUSC, Lung squamous 

cell carcinoma; OvCa, Ovarian serous cystadenocarcinoma; BRCA, Breast invasive 

carcinoma; UCEC, Uterine corpus endometrioid carcinoma; CRC, Colon and rectum 

adenocarcinoma; BLCA, Bladder urothelial carcinoma. (c) Genomic loss (del) leads to a 

significant decrease in miR-491-5p expression (p < 0.0001). (d) The expression of 

miR-491-3p and miR-491-5p measured via miRNA sequencing exhibited a similar pattern in 

the TCGA endometrial (UCEC) and breast (BRCA) cancer data sets. (e) Significantly 

enriched pathways in the targets of miR-491-3p and miR-491-5p are shown. (f) Expression 

of miR-491-5p and miR-491-3p is lower in GBMs than in normal brain controls. Expression 

levels of miR-491-5p and miR-491-3p were determined by Reads from small-RNA deep 

sequencing of pooled GBM and pooled normal brain tissue samples. (g) mRNA levels of 

IGFBP2, CDK6, EGFR, and Bcl-xL are higher in GBMs than in pooled normal brain 

controls. Expression levels of IGFBP2, CDK6, EGFR, and Bcl-xL were determined in terms 

of Reads Per Kilobase of exon model per Million mapped reads (RPKM values) from the 

whole-transcriptome deep-sequencing of GBMs and normal brain tissues.
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Figure 2. miR-491-5p and/or miR-491-3p directly target IGFBP2, CDK6, EGFR, and Bcl-xL and 
regulate GBM cell proliferation
(a) miR-491-5p/miR-491-3p regulates IGFBP2, CDK6, EGFR, and Bcl-xL expression at the 

protein level. Beta-actin was used as a protein loading control. Each band's intensity was 

quantified by using Image J, and the relative values (beta-actin as internal control) were 

shown below the bands. +: 25nM; ++: 50 nM. (b) miR-491 inhibits glioma cell growth. Cell 

viability of U251 and T98G cells transfected with both miR-491-5p and miR-491-3p mimics 

or with control mimics was monitored by MTT assay (n = 6). (c) miR-491 inhibits soft agar 

colonization by glioma cell lines. Upon transfection, cells were seeded into the soft agar and 

the numbers of colonies were determined four weeks later (n = 3); representative colony 

morphologies of U251 are shown (n = 3). Bar: 200 μm. (d) miR-491 inhibits glioma cell 

proliferation. BrdU incorporation assay (n=3) was done seventy-two hours after transfection. 

Data are presented as mean ± SD (*, P<0.05; **, P<0.01; ***, P<0.001, Student t test).
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Figure 3. miR-491-3p inhibits glioma cell invasion
(a, b) Expression of miR-491-3p inversely correlates with IGFBP2 protein level. Transcript 

stability in each sample was verified by using U6 as an internal control. Representative 

images of in situ hybridization staining for miR-491-3p and immunohistochemical staining 

for IGFBP2 are shown in (a). Data in panel b is presented as mean ± SEM (***, P=0.0002, 

Mann Whitney test). (c, d) miR-491-3p inhibits invasion of U251 (c) and T98G (d) cells. 

Invading cells were counted in ten randomly chosen fields under the microscope (n = 3). (e) 
IGFBP2 partly overcomes the inhibitory effect of miR-491-3p on cell invasion in U251 

cells. Levels of exogenous (IGFBP2-EGFP) and endogenous IGFBP2 were determined by 

Western blot (lower panel). Beta-actin was used as a protein loading control. GFP or 

IGFBP2 represent U251 cells stably expressing either GFP or IGFBP2-EGFP, respectively. 

Cell invasion was calculated as the number of invasive cells divided by the number of 

invasive U251-GFP cells that were transfected with control mimics (upper panel) (n = 3). In 

c, d and e, data are presented as mean ± SD (*, P<0.05; **, P<0.01; ***, P<0.001, Student t 

test).
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Figure 4. miR-491 inhibits GSC propagation in vitro and in vivo
(a) miR-491 inhibits neurosphere formation of GSC 11. Patient-derived GSC 11 upon 

transfection were cultured in NSC medium, and the number of spheres and their diameters 

were determined 7 days later; representative sphere morphologies are shown (n = 3). Bar: 

100 μm. (b) miR-491 inhibits self-renewal of GSC 11. Transfected GSC11 were cultured in 

NSC medium to form neurospheres and serially passaged every 7 days. The number of 

primary, secondary, and tertiary neurospheres were determined respectively (n = 3). (c) 
miR-491 inhibits GSC proliferation.GSC11 cells were subjected to BrdU incorporation 

assay seventy-two hours after transfection. (d) miR-491 induces GSC apoptosis. Apoptotic 

cells were identified by APO-BrdU kit seventy-two hours after transfection; PARP cleavage 

was determined by Western blot (in f). (e, f) miR-491 overexpression leads to reduction of 

EGFR, CDK6, IGFBP2, and Bcl-xL (e), reduction of p-Akt, Nestin, and Sox2 (f), as well as 

upregulation of GFAP in GSC11 cells (f). (g, h) IGFBP2, CDK6, or EGFR overexpression 

partially overcomes the inhibitory effect of miR-491 on neurosphere formation. GSC 11 

cells were transfected as described in Methods. IGFBP2, CDK6, EGFR and Bcl-xL levels 

were analyzed by Western blot 48 hours after transfection (g) and the number of spheres and 

their diameters were determined 7 days later (h) (n = 3). In a-d and h, data are presented as 

mean ± SD (*, P<0.05; **, P<0.01; ***, P<0.001, Student t test). (i) miR-491 prolongs the 

survival of the mice orthotopically transplanted with GSC11 cells. Kaplan-Meier survival 

curves were shown for the nude mice transplanted with GSC 11 cells that were either 

untreated, transfected with control mimics, or transfected with both miR-491-5p and 

miR-491-3p mimics (n = 10 per group; P<0.0001, log-rank test).
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Figure 5. Knockdown of miR-491-5p exacerbates malignancy of Ink4a-Arf-null mouse glial 
progenitor cells
(a) Knockdown efficiency of anti-miR-491-5p (hairpin inhibitor). Forty-eight hours after 

transfection with anti-miR-491-5p, miR-491-5p levels were assessed by quantitative PCR. 

(b) Anti-miR-491-5p upregulates mouse CDK6, EGFR, and Bcl-xL expression. Beta-actin 

was used as a protein loading control. Number below each blot indicates relative band 

intensity (quantified by Image J). (c) Anti-miR-491-5p promotes the growth of Ink4a-Arf-

null mouse glial progenitor cells. Cell viability was monitored by MTT assay (n = 6). (d) 
Anti-miR-491 enhances cell proliferation. Proliferating cells were analyzed with BrdU 

incorporation assay seventy-two hours after transfection. (e) Anti-miR-491 promotes cell 

invasion. Invading cells were counted in ten randomly chosen fields under the microscope, 

with the representative photographs taken at 100 × magnification (n = 3). Data are presented 

as mean ± SD (*, P<0.05; **, P<0.01; ***, P<0.001, Student t test). (f) The proposed 

model for the function of miR-491-5p and -3p and the cooperation between CDKN2A and 

MIR-491 genomic loss in GBM.
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