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a b s t r a c t 

In the past, various Software Reliability Growth Models (SRGMs) have been proposed using dif- 

ferent parameters to improve software worthiness. Testing Coverage is one such parameter that 

has been studied in numerous models of software in the past and it has proved its influence on the 

reliability models. To sustain themselves in the market, software firms keep upgrading their soft- 

ware with new features or enhancements by rectifying previously reported faults. Also, there is an 

impact of the random effect on testing coverage during both the testing and operational phase. In 

this paper, we have proposed a Software reliability growth model based on testing coverage with 

random effect along with imperfect debugging. Later, the multi-release problem is presented for 

the proposed model. The proposed model is validated on the dataset from Tandem Computers. 

The results for each release of the models have been discussed based on the different performance 

criteria. The numerical results illustrate that models fit the failure data significantly. 

• The random effect in the testing coverage rate is handled using Stochastic Differential Equa- 

tions (SDE). 

• Three testing coverage functions used are Exponential, Weibull, and S-shaped. 

• Four Releases of the software model has been presented. 
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Introduction 

In today’s world, the majority of people are well acquainted with software products as they play an important role in day-to-day life

activities. The work is done efficiently by the software and at a very fast pace. The traditional methods consume lots of time whereas

software products save time and make life smoother. Software products and systems have gained a significant place in various sectors

including healthcare, science, information technology, and R&D field. Software tends to have a great impression on the safety-critical
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spectrum like medical systems, biometric scans, communication, banking, air traffic control system, defense, nuclear plants, and so on

(Pham 2007). Moreover, instant growth and specializations have made the working of software more complex. Software developers 

are always seeking to explore and develop more capable, stable, and efficient software. Due to this developing the software timely has

become a considerable challenge for software-developing firms. Software needs a variety of features, which necessitates development 

procedures including fault detection and correction. And software failure also impacts the economy, consequently, users worry about 

software products’ reliability. To handle this issue of the users, software engineers do rigorous testing before launching the software

with the motive of providing the most reliable software to the market. The SRGMs (Software Reliability Growth Models) measure

and analyzes the reliability of the software and hence play a vital role [ 43 , 44 ]. 

In history, various SRGMs have been studied which measure the number of remaining faults, reliability of the software, failure

rate, failure intensity, etc. The most famous SRGMs in the research community are based on the NHPP (Non-Homogeneous Poisson

Process [ 23 , 30 , 33 , 43 ]. The various traditional model based on time delay, correction process, the severity of faults, change point,

and perfect debugging has been studied under a set of assumption [ 7 , 15 , 23 , 42 ]. These models were based on a single release i.e.,

there was no further changes were done once they were released into the software market. And, they also incorporated the concept

of perfect debugging which means when the software fails, the testing team eliminates the faults with the assurance that no new

faults were introduced during the process. It can’t be possibly true because during the removal process, new faults are introduced

and the testing team might have no knowledge about that. Many researchers have proposed studies based on imperfect debugging

[ 16 , 20 ]. There are two scenarios of imperfect debugging namely, i) imperfect fault removal and ii) error generation. In an imperfect

fault removal scenario, the fault amount remains the same which means the originally detected faults are eliminated without the

generation of new faults. While in the error generation scenario, the total fault content rises during the testing process as the new

faults are generated in the system when the original faults are removed. In 1985, the idea of imperfect debugging was first brought

in [10] . Later, the concept of error generation was brought up which removed the assumption of conventional models that faults can

be perfectly removed when detected [28] . Imperfect debugging models were introduced along with an exponential function of fault

content or a linear function of testing time, an exponential function of error generation, and a time-dependent fault content function

[ 32 , 33 , 45 ]. The fault removal efficiency model was discussed clearly by considering the existence of imperfect debugging along with

error generation [22] . 

Moreover, researchers recommended that the efficiency of the growth models can be enhanced by taking practical issues under 

consideration while testing [ 3 , 14 ]. In the past, various testing coverage functions based on time have been introduced like Rayleigh

[40] , Weibull and logistic [13] , log-exponential [26] , s-shaped [34] , beta & hyper exponential [3] and lognormal [31] . Testing

coverage is thought to be one of the valuable attributes to identify the effectiveness of the software ( [4] ; Subhashis [5] ; S [6] ). None

of these SRGMs have considered the testing coverage with random effects. The random effect is an important factor that impacts the

failure rate, fault removal efficiency, testing coverage, change point, and so on. The random effect can be studied by the application of

Itô type of Stochastic Differential equation [ 17–19 , 36 , 37 ]. The present study attempts to introduce a model by not only incorporating

error generation but also testing coverage that is subjected to random effects. We have considered three cases of testing coverage

functions. In case-1, we have considered the Exponential function in which the fault detection rate is constant which takes care of the

case when the code is uniform in nature. The faults in the code are simple and as soon as they are detected they are isolated (Amrit L

[11] ). In the exponential testing coverage function, the failure intensity rate shows decreasing pattern while testing. It implies that as

the testing progresses the quality of the software is enhanced. Moreover, in realistic situations, the failure intensity initially increases

and later decreases. To handle this situation a generalized G-O model [ 8 , 9 ] was projected known as the Weibull model. Case-2, of

our model, is the Weibull testing coverage function which inflates the time-varying detection rate. In case 3, we have considered

the S-shaped testing coverage function. It identifies the authenticity of the time delay between fault detection and removal. The two

phases of the testing process are fault detection and isolation [43] . 

One of the issues faced by software engineers is when to release the software in the market. Software firms need multiple releases of

the software to sustain in the market because of various reasons explained in Fig. 1 . The reliability of software can only be improved

by improvising new features and upgrading the current version of the software. Hence, nowadays multi upgradation takes place 

whenever it is required based on customer demand by the developing department. This upgradation can also initiate many new

faults [ 21 , 24 , 25 ]. The fault reduction factor (FRF) also plays a vital role in software growth modeling. A model with a time variable

fault reduction factor was incorporated with the imperfect debugging to release multiple versions of the software in the market (Anu

Gupta [1] ). Later FRF was modeled using a delayed S-shaped model keeping factors like error generation constant [39] . The FRF

and testing coverage-based SRGM was proposed along with the idea of the multi-release of an open-source software project [38] . A

release time problem was suggested by using Fuzzy Analytical Hierarchy Process (FAHP) to find the weights of the modules. The two

SRGMs were modeled by considering the effect of testing Coverage and FRF (Anu G [2] ). A multi-release SRGM was addressed by

assuming software failure distribution as generalized modified Weibull distribution [35] . Most of the SRGMs were given under the

software development environment’s preset parameters, which are quite predictable. However, when the program is released, the field 

operating environment is highly unpredictable and random. Considering the random field operating environment, two multi-upgrade 

SRGMs were introduced to seize the uncertainty of fault detection rate [27] . We have also incorporated multi-release problems in

our proposed model that considers imperfect debugging along with testing coverage with random effects. The random effect causes 

irregular fluctuation which is modeled through SDE. 

The paper is organized into different sections as follows: section 2 of the paper elaborates on the model framework. The sec-

tions 2.1 and 2.2, we discuss the notations used in our study and the assumptions of the model. In section 2.3, we deal with the

development of the proposed model using three different testing coverage: Exponential. Weibull, S-shaped Testing Coverage. The 

section 3, we propose a multi-release framework for our proposed model. While section 4, provides a numerical example for pro-
2 
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Fig. 1. Need for Different Releases of Software. 

 

 

 

 

 

 

 

posed models on Tandem Computers dataset with parameter estimation and performance analysis. Finally, conclusions are drawn in 

Section 5. 

Model framework 

Notations 

𝑁( 𝑡 ) : a random variable that represents the number of faults disclosed during testing time t 

𝑚 ( 𝑡 ) : Mean value function giving an anticipated number of faults disclosed or removed by time t. 

𝑎 : total number of expected faults existing in the system before testing, 

𝑐( 𝑡 ) : testing coverage representing the percentage of potential faults disclosed up to time t, 

𝑐 ′( 𝑡 ) : coverage rate i.e., the rate at which remaining possible faults are disclosed, 

𝑟 ( 𝑡 ) : fault removal rate, 

𝜆( 𝑡 ) : failure intensity rate, b: failure occurrence rate per fault, 

𝜎 : represents the magnitude of random effects. 

𝛾( 𝑡 ) : Standard Gaussian White Noise 

Assumptions 

The assumptions for the proposed SRGM are given as follows: 

1. The fault detection process is modeled as a stochastic process. 

2. The rate at which fault is detected is proportional to the number of faults remaining in the software at time t. 

3. The software is exposed to failure during decapitation induced by remaining faults. 

4. The faults detection rate can be expressed in the form of testing coverage as 𝑐 ′( 𝑡 ) 
1− 𝑐( 𝑡 ) . 

5. There is a presence of a random effect on testing coverage. 

6. The new faults are introduced during the removal process with probability 𝛼. 

Model formulation 

The majority of the proposed software reliability model considers fault detection during both the phases of testing and the oper-

ational counting process. Furthermore, if the software system is large, the number of faults found in the course of testing increases,

and the number of faults found and fixed by debugging decreases to a significant degree in comparison to the fault content at the start

of the testing period. We may thus represent the software fault detection process in terms of testing coverage in such a scenario as a

stochastic process with a continuous state space. [29] . Let 𝑁( 𝑡 ) be a random variable that represents the number of faults disclosed

during testing time t. The testing coverage is denoted as 𝑐( 𝑡 ) and ( 1 − 𝑐( 𝑡 ) ) represents the proportion of code that has not been captured

up to time t. The fault detection rate can be denoted as 𝑐 ′( 𝑡 ) 
1− 𝑐( 𝑡 ) . The differential equation testing coverage and fault removal efficiency

are given by: 

𝑑𝑁 ( 𝑡 ) = 𝑟 ( 𝑡 ) [ 𝑎 ( 𝑡 ) − 𝑁 ( 𝑡 ) ] (1) 

𝑑𝑡 

3 
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where 𝑟 ( 𝑡 ) is the fault detection rate in terms of testing coverage and is subjected to some random effects, and 𝑎 ( 𝑡 ) is the fault content

function which is a linear function of expected faults detected up to time t so that we have 

𝑟 ( 𝑡 ) = 

𝑐 ’ ( 𝑡 ) 
1 − 𝑐 ( 𝑡 ) 

+ ε noise ε = 

𝑐 ’ ( 𝑡 ) 
1 − 𝑐 ( 𝑡 ) 

+ 𝜎𝛾( 𝑡 ) (2) 

𝑎 ( 𝑡 ) = 𝑎 + 𝛼 𝑁 ( 𝑡 ) (3) 

Hence, by incorporating Eq. (2) & (3) in (1) , we have 

𝑑𝑁 ( 𝑡 ) 
𝑑𝑡 

= 

( 

𝑐 ′( 𝑡 ) 
1 − 𝑐 ( 𝑡 ) 

+ 𝜎𝛾( 𝑡 ) 
) 

[ 𝑎 + 𝛼 𝑁 ( 𝑡 ) − 𝑁 ( 𝑡 ) ] (4) 

Now, expanding Eq. (4) to the Stochastic differential equation of an It ộ type [ 29 , 36 ], we have 

𝑑 𝑁 ( 𝑡 ) = 

[ 
𝑐 ′( 𝑡 ) 

1 − 𝑐 ( 𝑡 ) 
+ 

1 
2 
𝜎2 

] 
[ 𝑎 − ( 1 − 𝛼) 𝑁 ( 𝑡 ) ] 𝑑 𝑡 + 𝜎[ 𝑎 − ( 1 − 𝛼) 𝑁 ( 𝑡 ) ] 𝑑𝑤 ( 𝑡 ) (5) 

where 𝑊 ( 𝑡 ) is one - dimension Wiener process which is the integration of white noise 𝛾( 𝑡 ) with respect to time t. Also, wiener process

𝑊 ( 𝑡 ) is a Gaussian process that has the following properties: 

Pr [ 𝑤 ( 0 ) = 0 ] = 1 

𝐸 [ 𝑤 ( 𝑡 ) ] = 0 

𝐸 

[
𝑤 ( 𝑡 ) 𝑤 

(
𝑡 ′
)]

= min 
[
𝑡, 𝑡 ′

]
Here, by using the It ộ formula, we can achieve the solution process: 

𝐸 ( 𝑁 ( 𝑡 ) ) = 𝑚 ( 𝑡 ) = 

𝑎 

( 1 − 𝛼) 

[ 
1 − exp 

{ 

− ∫
𝑡 

0 

𝑐 ′( 𝑥 ) 
1 − 𝑐 ( 𝑥 ) 

𝑑𝑥 + 

𝜎2 𝑡 

2 

} ] 
(6) 

In this paper, we consider three different coverage functions [12] , that is, Exponential Testing Coverage, Weibull Testing Coverage,

and S-Shaped Testing Coverage Function as shown in Fig. 2 . We now briefly describe three testing coverage functions based on the

proposed model incorporating random effects in testing coverage and a linear function of the expected number of faults up to time t.

i) Model-1: Exponential testing Coverage 

The traditional Goel Okumoto Model (Amrit L [11] ), has had a substantial impact on the reliability modeling of software. It is one

of the basic models with parameters having physical understanding. The model states that the failure process is modeled by NHPP,

with MVF as 

𝑚 ( 𝑡 ) = 𝑎 
(
1 − 𝑒 − 𝑏𝑡 

)

𝜆( 𝑡 ) = 𝑎𝑏𝑒 − 𝑏𝑡 
Fig.2. Structure of the Proposed Model. 

4 
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The Coverage function and failure detection rate are given as 

𝑐 ( 𝑡 ) = 1 − 𝑒 − 𝑏𝑡 

𝑟 ∗ ( 𝑡 ) = 

𝑐 ′( 𝑡 ) 
1 − 𝑐 ( 𝑡 ) 

= 𝑏 (7) 

Now, we incorporate Eq. (7) in the proposed model Eq. (6) , and we get 

𝑚 1 ( 𝑡 ) = 

𝑎 

( 1 − 𝛼) 

[ 
1 − 𝑒𝑥𝑝 

( 

− ∫
𝑡 

0 
𝑏𝑑𝑥 + 

𝜎2 𝑡 

2 

) ] 

𝑚 1 ( 𝑡 ) = 

𝑎 

( 1 − 𝛼) 

[ 
1 − 𝑒𝑥𝑝 

( 

− 𝑏𝑡 + 

𝜎2 𝑡 

2 

) ] 
(8) 

ii) Model-2: Weibull Testing Coverage 

In the exponential testing coverage function, the failure intensity rate shows decreasing pattern while testing. It implies that as

the testing progresses the quality of the software is enhanced. Moreover, in realistic situations, the failure intensity initially increases

and later decreases. To handle this situation a generalized G-O model [ 8 , 9 ] projected the mean value function as: 

𝑚 ( 𝑡 ) = 𝑎 
(
1 − 𝑒 − 𝑏𝑡 

𝛾
)

Here, 𝑏 and 𝛾 are the quality parameters of testing 

𝜆( 𝑡 ) = 𝑎𝑏𝛾𝑒 − 𝑏𝑡 
𝛾
𝑡 𝛾−1 

The Coverage function and failure detection rate are given as 

𝑐 ( 𝑡 ) = 1 − 𝑒 − 𝑏𝑡 
𝛾

𝑟 ∗ ( 𝑡 ) = 

𝑐 ′( 𝑡 ) 
1 − 𝑐 ( 𝑡 ) 

= 𝑏𝛾𝑡 𝛾−1 (9) 

Eq. (9) implies that the Weibull testing coverage function inflates the time-varying detection rate. The 𝑟 ∗ ( 𝑡 ) is increasing function

of time ‘t’ when 𝛾 > 1 , decreasing when 𝛾 < 1 , and constant when 𝛾 = 1 . 
Now, we incorporate Eq. (9) in the proposed model Eq. (6) , and we get 

𝑚 2 ( 𝑡 ) = 

𝑎 

1 − 𝛼

[ 
1 − 𝑒𝑥𝑝 

( 

− ∫
𝑡 

0 
𝑏𝛾𝑥 𝛾−1 𝑑𝑥 + 

𝜎2 𝑡 

2 

) ] 

𝑚 2 ( 𝑡 ) = 

𝑎 

1 − 𝛼

[ 
1 − 𝑒𝑥𝑝 

( 

− 𝑏𝑡 𝛾 + 

𝜎2 𝑡 

2 

) ] 
(10) 

ii) Model-3: S-Shaped Testing Coverage 

The S-shaped SRGM identifies the authenticity of the time delay between fault detection and removal. The two phases of the

testing process are fault detection and isolation. The mean value function is given as: 

𝑚 ( 𝑡 ) = 𝑎 
[
1 − ( 1 + 𝑏𝑡 ) 𝑒 − 𝑏𝑡 

]

𝜆( 𝑡 ) = 𝑏 2 𝑡𝑒 − 𝑏𝑡 

The Coverage function and failure detection rate are given as: 

𝑐 ( 𝑡 ) = 1 − ( 1 + 𝑏𝑡 ) 𝑒 − 𝑏𝑡 

𝑟 ∗ ( 𝑡 ) = 

𝑐 ′( 𝑡 ) 
1 − 𝑐 ( 𝑡 ) 

= 

𝑏 2 𝑡 

1 + 𝑏𝑡 
(11) 

Now, we incorporate Eq. (11) in the proposed model Eq. (6) , and we get 

𝑚 3 ( 𝑡 ) = 

𝑎 

1 − 𝛼

[ 
1 − 𝑒𝑥𝑝 

( 

− ∫
𝑡 

0 

𝑏 2 𝑥 

1 + 𝑏𝑥 
𝑑𝑥 + 

𝜎2 𝑡 

2 

) ] 

𝑚 3 ( 𝑡 ) = 

𝑎 

1 − 𝛼

[ 
1 − ( 1 + 𝑏𝑡 ) 𝑒𝑥𝑝 

( 

− 𝑏𝑡 + 

𝜎2 𝑡 

2 

) ] 
(12) 

A generalized way of representing the above models can be given as: 

𝑚 ( 𝑡 ) = 

𝑎 

( 1 − 𝛼) 
𝐹 ( 𝑡 ) 
5 



R. Bibyan, S. Anand, A.G. Aggarwal et al. MethodsX 10 (2023) 102076 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the MVF given by Eqs. 8 , 10 , and 12 can be expressed as: 

𝑚 1 ( 𝑡 ) = 

𝑎 

( 1 − 𝛼) 
𝐹 1 ( 𝑡 ) , 𝑤ℎ𝑒𝑟𝑒 𝐹 1 ( 𝑡 ) = 

[ 
1 − 𝑒𝑥𝑝 

( 

− 𝑏𝑡 + 

𝜎2 𝑡 

2 

) ] 
(13) 

𝑚 2 ( 𝑡 ) = 

𝑎 

1 − 𝛼
𝐹 2 ( 𝑡 ) , 𝑤ℎ𝑒𝑟𝑒 𝐹 2 ( 𝑡 ) = 

[ 
1 − 𝑒𝑥𝑝 

( 

− 𝑏𝑡 𝛾 + 

𝜎2 𝑡 

2 

) ] 
(14) 

𝑚 3 ( 𝑡 ) = 

𝑎 

1 − 𝛼
𝐹 3 ( 𝑡 ) , 𝑤ℎ𝑒𝑟𝑒𝐹 3 ( 𝑡 ) = 

[ 
1 − ( 1 + 𝑏𝑡 ) 𝑒𝑥𝑝 

( 

− 𝑏𝑡 + 

𝜎2 𝑡 

2 

) ] 
(15) 

Multi-release modelling framework 

Release 1: 

The competition in the software market has driven the firms to release multiple variants of the software i.e., upgradation of

software. The software is upgraded by adding new features for enhancement purpose to exist in the market. When the software is

released for the first time in the market, the MVF is given by 

𝑚 1 𝑗 ( 𝑡 ) = 

𝑎 1 𝑗 

1 − 𝛼1 𝑗 
𝐹 1 𝑗 ( 𝑡 ) , ; 0 ≤ 𝑡 ≤ 𝑡 1 (16) 

Where 𝑚 1 𝑗 ( 𝑡 ) is the MVF of the first release for the 𝑗 𝑡ℎ model and 𝐹 1 𝑗 ( 𝑡 ) is the cumulative failure function, and is 𝑡 1 is the time

when software is first released in the market. 

Release 2: 

The software is released for the second time due to feature enhancement made based on responses by the users on the previous

release. The second release contains detected faults from the current release and some faults from the previous release that were not

removed and are reported in the operational phase of Release 1. The testing is stopped at the time 𝑡 2 and the second version of the

software is released. 

𝑚 2 𝑗 ( 𝑡 ) = 

𝑎 2 𝑗 

1 − 𝛼2 𝑗 
𝐹 2 𝑗 

(
𝑡 − 𝑡 1 

)
+ 

𝑎 1 𝑗 

1 − 𝛼1 𝑗 
(1 − 𝐹 1 𝑗 

(
𝑡 1 
)
) 𝐹 2 𝑗 

(
𝑡 − 𝑡 1 

)
; 𝑡 1 < 𝑡 ≤ 𝑡 2 (17) 

Release 3: 

Similarly, release three contains detected faults from the present release and some faults from the previous release. The third

version of the software is released at the time 𝑡 3 and MVF is given as: 

𝑚 3 𝑗 ( 𝑡 ) = 

𝑎 3 𝑗 

1 − 𝛼3 𝑗 
𝐹 3 𝑗 

(
𝑡 − 𝑡 2 

)
+ 

𝑎 2 𝑗 

1 − 𝛼2 𝑗 
(1 − 𝐹 2 𝑗 

(
𝑡 2 − 𝑡 1 

)
) 𝐹 3 𝑗 

(
𝑡 − 𝑡 2 

)
+ 

𝑎 1 𝑗 

1 − 𝛼1 𝑗 
(1 − 𝐹 1 𝑗 

(
𝑡 1 
)
)(1 − 𝐹 2 𝑗 

(
𝑡 2 − 𝑡 1 

)
) 𝐹 3 𝑗 

(
𝑡 − 𝑡 2 

)
; 𝑡 2 < 𝑡 ≤ 𝑡 3 

(18) 

Release 4: 

The fourth release contains detected faults from the present release and some faults from the previous release. The fourth version

of the software is released at the time 𝑡 4 and MVF is given as: 

𝑚 4 𝑗 ( 𝑡 ) = 

𝑎 4 𝑗 

1 − 𝛼4 𝑗 
𝐹 4 𝑗 

(
𝑡 − 𝑡 3 

)
+ 

𝑎 3 𝑗 

1 − 𝛼3 𝑗 

(
1 − 𝐹 3 𝑗 

(
𝑡 3 − 𝑡 2 

))
𝐹 4 𝑗 

(
𝑡 − 𝑡 3 

)
+ 

𝑎 2 𝑗 

1 − 𝛼2 𝑗 
(1 − 𝐹 2 𝑗 

(
𝑡 2 − 𝑡 1 

)
) 
(
1 − 𝐹 3 𝑗 

(
𝑡 3 − 𝑡 2 

))
𝐹 4 𝑗 

(
𝑡 − 𝑡 3 

)
+ 

𝑎 1 𝑗 

1 − 𝛼1 𝑗 
(1 − 𝐹 1 𝑗 

(
𝑡 1 
)
)(1 − 𝐹 2 𝑗 

(
𝑡 2 − 𝑡 1 

)
) 
(
1 − 𝐹 3 𝑗 

(
𝑡 3 − 𝑡 1 

))
𝐹 4 𝑗 

(
𝑡 − 𝑡 3 

)
; 𝑡 3 < 𝑡 ≤ 𝑡 4 (19) 

Numerical example 

Parameter estimation, performance analysis 

This section of the paper presents the estimation of the parameters of the proposed models using a tandem computer dataset

[41] for four releases. In this paper, we estimate the unknown parameters using the Least Square Estimation method in SPSS. The

data statistics for the tandem dataset have been provided in Table 1 .Now, based on the data provided as given in Table 1 , the efficiency

of the model is validated using the goodness of fit criteria such as R 

2 (Coefficient of determination), MSE, MAE, Bias, Variation, and

RMSPE. The mathematical formulae for the criteria are provided in Table 2 along with their interpretation. 

Table 3 provides the estimation results based on the three proposed models given by equations Eq. (13) , (14) & (15) for four

releases. The actual observed fault content for four releases of Tandem data sets is 100, 120, 60, and 42 respectively. On observing

the estimated values of three models for four releases, we can interpret that the deviation between the predicted and actual value of

fault content “a ” is less. Thereby, it indicates that the proposed modeling framework fits the data well which is further supported by

the Goodness of fit analysis. 
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Table 1 

Tandem Computers dataset. 

Tandem Dataset Test duration in weeks Cumulative number of faults 

Release 1 20 100 

Release 2 19 120 

Release 3 12 60 

Release 4 19 42 

Table 2 

Performance Criteria. 

CRITERIA DESCRIPTION 

R 2 

It measures the proportion of variation in the dependent variables. The value lies between 0 to 1and the larger 

the value the better the fit. 

𝑅 2 = 1 − 
∑𝑘 

𝑖 =1 ( 𝑚 𝑖 − ̂𝑚 ( 𝑡 𝑖 ) ) 
2 

∑𝑘 
𝑖 =1 ( 𝑚 𝑖 − 

∑𝑘 
𝑗=1 𝑚 𝑗 ∕ 𝑛 ) 

2 

MSE The deviation between actual and estimated values is calculated using MSE. The lesser the value better is the 

goodness of fit. 

𝑀𝑆𝐸 = 
∑𝑘 

𝑖 =1 ( 𝑚 𝑖 − ̂𝑚 ( 𝑡 𝑖 ) ) 
2 

𝑘 − 𝑝 

MAE The mean absolute error provides a deviation of absolute values. The lesser the value better is the goodness of fit 

𝑀𝐴𝐸 = 
∑𝑘 

𝑖 =1 |( 𝑚 𝑖 − ̂𝑚 ( 𝑡 𝑖 ) ) |
𝑘 − 𝑝 

Bias The Bias is given by the average of prediction error which is the difference between actual and estimated values 

at any time t. The lesser the value better is the goodness of fit 

𝐵𝑖𝑎𝑠 = 
∑𝑘 

𝑖 =1 |𝑚 ( 𝑡 𝑖 )− 𝑚 𝑖 |
𝑘 − 𝑝 

Variance The variance is given by the standard deviation of the prediction error. 

𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 
√ ∑𝑘 

𝑖 =1 ( 𝑚 𝑖 − ̂𝑚 ( 𝑡 𝑖 )− 𝐵𝑖𝑎𝑠 ) 2 

𝑘 −1 

Root Mean Square Percentage Error The RMSPE measures the percentage error. It measures the closeness with which the model predicts the values. 

The lesser the value better is the goodness of fit. 

𝑅𝑀𝑆𝑃𝐸 = 
√

𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒 2 + 𝐵𝑖𝑎𝑠 2 

Table 3 

Estimation results. 

Release Case a b 𝜶 𝝈 𝜸

1 Exponential 101.496 0.391 0.22 0.785 - 

Weibull 101.847 0.077 0.141 0 1.11 

S-shaped 101.089 0.467 0.141 0.002 - 

2 Exponential 128.09 0.061 0.19 0.003 - 

Weibull 120.217 0.042 0.024 2.5E-07 1.438 

S-shaped 122.446 0.305 0.121 0.00073 - 

3 Exponential 63.727 0.37 0.362 0.002 - 

Weibull 61.957 0.022 0.001 2.4E-07 2.12 

S-shaped 57.082 0.109 0.003 9.2E-07 - 

4 Exponential 41.256 0.052 0.063 0.0025 - 

Weibull 39.422 0.024 0.082 3.6E-07 1.656 

S-shaped 44.047 0.082 0.199 6.4E-08 - 

 

 

 

 

 

 

The goodness of fit analysis 

Table 4 provides the goodness of fit results for our proposed models. As mentioned in Table 2 , the R 

2 value lies between 0 to

1, and the larger the value the better the fit. The R 

2 value of the S-shaped testing coverage-based SRGM model is close to 1 when

compared to other models i.e., the S-shaped model fits the data well. The performance criteria values of the s-shaped testing coverage

model also show better results for all releases. We plot the curves of the goodness-of-fit based on observed and estimated faults for

the four releases of the tandem dataset ( Fig.3 –6 ). In the graph, the x-axis presents the testing time in weeks and the y-axis presents

the cumulative number of faults. The boxplots for absolute residual have been shown in Fig. 7 –10 to explain the spreading of the

predicted and observed values of the dataset for all releases corresponding to the proposed 3 models. 
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Table 4 

Goodness of fit results. 

Release Testing Coverage Cases R 2 MSE MAE Bias Variation RMPSE 

1 Exponential 0.986 11.65167 3.088 -0.2652 3.337131 3.347638 

Weibull 0.987 10.93034 2.699 -0.0751 3.229765 3.230636 

S-shaped 0.997 10.86576 2.6995 -0.0175 3.128690 3.043367 

2 Exponential 0.997 23.47873 4.366316 0.10421 4.981716 4.982805 

Weibull 0.993 20.14181 4.168421 3.40211 7.610041 8.335894 

S-shaped 0.998 9.415642 2.210526 -0.4326 3.245222 3.273929 

3 Exponential 0.991 3.066927 1.31425 -0.6159 2.241789 2.258940 

Weibull 0.991 4.166592 1.569167 -0.9575 2.744691 2.909061 

S-shaped 0.996 3.0952 1.4441 -0.4825 2.138581 2.289990 

4 Exponential 0.993 4.472495 1.878947 0.4277 2.302029 2.341363 

Weibull 0.995 1.354211 0.947368 -0.6158 1.602949 1.711562 

S-shaped 0.998 0.8904 0.687368 -0.0168 0.969930 0.970077 

Fig. 3. Goodness-of-fit curve for Release 1. 

Fig. 4. Goodness-of-fit curve for Release 2. 

 

 

 

 

 

 

 

 

 

 

The absolute residual for the given dataset is calculated as 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 

|||𝑝𝑟𝑒𝑑 𝑗 − 𝑜𝑏𝑠 𝑗 
||| 𝑓𝑜𝑟 𝑗 = 1 , 2 , … , 𝑛 

where n represents the number of data values, 𝑝𝑟𝑒𝑑 𝑗 is the predicted value of the 𝑗 𝑡ℎ data value and 𝑜𝑏𝑠 𝑗 is the 𝑗 𝑡ℎ observed or actual

value of the dataset. It is said that a lesser absolute value provides a compact boxplot which signifies a better fit. The boxplot spread

indicates that predicted faults have higher mismatches with the observed faults whereas the compact boxplot indicates the opposite.

The data concentration at the lower or upper end is represented using skewness. The data points which are out of the range are

called outliers and can be handled. Using a boxplot, we can easily recognize these points as most of the performance criteria don’t

acknowledge these points. In turn, it affects the efficiency of the results. The boxplots have been plotted for each release corresponding

to each model in Fig. 5 –8 . 

To describe the boxplot for our dataset briefly, consider the Release 3 boxplot ( Fig. 7 ) for all the models. It can be seen that

more area is enclosed by boxplot for the models with Exponential and s-shaped testing coverage functions when compared with the

Weibull model. It implies that including random effects in fault detection rate based on testing coverage with imperfect debugging

provides efficient accuracy to the model. There are no outliers in the boxplots and the median lies in the lower part. This signifies

better performance as most of the residuals obtained are small. Similarly, the boxplots for other releases can be studied. 
8 
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Fig.5. Goodness-of-fit Curve for Release 3. 

Fig.6. Goodness-of-fit Curve for Release 3. 

Fig. 7. Release 1 Boxplot for the proposed models. 

Fig. 8. Release 2 Boxplot for the proposed models. 
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Fig. 9. Release 3 Boxplot for the proposed models. 

Fig. 10. Release 4 Boxplot for the proposed models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

In literature, various SRGMs have been proposed to improve the reliability and estimate the faults of the software system. The

majority of the proposed software reliability model considers fault detection during both the phases of testing and the operational

counting process. Furthermore, if the software system is large, the number of faults found in the course of testing increases, and the

number of faults found and fixed by debugging decreases to a significant degree in comparison to the fault content at the start of

the testing period. We may thus represent the software fault detection process in terms of testing coverage in such a scenario as a

stochastic process with a continuous state space. The change in fault detection rate due to random effect causes irregular fluctuation

which is studied using SDE in our models. We have proposed Testing Coverage based SRGM using SDE along with the multi-release.

Also, we have considered three different testing coverage functions namely exponential, Weibull, and S-shaped. We have considered 

the Exponential function in which the fault detection rate is constant which takes care of the case when the code is uniform in nature.

The faults in the code are simple and as soon as they are detected they are isolated. In the exponential testing coverage function,

the failure intensity rate shows decreasing pattern while testing. It implies that as the testing progresses the quality of the software

is enhanced. Moreover, in realistic situations, the failure intensity initially increases and later decreases. To handle this situation a

generalized G-O model is projected known as the Weibull model. Weibull testing coverage function inflates the time-varying detection

rate. We have also considered the S-shaped testing coverage function. It identifies the authenticity of the time delay between fault

detection and removal. The two phases of the testing process are fault detection and isolation. 

Later. Multi-release models have also been briefly discussed. We have analyzed our proposed models on the Tandem Computers 

failure dataset [41] from the literature. The results obtained from the numerical illustration in the paper show significant estimation

potential of the models for each release. Also, the statistical performance criteria have been evaluated namely R 

2 , Mean Square Error,

Mean Absolute Error, Bias, Variance, and Root Mean Square Percentage Error. The goodness-of-fit curves for the proposed models for

four releases have been observed and they depict that model fits the data significantly. To obtain more insight, boxplots of residual

values have been shown. We observe that all releases of the S-shaped model fit the data perfectly based on goodness of fit. More area
10 



R. Bibyan, S. Anand, A.G. Aggarwal et al. MethodsX 10 (2023) 102076 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is enclosed by boxplot for the models with Exponential and s-shaped testing coverage functions when compared with the Weibull

model. It implies that including random effects in fault detection rate based on testing coverage with imperfect debugging provides

efficient accuracy to the model. 

The proposed models will give various aspects of extensions. In the future, a modeling framework can be generated by discussing

the idea of change points and testing coverage rates with random effects. To study the imperfect debugging problem in our study,

we have used the linear function for the fault content function. Later, research can be done using better forms to model imperfect

debugging. 
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