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Abstract: Bacterial resistance to antibiotics is an increasing public health threat as it has the potential
to affect people at any stage of life, as well as veterinary. Various approaches have been proposed
to counteract the bacterial resistance development. Tackling bacterial virulence is one of the most
promising approaches that confer several merits. The bacterial virulence is mainly regulated by
a communication system known as quorum sensing (QS) system. Meanwhile, bacteria can sense
the adrenergic hormones and eavesdrops on the host cells to establish their infection, adrenergic
hormones were shown to enhance the bacterial virulence. In this study, β-adrenoreceptor blockers
were proposed not only to stop bacterial espionage on our cells but also as inhibitors to the bacterial
QS systems. In this context, a detailed in silico study has been conducted to evaluate the affinities
of twenty-two β-blockers to compete on different structural QS receptors. Among the best docked
and thermodynamically stable β-blockers; atenolol, esmolol, and metoprolol were subjected to
further in vitro and in vivo investigation to evaluate their anti-QS activities against Chromobacterium
violaceum, Pseudomonas aeruginosa and Salmonella typhimurium. The three tested β-blockers decreased
the production of QS-controlled C. violaceum, and the formation of biofilm by P. aeruginosa and
S. typhimurium. Additionally, the tested β-blockers down-regulated the P. aeruginosa QS-encoding
genes and S. typhimurium sensor kinase encoding genes. Furthermore, metoprolol protected mice
against P. aeruginosa and S. typhimurium. Conclusively, these investigated β-blockers are promising
anti-virulence agents antagonizing adrenergic hormones induced virulence, preventing bacterial
espionage, and blocking bacterial QS systems.

Keywords: bacterial virulence; β-adrenergic blockers; quorum sensing; adrenergic hormones;
bacterial espionage; Pseudomonas aeruginosa; Salmonella typhimurium

1. Introduction

Bacterial infections are among major burdens which constitute a serious challenge. De-
spite the marked achievements in discovering new antimicrobial agents over the last seven
decades [1], the development of antimicrobial resistance fades these achievements. In the
battle against bacterial infections, bacteria showed a magnificent capability in developing
resistance to all antibiotic classes [2]. In this context, the development of new strategies to
overcome the bacterial resistance is mandatory, one of the effective strategies, is quenching
bacterial virulence [3–5]. Bacteria utilize several kinds of virulence factors that expand
from bacterial structures as capsules, flagella, pili to producing an arsenal of enzymes like
protease, urease, elastase, and others [6]. The bacterial community utilizes specific chemical
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language to orchestrate its virulence in coordination with the surrounding circumstances.
This chemical system is called quorum sensing (QS), in which bacteria produce chemical
signals that find their specific receptors to arrange the virulence behavior [7]. QS system
controls biofilm formation, bacterial motility, production of virulence enzymes and other
virulence factors as extensively reviewed [8,9]. Both Gram-positive and Gram-negative
bacteria use QS. Gram-positive QS systems alter the expression of virulence genes using
sensor kinase receptors and cytoplasmic transcription factors to sense oligopeptides [8].
On the other hand, Gram-negative bacteria often use numerous autoinducers (AIs) that
are mainly acyl-homoserine lactones (AHLs) [10]. These AHLs are able to diffuse freely
through the bacterial membrane to be detected by the QS receptors which are mainly LuxR-
type receptors [9,10]. Then, LuxR-AHLs complexes regulate the expression of virulence
genes via binding lux boxes which are short DNA sequences located upstream of targeted
genes [11].

The communication between bacteria and their eukaryotic host cells is essential to de-
termine the outcome of infections. Bacteria use membrane sensors to detect the changes and
facilitate their adaptation in the surrounding environment inside host cells [12]. Meanwhile,
AIs are employed in bacterial communication via QS to orchestrate the bacterial virulence,
AIs crosstalk with the host neuroendocrine hormones (NE) adrenaline and noradrenaline
for activation of the same signaling pathway [13]. Recently, there is cumulative evidence to
propose that Gram-negative bacteria sense and respond to the host NE stress hormones
to enhance virulence as reviewed [12,14]. As a result, hindering the adrenergic receptor
inhibits the bacterial receptor-based sensing and diminishes the bacterial virulence [12–14].
That leads us to hypothesize that adrenergic blockers may be a considerable candidate to
diminish the bacterial espionage and hence mitigate the bacterial virulence.

Bacteria evoke all these interplayed mechanisms to escape from the immunity, causing
more aggressive complications [3,4,6]. In this direction, targeting bacterial virulence is a
highly appreciated strategy. There are several advantages, this strategy does not affect
bacterial growth and so it will not induce bacterial resistance [2–4] and will also not destroy
the bacterial normal flora [9,15]. Moreover, the diminishing of bacterial virulence gives the
chance to the immune system to be activated efficiently against weakened bacteria [16].
Dozens of studies were directed to screen and evaluate the use of diverse chemical moieties
as anti-virulence agents, but among all the tested compounds, approved safe drugs gained
an increasing interest [3,4,17–19]. Drug repurposing is exploring new uses of already
known drugs which are famed by specific medical use. Repurposing of already approved
drugs is an attractive strategy where it comprises several advantages. Saving costs and
time is one of the merits of this strategy [20]. The β-blockers are widely used with diverse
pharmacological applications as reviewed [21]. The β-blockers comprise diverse chemical
structures (Figure 1), but all share the presence of an aromatic ring linked to a side alkyl
chain including an amine and hydroxyl functional groups [21]. The β-blockers possess
at least one chiral center in their structures indicating that their interaction with various
receptors is highly stereoselective [21,22], supposing the increasing possibility to block
bacterial QS receptors.
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nists (β-blockers).

In this study, we aimed to investigate the inhibitory activities of adrenergic β-blockers
on the Gram-negative bacteria virulence. We in silico studied the binding ability of β-
blockers to the well resolved full-length three different LuxR-type QS receptors; TraR
from Agrobacterium tumefaciens, CviR from Chromobacterium violaceum, and QscR from
Pseudomonas aeruginosa [10]. The promising in silico behaved β-blockers were then subjected
to further in vitro and in vivo investigations against different Gram-negative bacterial
models, including C. violaceum, P. aeruginosa and Salmonella typhimurium.

2. Results
2.1. Two-Stage Multi-Target Docking Analysis

The docking affinity of 22 FDA-approved adrenoreceptor (β)-blockers was evaluated
on three LuxR-type quorum sensing transcription factors (QSs) from A. tumefaciens (TraR;
PDB entry: 1L3L) [23], P. aeruginosa (homolog QscR; PDB entry: 3SZT) [24], and C. violaceum
(CviR; PDB entry: 3QP5) [25]. Molecular docking is a rapid in silico technique for grasping
the orientational and conformational degrees of freedom for several small ligands within the
target protein pocket at cost-wise computational expenditures. Scoring and ranking ligands
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on bases of docking affinity scoring functions allow investigators to prioritize these small
molecules for further acquisition and investigation [26]. Based on parameterized force-
fields calculations, this in silico technique allows scoring the ligand–protein interactions
as a function of Kcal/mol binding energies where more negative values represent higher
energy of the ligand–protein complex in relation to each individual entity [27]. Using
controls is usually employed to enhance the accuracy of docking predictions for increasing
the reliability of simulating the molecular flexibility within calculating the binding energies
close to experimental values [28].

Within this presented manuscript, the adopted docking workflow involved two stages,
where the first stage was a rapid preliminary screening docking protocol for selecting the
significant leads in relation to LuxR-type QSs reference co-crystalline ligands. The second
stage is a more sophisticated docking protocol which aimed to further validate the previ-
ously obtained docking findings, besides obtaining more valid docking binding modes for
comprehensive investigation of predicted ligand–protein binding interactions. Preliminary
docking analysis illustrated higher docking binding energies for the CviR’s co-crystalline in-
hibitor (chlorolactone; HLC) as compared to other two co-crystalline ligand controls at their
respective biological targets (TraR and QscR autoinducer pheromones; N-3-oxo-octanoyl-
L-homoserine lactone (O-C8-HSL) and O-C12-HSL, respectively). The co-crystalline in-
hibitor (HLC) revealed docking energies of −6.6245 Kcal/mol, −7.6488 Kcal/mol, and
−7.2051 Kcal/mol for TraR A. tumefaciens, QscR P. aeruginosa, and CviR C. violaceum, respec-
tively. These reference binding energies were set as the threshold for selecting promising
hits in term of more negative values. Out of the 22 investigated β-blockers, only six com-
pounds on TraR A. tumefaciens, seven compounds QscR P. aeruginosa, and eight ligands on
CviR C. violaceum showed significant docking energies better than those of their respective
references (Table 1). Interestingly, three promising ligands; atenolol (10), esmolol (11),
and metoprolol (14) were found satisfactory for the three investigated bacterial LuxR-type
quorum sensing transcription factors. These obtained hit compounds were considered as
relevant hits that would worth further investigation.

As a general observation, docking energies across all investigated ligands were at lower
negative values at TraR Agrobacterium tumefaciens as compared to the other two biological
targets. This was significantly obvious for the large-sized ligands including the third gener-
ation β-blockers (20, 21, and 22). To further investigate the differential pocket size across
the three targets, the on-line Computed Atlas of Surface Topography of proteins server
(CASTp; http://sts.bioe.uic.edu/castp/index.html, accessed on 17 September 2021) was
used with 1.4 Å probe and at default settings to estimate the pocket area/volume across the
three QSs proteins [29]. The calculated Richard’s solvent accessible surface area andvolume
were estimated as; 562.41 Å2/315.97 Å3, 579.64 Å2/331.18 Å3, and 516.30 Å2/363.28 Å3

for the binding sites of TraR A. tumefaciens, QscR P. aeruginosa, and CviR C. violaceum,
respectively (Supplementary Data, Figure S1). Additionally, the CASTp pocket analysis fur-
ther illustrated the differential topology between CviR C. violaceum and QscR P. aeruginosa
pockets where the earlier is quite wider, while as QscR was depicted narrower and more
elongated. Comprehensive investigation of ligand–protein interaction for the obtained hits
was proceeded through the second stage docking protocol.

http://sts.bioe.uic.edu/castp/index.html
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Table 1. Docking energies of investigated adrenoreceptor blockers and co-crystallized reference
controls at the binding sites of three bacterial LuxR-type quorum sensing transcription factors from
A. tumefaciens (TraR; PDB entry: 1L3L), P. aeruginosa (QscR; PDB entry: 3SZT), and C. violaceum (CviR;
PDB entry: 3QP5) throughout the preliminary docking analysis.

Compound Name
Binding Energy (Kcal/mol) a

1L3L 3SZT 3QP5

1 Propranolol −6.9518 −6.8120 −6.9592
2 Pindolol −6.7337 −6.7648 −7.2291
3 Levobunolol −5.8300 −5.3392 −5.2812
4 Nadolol −5.3036 −6.6720 −6.0193
5 Oxprenolol −5.5981 −6.7365 −6.7374
6 Carteolol −5.3073 −6.7183 −7.0493
7 Penbutolol −4.0056 −5.2514 −5.1763
8 Timolol −6.8266 −6.9061 −6.6453
9 Sotalol −6.1145 −6.3450 −6.8093
10 Atenolol −7.9923 −8.2452 −8.2351
11 Esmolol −6.9957 −8.2803 −7.4849
12 Betaxolol −5.0198 −7.6193 −7.7426
13 Bisoprolol −6.1495 −9.2750 −7.3777
14 Metoprolol −7.2391 −8.7438 −7.8018
15 Practolol −5.6051 −6.2557 −6.9717
16 Metipranolol −4.0760 −5.8692 −6.7320
17 Acebutolol −5.7674 −8.4568 −8.4732
18 Celiprolol −3.8698 −5.1621 −5.3801
19 Bucindolol −2.2153 −5.8371 −6.2381
20 Carvedilol −1.8936 −3.8607 −4.2513
21 Labetalol −4.7226 −7.7411 −7.8677
22 Nebivolol −1.9527 −5.2294 −4.8969

1L3L Reference O-C8-HSL −6.2977 – –
3SZT Reference O-C12-HSL – −7.5547 –
3QP5 Reference HLC −6.6245 −7.6488 −7.2051

a Docking binding energy depicted at more negative values as compared to those of control reference ligands are
highlighted and shown in bold numbers.

2.1.1. Binding Interaction Analysis of Ligand–TraR A. tumefaciens Complexes

The directed flexible docking protocol of the six promising TraR A. tumefaciens hits
illustrated a general common conformation/orientation for these ligands within the target’s
pocket. The alkylated nitrogen moieties of the investigated ligands were settled at the small
sub-pocket having their nitrogen atoms at significant superimposition with the amide group
of the reference control ligand, HLC (Figure 2). On the other hand, the ligands’ terminal
aromatic (phenolic or heterocyclic) scaffolds were perfectly anchored at the pocket’s large
hydrophobic site at similar orientation as that of the HLC’s non-polar aromatic terminal
functionality. Polar interaction with the anionic charged residue, Asp90, was conserved
across all docked propanolamine-based adrenoreceptor hits owing to their respective
alkylated nitrogen atom being quaternary under physiological conditions (Table 2). Almost
all ligands depicted strong hydrogen bond interactions with the sidechains of Tyr53 and/or
Thr126 as being mediated via the ligands’ free hydroxyl group or oxygen linker of the
ligands’ respective aryloxypropanolamine scaffold (Supplementary Data, Table S1). On
the other hand, extra hydrogen bond pairings were predicted for the Trp57 sidechain ε
N-atom with compound 8, Tyr61 sidechain hydroxyl group with compounds 2 and 10, as
well as Trp85 sidechain NH with only compound 14. A similar polar interaction pattern
was assigned for the reference inhibitor, HLC, where its lactone head and double carbonyl
groups mediated hydrogen bonding with Tyr53, Trp57, and Asp70, as well as the small
sub-pocket vicinal residue Tyr102.
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Figure 2. Ligand–protein binding interactions. (A) Three-dimensional cartoon and surface repre-
sentation of TraR A. tumefaciens bounded to DNA sites (PDB entry: 1L3L), where each protomer is
colored differently in regard to its ligand binding domain (LBD) and DNA binding domain (DBD)
as light/dark green and dark/light orange for protomer-A and -B, respectively, whereas DNA is
presented as the blue cartoon. The co-crystalline ligand, O-C8-HSL, is presented as magenta spheres
at the LBD of protomer A (LBD-A; yellow). Showing at LBD of protomer B (LBD-B; green) an overlay
of investigated compounds (yellow lines) and HLC (magenta sticks) binding to the protein’s canonical
binding site comprising of large hydrophobic and small sub-pockets; (B) Predicted binding modes
of the docked ligands (yellow sticks). Only residues located within 5Å radius of bound ligands are
displayed as green lines as being colored according to their subsite location (green for LBD), and
finally labeled with sequence number. Non-polar hydrogens are removed for clarity. Hydrogen
bonding is depicted as red dashed lines.
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Table 2. Parameters of ligand–protein binding interactions at the canonical binding site of TraR
A. tumefaciens (PDB entry: 1L3L) during the directed flexible receptor docking protocol.

Compound
Docking Energy (Kcal/mol) a

H-Bond
Interactions

Hydrophobic
Interactions π-Interactions

Van Der Waal
with Side

Chain Carbons
Preliminary

(Rigid)
Induced-Fit
(Flexible)

Propranolol −6.9518 −7.5013 Tyr53, Asp70,
Thr129

Ala38, Leu40,
Ala49, Tyr53,
Trp57, Phe62,
Val72, Trp85,

Phe101, Tyr102,
Ala105, Ile110,

Met127

Tyr61 (π-π) Gln58 (Cβ, Cδ)

Pindolol −6.7337 −7.4013 Gln58, Tyr61,
Asp70

Ala38, Leu40,
Ala49, Tyr53,
Trp57, Phe62,
Val72, Val73,

Trp85, Phe101,
Tyr102, Ile110,

Met127

Tyr61 (π-π) -

Timolol −6.8266 −7.4812 Tyr53, Trp57,
Asp70, Thr129

Ala38, Leu40,
Ala49, Tyr53,
Trp57, Val72,

Trp85, Phe101,
Tyr102, Ala105,
Ile110, Met127

Tyr61 (H-π) -

Atenolol −7.9923 −8.5142
Tyr53, Gln85,
Tyr61, Phe62,

Asp70, Thr129

Ala38, Leu40,
Ala49, Tyr53,
Trp57, Val72,
Val73, Trp85,

Phe101, Tyr102,
Ala105, Ile110,

Met127

Tyr61 (π-π) -

Esmolol −6.9957 −7.5913
Thr51, Tyr53 *,
Phe62, Asp70,

Thr129

Ala38, Leu40,
Ala49, Tyr53,
Trp57, Val72,

Trp85, Phe101,
Tyr102, Ala105,
Ile110, Met127

Tyr61 (π-π) -

Metoprolol −7.2391 −8.1923
Thr51, Tyr53,
Asp70, Trp85,

Thr129

Ala38, Leu40,
Ala49, Tyr53,
Trp57, Val72,
Val73, Trp85,

Phe101, Tyr102,
Ala105, Ile110,

Met127

Tyr61 (π-π) -

HLC −6.6245 −7.1612 Tyr53, Trp57,
Asp70, Tyr102

Ala38, Leu40,
Ala49, Tyr53,
Trp57, Val72,

Trp85, Phe101,
Tyr102, Ala105,
Ile110, Met127

Tyr61 (π-π) Gln58 (Cβ, Cδ)

a MOE docking energies; Docking scores utilizing the scoring function assigned for the best-ranking poses
following refinement through the GBVI/WSA_dG forcefield rescoring function being incorporated within the
MOE package; * indicates ligand’s multiple polar interactions with the designated amino acids.

Concerning the ligand accommodation at the large hydrophobic site, it was noticed
that ligands’ terminal aryl scaffolds were significant for mediating extra stability of the
investigated hits at the TraR target pocket. Generally, comparable hydrophobic contacts
with several pocket lining residues including Ala38, Leu40, Ala49, Tyr53, Trp57, Phe62, and
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Ile110, were depicted for all investigated hits. The latter was related to the TraR’s pocket
tightness bringing several hydrophobic amino acids at close proximity towards the ligand’s
terminal aryl groups. Further stability of these aromatic moieties was mediated through
π-π interaction with the Tyr61 sidechain where the latter was settled at relevant orientation
at the ligands’ aromatic rings. Only compound 8 depicted π-H interaction between the
Tyr61 sidechain and ligand’s terminal morpholine ring since the central 1,2,5-thiadiazole
ring adopted quite a far orientation in relation to the Tyr61 aromatic sidechain.

2.1.2. Binding Interaction Analysis of Ligand–QscR P. aeruginosa Complexes

The seven preliminary hits, obtained from the first docking-based screening stage,
illustrated favorable accommodations owing to the relevant contacts depicted for these com-
pounds with important residues of the target’s pocket. Common conformation/orientation
positions were also illustrated for these investigated adrenoreceptor blockers (Figure 3).
The ligand’s aromatic hydrophobic features were settled at the large-sized hydrophobic sub-
pocket offering minimal steric hinderance for these large scaffolds. Concerning the other
end of the ligands’ structures, significant docking poses at the target’s small sub-pocket
were assigned for the ligand’s N-alkylated nitrogen heads. The predicted ligand target
poses illustrated great superimposition for the ligand’s ionizable heads with the lactone
ring of QscR’s co-crystalline ligand, O-C12-HSL, while as their respective aromatic scaffold
being directed towards the large hydrophobic sub-pocket. The docked ligands at the QscR
P. aeruginosa binding site exhibited a more extended conformation as compared to those
within the TraR A. tumefaciens pockets. This was obvious where the β-blocker drug class
members predicted almost linear conformation for their aliphatic spacer (propanolamine
scaffold) extending their terminal aryl and alkylated nitrogen moieties at the far ends of
the QscR sub-pockets.

Several key pocket residues were depicted important for anchoring the docked lig-
ands within the QscR pocket. Polar interactions with the sidechain of the anionic Asp75
were illustrated for almost all docked propanolamine-based adrenoreceptor hits (Table 3).
Showing proximity towards the ligand’s quaternary nitrogen atom, the Asp75-mediated
polar binding interaction was suggested significant for anchoring the ligand at the QscR’s
small sub-pocket. Notably, the large-sized ligands, such as compound 21, lacked relevant
interaction with this charged Asp75 amino acid owing to their respective bulkiness and
extended orientations within the QscR pocket. The latter compounds depicted docking
poses that disfavored the close proximity of the ligands’ alkylated nitrogen scaffold near
the Asp75 sidechain. Further stabilization of the docked adrenoreceptor hits was mediated
through a wide range of polar residues such as Ser38, Arg42, Tyr52, Tyr58, Trp62, Tyr66,
Thr72, Trp90, Met127, and/or Ser129 (Supplementary Data, Table S2).

Besides the ligand binding polar interactions, the docket hits also depicted relevant
van der Waals hydrophobic interactions with QscR non-polar residues including; Phe39,
Ala41, Tyr52, His53, Tyr58, Trp62, Ile77, Val78, Leu82, Trp90, Phe101, Trp102, Ile110, Pro117,
Ile125, Met127, and/or Val131. Extended π-mediated hydrophobic interactions were also
depicted as significant for stabilizing the ligand/QscR complexes, particularly through π–π
interaction with Phe54 as well as CH-π contacts with Tyr58, Tyr66, Trp90, and/or Trp102.
Additional, hydrophobic van der Waals binding with Arg42 sidechain hydrocarbons were
also depicted for almost all QscR-docked hits and reference ligand. Comparable residue-
wise binding profile was illustrated for the reference potent QscR inhibitor, HLC, where
its amidic lactone scaffold mediated several polar contacts with Ser38, Tyr58, Trp62, Tyr66,
and Asp75, besides the significant hydrophobic contacts with Phe58 and Trp90 via the
ligand’s aromatic lipophilic tail.
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sentation of QscR P. aeruginosa bounded to DNA sites (PDB entry: 3SZT), where each protomer is
colored differently in regard to its ligand binding domain (LBD) and DNA binding domain (DBD) as
light/dark green and dark/light orange for protomer-A and -B, respectively. The co-crystalline ligand,
O-C12-HSL, is presented as magenta spheres at the LBD of protomer A (LBD-A; yellow). Showing at
LBD of protomer B (LBD-B; green) an overlay of investigated compounds (yellow lines) and HLC
(magenta sticks) binding to the protein’s canonical binding site comprising of large hydrophobic and
small sub-pockets; (B) Predicted binding modes of the docked ligands (yellow sticks). Only residues
located within 5 Å radius of bound ligands are displayed as green lines as being colored according
to their subsite location (green for LBD), and finally labeled with sequence number. Non-polar
hydrogens are removed for clarity. Hydrogen bonding is depicted as red dashed lines.
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Table 3. Parameters of ligand–protein binding interactions at the canonical binding site of QscR
P. aeruginosa (PDB entry: 3SZT) during the directed flexible receptor docking protocol.

Compound
Docking Energy (Kcal/mol) a

H-Bond
Interactions

Hydrophobic
Interactions

π-Interactions
Van Der Waal

with Side Chain
Carbons

Preliminary
(Rigid)

Induced-Fit
(Flexible)

Atenolol −8.2452 −8.9102
Ser38, Tyr52,
Tyr58, Tyr66,

Asp75

Ala41, Tyr52,
Tyr58, Trp62, Tyr66,
Ile77, Val78, Leu82,

Phe101, Trp102,
Ala105, Ile110,
Ile125, Met127,

Val131

Trp90 (π-H)
Trp102 (π-H) Arg42 (Cβ)

Esmolol −8.2803 −8.9182
Ser38, Arg42,
Tyr58, Trp66,

Ser129, Asp75

Phe39, Ala41,
Tyr52, His53,
Phe54, Tyr58,

Trp62, Pro76, Ile77,
Val78, Leu82,

Trp90, Phe101,
Trp102, Ala105,
Ile110, Pro117,
Ile125, Met127,

Val131

Phe54 (π-π)
Trp90 (π-H) -

Betaxolol −7.6193 −8.2918
Ser38, Tyr58 *,
Trp66, Asp75,

Met127

Phe39, Ala41,
Tyr52, His53, Tyr58,
Trp62, Ile77, Val78,

Leu82, Trp90,
Phe101, Trp102,
Ala105, Ile110,
Pro117, Ile125,
Met127, Val131

Phe54 (π-π)
Trp90 (π-H) -

Bisoprolol −9.2750 −9.7616
Ser38 *, Tyr58,
Trp90, Asp75 *,
Leu82, Ser129

Phe39, Ala41,
Tyr52, His53,

Tyr58, Trp62, Ile77,
Val78, Leu82,

Trp90, Phe101,
Trp102, Ile110,
Pro117, Ile125,
Met127, Val131

Phe54 (π-π)
Trp90 (π-H)
Tyr66 (π-H)

Arg42 (Cβ, Cδ)

Metoprolol −8.7438 −9.5953
Ser38, Arg42,

Tyr52, Tyr58 *,
Asp75, Ser129

Phe39, Ala41,
Tyr52, Tyr58, Trp62,
Ile77, Val78, Leu82,

Trp90, Phe101,
Trp102, Ala105,
Ile110, Ile125,

Met127, Val131

Phe54 (π-π)
Trp90 (π-H)

Trp102 (π-H)
Arg42 (Cβ, Cδ)

Acebutolol −8.4568 −9.3164
Ser38 *, Tyr58,

Thr72, Asp75 *,
Met127, Ser129

Phe39, Ala41,
Tyr52, His53,

Tyr58, Trp62, Ile77,
Val78, Leu82,

Trp90, Phe101,
Trp102, Ile110,
Pro117, Ile125,
Met127, Val131

Phe54 (π-π)
Tyr66 (π-H)
Trp90 (π-H)

Arg42 (Cβ, Cδ)

Labetalol −7.7411 −8.7880 Ser38, Tyr58,
Trp62, Trp90

Phe39, Ala41,
Tyr52, His53,
Phe54, Tyr58,

Trp62, Ile77, Val78,
Leu82, Phe101,
Trp102, Ala105,
Ile110, Ile125,

Met127

Tyr52 (π-π)
Phe54 (π-H)
Tyr58 (π-H)
Tyr66 (π-H)

Arg42 (Cβ)

HLC −7.6488 −7.9912
Ser38, Tyr58,
Trp62, Tyr66,

Asp75

Phe39, Ala41,
Tyr52, Tyr58, Trp62,

Ile77, Val78,
Phe101, Trp102,
Ala105, Ile110,
Ile125, Met127

Phe54 (π-π)
Trp90 (π-H) Arg42 (Cβ)

a MOE docking energies; Docking scores utilizing the scoring function assigned for the best-ranking poses
following refinement through the GBVI/WSA_dG forcefield rescoring function being incorporated within the
MOE package; * indicates the ligand’s multiple polar interactions with the designated amino acids.
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2.1.3. Binding Interaction Analysis of Ligand–CviR C. violaceum Complexes

Results of the directed induced-fitting docking protocol at the CviR C. violaceum canon-
ical binding site revealed favorable anchoring of the eight preliminary hits. Common
conformation/orientation positions were illustrated for these investigated adrenoreceptor
blockers showing great superimposition with the comparable pharmacophoric features of
the crystalline ligand, HLC (Figure 4). The ligand’s aromatic hydrophobic scaffolds were
oriented towards the large-sized hydrophobic sub-pocket within comparable orientation to
the HLC’s chlorinated phenyl ring. Such orientation offered minimal steric hinderance for
these large scaffolds at the depicted pocket. The N-alkylated nitrogen heads of the inves-
tigated were directed into the target’s small sub-pocket depicting great superimposition
with the lactone ring of CviR’s co-crystalline ligand, HLC. The docked ligands at the CviR
C. violaceum binding site exhibited a more extended conformation as compared to those
within the TraR A. tumefaciens. On the other hand, ligands were in a curved conformation
with respect to their N-alkylated nitrogen heads where these polar scaffolds depicted deep
anchoring into the target’s small sub-pocket. That is why, the docked compounds showed
inverted L-shaped conformations within the CviR C. violaceum canonical binding site. This
was significantly different from the almost linear conformations adopted by same ligands
at the QscR active site.

Stability of the docked ligands within the CviR C. violaceum active site were assigned to
several pocket’s lining residues (Table 4). The catalytic Asp97 residues illustrated consistent
polar interactions with the quaternary nitrogen atoms of the investigated β-blockers being
at close distance for optimum hydrogen bonding with the negatively charged amino acid.
The ligand–Asp97 polar pairing was suggested significant for ligand’s anchoring at the
CviR’s small sub-pocket. Notably, all docked adrenoreceptor blockers predicted multiple
polar interactions with the Asp97 sidechain. In addition to the polar interaction with the
ligand’s quaternary nitrogen atom, the oxygen atoms of the latter residue’s sidechain served
as significant hydrogen bond acceptors. The latter polar functionalities depicted significant
hydrogen bond pairing with the ligand’s NH-head as well as were able to even interact
with some ligand’s free hydroxyl group at their respective propanolamine linkers. Further
stabilization of the docked adrenoreceptor hits at the CviR C. violaceum canonical binding
site was mediated through extended hydrogen bond networks with wide range of pocket’s
polar residues including Tyr80, Trp84, Tyr88, Met89, Ser155, and/or Met253.

Besides the ligand-binding polar interactions, the docket hits depicted almost con-
served van der Waals/hydrophobic contacts with CviR non-polar residues including; Leu57,
Leu72, Val75, Trp84, Leu85, Tyr88, Met89, Ala94, Ile99, Leu100, Phe115, Phe126, Ala130,
Met135, Ile153, Val250, and/or Met253. Extended π-mediated hydrophobic interactions
were also depicted significant for stabilizing the ligand/CviR complexes. These signifi-
cant non-polar interactions were mediated through π–π interaction with several aromatic
pocket’s residues, particularly Tyr80, and/or Tyr8, being settled at close proximity from
the ligands’ hydrophobic moieties (Supplementary Data, Table S3). Moreover, relevant
close-range CH–π interactions between the docked compounds and the sidechains of Tyr88
or Trp111 were also depicted. Unlike TraR and QscR–ligand complexes, no additional
ligand-directed hydrophobic van der Waals binding were predicted with the sidechain
hydrocarbons of pocket’s polar residues lining the large hydrophobic sub-pocket. Compa-
rable residue-wise binding profile was illustrated for the crystalline and reference potent
CviR inhibitor, HLC, where its amidic lactone scaffold mediated polar interactions Tyr80,
Trp84, and Asp97, in addition to significant π-mediated hydrophobic contacts with Tyr80,
Tyr88, and Trp111 via the ligand’s aromatic scaffold.
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Figure 4. Ligand–protein binding interactions. (A) Three-dimensional cartoon and surface repre-
sentation of CviR C. violaceum bounded to DNA sites (PDB entry: 3QP5), where each protomer is
colored differently in regard to its ligand binding domain (LBD) and DNA binding domain (DBD)
as light/dark green and dark/light orange for protomer-A and -B, respectively. The co-crystalline
ligand, HLC, is presented as magenta spheres at the LBD of protomer A (LBD-A; yellow). Showing at
LBD of protomer B (LBD-B; green) an overlay of investigated compounds (yellow lines) and HLC
(magenta sticks) binding to the protein’s canonical binding site comprising of large hydrophobic and
small sub-pockets; (B) Predicted binding modes of the docked ligands (yellow sticks). Only residues
located within 5Å radius of bound ligands are displayed as lines, colored according to their subsite
location (green for LBD and orange for DBD), and finally labeled with sequence number. Non-polar
hydrogens are removed for clarity. Hydrogen bonding is depicted as red dashed lines.
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Table 4. Parameters of ligand–protein binding interactions at the canonical binding site of CviR C.
violaceum (PDB entry: 3QP5) during the directed flexible receptor docking protocol.

Compound
Docking Energy (Kcal/mol) a

H-Bond
Interactions

Hydrophobic
Interactions π-Interactions

Van Der Waal
with Side Chain

Carbons
Preliminary

(Rigid)
Induced-Fit
(Flexible)

Pindolol −7.2291 −8.0192 Tyr80 *, Asp97 *,
Ser155

Leu57, Leu72, Trp84,
Leu85, Ala94, Ile99,

Leu100, Phe115,
Phe126, Ala130,
Met135, Ile153

Tyr80 (π-π)
Tyr88 (π-π)

Trp111 (π-H)
-

Atenolol −8.2351 −8.9128
Tyr80, Met89,

Asp97 *, Ser155,
Met253

Leu57, Leu72, Val75,
Trp84, Leu85, Tyr88,
Met89, Ala94, Ile99,

Leu100, Phe115,
Phe126, Ala130,
Met135, Ile153,
Val250, Met253

Tyr80 (π-π)
Trp111 (π-H) -

Esmolol −7.4849 −8.2830 Tyr80, Asp97 *,
Ser155

Leu57, Leu72, Val75,
Tyr80, Trp84, Leu85,
Met89, Ala94, Ile99,

Leu100, Phe115,
Phe126, Ala130,
Met135, Ile153,
Val250, Met253

Tyr88 (π-π)
Trp111 (π-H) -

Betaxolol −7.3777 −8.1034 Tyr80, Asp97 *

Leu57, Leu72, Val75,
Tyr80, Trp84, Leu85,
Met89, Ala94, Ile99,

Leu100, Phe115,
Phe126, Ala130,
Met135, Ile153,
Val250, Met253

Tyr88 (π-π)
Trp111 (π-H) -

Bisoprolol −7.8018 −8.8064 Tyr80, Asp97 *,
Ser155

Leu57, Leu72, Val75,
Tyr80, Trp84, Leu85,
Met89, Ala94, Ile99,

Leu100, Phe115,
Phe126, Ala130,
Met135, Ile153,
Val250, Met253

Tyr88 (π-π)
Trp111 (π-H) -

Metoprolol −7.7426 −8.7912 Tyr80, Asp97 *,
Ser155

Leu57, Leu72, Val75,
Tyr80, Trp84, Leu85,
Met89, Ala94, Ile99,

Leu100, Phe115,
Phe126, Ala130,
Met135, Ile153,
Val250, Met253

Tyr88 (π-π)
Trp111 (π-H) -

Acebutolol −8.4732 −9.0849 Tyr80, Trp84,
Tyr88, Asp97 *

Leu57, Ala59, Leu72,
Val75, Trp84, Leu85,
Met89, Ala94, Ile99,

Leu100, Phe115,
Phe126, Ala130,
Met135, Ile153,
Val250, Met253

Tyr80 (π-π)
Tyr88 (π-π)

Trp111 (π-H)
-

Labetalol −7.8677 −8.8048 Tyr80, Trp84,
Asp97 *, Met135

Leu57, Ala59, Leu72,
Val75, Tyr80, Trp84,

Leu85, Met89, Ala94,
Pro98, Ile99, Leu100,

Phe115, Phe126,
Ala130, Met135,

Ile153, Val250, Met253

Tyr88 (π-H)
Trp111 (π-π) -

HLC −7.2051 −8.08374 Tyr80, Trp84 *,
Asp97

Leu57, Leu72, Val75,
Trp84, Leu85, Met89,
Ala94, Ile99, Leu100,

Phe115, Phe126,
Ala130, Met135,

Ile153, Val250, Met253

Tyr80 (π-H)
Tyr88 (π-π)

Trp111 (π-H)
-

a MOE docking energies; Docking scores utilizing the scoring function assigned for the best-ranking poses
following refinement through the GBVI/WSA_dG forcefield rescoring function being incorporated within the
MOE package; * indicates the ligand’s multiple polar interactions with the designated amino acids.

2.2. Molecular Dynamics Simulation

For gaining insights regarding the ligand/protein thermodynamic behavior while
accounting for solvent effect (solvation energies/Gibbs free energy changes) on the ligand–
protein interaction., the molecular dynamics simulation is an effective computational
tool [30]. This approach was adopted within the presented study to validate the potential
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affinity of the investigated adrenoreceptor inhibitor hits against the QS biological targets
within a near physiological conditions [31].

2.2.1. Analysis of Ligand–TraR A. tumefaciens Complexes

The root-mean-square deviation (RMSD) trajectory analysis was adopted for investi-
gating the thermodynamic nature of the ligand–protein complex as well as the individual
protein and ligand identities. Generally, RMSD estimates the molecular deviation of a
particular ligand relative to a designated original/reference structure. Such an analytical
tool would provide a good indication for the ligand–target stability and the adopted MD
simulation protocol was valid. Target’s instability and significant conformational alter-
ations are associated with high RMSD trajectories [32]. On the other hand, high RMSDs
would correlate to a limited ligand–target affinity where the ligand is unable to be con-
fined within the target’s canonical binding site along the simulation periods [33]. Herein,
the estimated RMSD deviations for the TraR A. tumefaciens proteins, in reference to their
respective alpha-carbon (Cα-RMSD), depicted an overall typical behavior for molecular
dynamics (MD) simulations (Figure 5A). Over the initial frames, the protein’s Cα-RMSD
tones increase as a result of constraining release at the beginning of MD simulation runs.
Following the first 20 ns, steady protein’s Cα-RMSD trajectories were obtained for more
than half of the simulation runs (>50 ns) except for minimal fluctuation for the compound
2-bound protein around 60 and 90 ns timeframes. Notably, almost all investigated proteins
leveled-off at comparable Cα-RMSD trajectories across the trajectory plateau and till the end
of MD simulation courses. Comparable Cα-RMSD tones were obtained for the HLC as well
as compounds 10, 11, and 14-bound TraR proteins following their respective equilibration
with average values of 3.31 ± 0.36 Å, 3.48 ± 0.38 Å, 3.46 ± 0.35 Å, and 3.44 ± 0.28 Å,
respectively. However, slightly higher values were assigned for compound 2-bound pro-
tein (3.87 ± 0.48 Å) being correlated to its depicted limited fluctuations as well as quite
late equilibration following the 30 ns of the MD simulation timeframes. The compound
14-bound TraR protein managed to exhibit the steadiest Cα-RMSD tones with the lowest
standard deviation value after the equilibration being attained.

To investigate the ligand’s confinement within the TraR A. tumefaciens binding site, the
sole ligand’s Cα-RMSDs relative to the reference protein backbone frame were monitored
along the whole MD timeframe. Despite limited fluctuations, all examined compounds
and reference ligand managed to illustrate backbone Cα-RMSD plateau reflecting their
significant confinement within the target pocket (Figure 5B). Steady tones were depicted
for all ligands with averages ranging from 3.02 ± 0.42 Å to 3.85 ± 0.43 Å. However, only
compound 2 showed relevant fluctuations around the 80 ns MD simulation time, yet it
managed to converge at comparable Cα-RMSD like the other investigated ligands at the
end of the MD run (100 ns).

Conformational analysis of the ligand–protein models across the MD simulation
timeframe was performed through examining the ligand–protein models at trajectories of
the start and final timeframes. Frames at 0 ns and 100 ns for each ligand–protein model
were extracted and minimized to a 0.001 kcal/mol·A2 gradient using the MOE system
preparation package. Notably, stable binding profiles were assigned for all simulated β-
blockers as well as the reference ligand (Supplementary Data, Figure S2). Ligands showed
favored orientation/conformation at both sub-pockets of the TraR binding site, while as
limited ligand orientation alterations were depicted at the end of the MD simulation runs.
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Figure 5. Stability analysis of generated Cα-RMSD trajectories for investigated compounds and
reference inhibitor in complex with TraR A. tumefaciens protein along 100 ns all-atom MD simulation.
(A) protein Cα-RMSD; (B) sole ligand Cα-RMSD trajectories (Å), both in reference to the protein
alpha-carbon atoms of the initial frame, across MD simulation time (ns).

Further investigation of the local protein flexibility and how this could be contributed
to the ligand–protein binding, the RMS-fluctuations (RMSF) stability analysis was per-
formed. Generally, the RMSF provides a valuable evaluation of the target’s residues
dynamic behavior represented as both fluctuation and flexibility, through estimating the
average deviation of each protein’s amino acid in relation to its respective reference po-
sition across time [34]. Thus, monitoring the fluctuation of QS’s residues by estimating
the RMSF stability validation parameter for each protein residue would highlight the
residue-wise contribution within the target protein stability. The fluctuation of TraR’s
residues was monitored by estimating the difference root-mean-square fluctuation (∆RMSF
= apo RMSF—holo RMSF) as a stability validation parameter. Investigating the RMSF
trajectories essentially execute for a trajectory region considered stable. Since the TraR
protein targets were of significant conformational stability along the 100 ns MD simulations
for all systems, despite some limited fluctuations, the Cα-RMSF calculations were done
across the whole MD simulation trajectories. Applying the cut-off mobility threshold at
∆RMSF of 0.30 Å, lower fluctuation patterns were depicted for the TraR residues of each
ligand–protein complex at the carboxy end in relation to those located near the N-terminus
(average 0.82 ± 0.23 Å versus −0.62 ± 0.68 Å) (Figure 6). Beside the C-terminal, the residue
ranges along 70–80 and 100–120 showed the highest immobility profiles with ∆RMSF up
to 1.32 and 2.00 Å, respectively. On the contrary, residues around 40–65, 55–70, 125–150,
and 160–180 ranges were of the most flexible pattern (∆RMSF down to the highest negative
values~−3.50 Å). Trends of more positive/less negative ∆RMSF values were assigned for
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compounds 8, 10, 11, and 14-bound protein residues relative to those of the other β-blockers
or even the reference ligand inhibitor. This was recognized across several ranges of protein
residues being most noticeable for the flexible 1–40 and 50–85 residue ranges near the
N-terminus. Comparative analysis of the furnished ∆RMSF trajectories was proceeded
regarding the specific flexibility of the pocket’s key lining residues. Interestingly, several
canonical pocket residues, as well as vicinal residues, showed significant ∆RMSF values
above the cut-off mobility threshold 0.30 Å (Supplementary Data, Table S4). Compound 10
showed the widest range of pocket’s residue for immobility as compared to other ligands.
On the other hand, compounds 8 and 14 were with pocket residue-associated inflexibility
profile being comparable to that of the reference inhibitor, HLC. Pocket’s residues including;
Thr51, Tyr53, Val72, Phe101, Tyr102, Ala105, Ile110, Thr115, as well as the catalytic Asp70
showed the most recognized inflexibility profiles (∆RMSF up to 1.69 Å) being consistent
across several simulated ligand–TraR models.
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Figure 6. Analysis of ∆RMSF trajectories versus residue number for TraR A. tumefaciens protein, in
complex with the investigated β-blockers and reference ligand, throughout the whole 100 ns MD
simulation window. The ∆RMSF values, in reference to protein backbone atoms, were estimated
considering independent MD simulation of TraR apo/unliganded state against the holo ones where
the latter were complexed with the investigated ligands or crystalline reference inhibitor, HLC. The
∆RMSF trajectories are represented as a function of residue number of the whole bounded protomer.

The Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) calculation
of the binding free energy was performed to further understand the nature of the ligand–
protein interaction, explore the comparative ligand binding site affinity, and obtain more
information concerning the individual ligand/residue contributions [35]. The MM/PBSA
is considered of comparable accuracy to the Free Energy Perturbation approaches, yet
with much smaller computational expenses [36]. The SASA-only model of the binding
free energy calculation (∆GTotal = ∆GMolecular Mechanics + ∆GPolar + ∆GApolar), as well as
the single trajectory approach, were adopted and the higher negative binding energy
explains more ligand affinity towards its respective target pocket. The MM/PBSA approach
estimates binding free energy as a contribution of several energy terms through these given
Equations [36]:

∆Gbinding = Gcomplex − (Gligand + Gprotein)

Gx = (EMolecular Mechanics) − TS + Gsolvation

EMolecular Mechanics = Ebonded + (EvdW + Eelectrostatic)

Gsolvation = Gpolar + GApolar

GApolar = γSASA + b
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where, ∆Gbinding is the binding free energy correlating to ligand–protein binding where the
higher negative energy values infer greater protein–ligand affinity where the Gcomplex is
of higher Gibbs free energy than the individual entity (ligand/protein). The Gibbs energy
terms of each entity (Gx) are respective total free energies of ligand−protein complex,
isolated protein, and isolated ligand in solvent, where x is the protein or ligand or protein–
ligand complex. Vacuum molecular mechanics potential energy (EMolecular Mechanics) to-
gether with entropic contribution to free energy (TS) and free energy of solvation (Gsolvation)
provided the total free energy of the protein, ligand, or ligand−protein complex (Gx). The
Ebonded is the bonded interactions comprising the angle, bond, improper interactions, and
torsions. The non-bonded interactions (Enon-bonded) include both van der Waals (Evdw)
and electrostatic (Eelec) interactions being modeled via Lennard-Jones’s and Coulomb’s
potentials, respectively. Terms T and S denote temperature and entropy, respectively, while
GMolecular Mechanics was calculated based on the molecular mechanics force-field parameters.
The Gsolvation energy form comprises polar (electrostatic) and non-polar (non-electrostatic)
parts contributing to the solvation free energy, where the latter was estimated using the
most widely used non-polar model (SASA-only non-polar model). Within this model, the
SASA and b terms represent solvent accessible surface area and fitting constant, respectively.
Finally, Gpolar was solved from the Poisson–Boltzmann equation.

To our delight, all of the investigated β-blockers depicted significant free binding
and affinity towards the target’s pocket (Table 5). The latter binding free energy pattern
came in great concordance with the preliminary docking investigation showing preferential
higher docking scores for the hit β-blockers in relation to the positive control inhibitor, HLC.
Interestingly, the highest comparable total binding free energies (∆GTotal binding at significant
negative values) were furnished for the simulated compounds 1, 11, and 14 (−84.32 ± 0.66,
−89.71 ± 3.56, and −89.05 ± 4.71 kJ/mol, respectively). Compounds 2 and 10 showed
moderate free-binding energies, while as both compound 8 and reference ligand depicted
nearly comparable ligand–target binding affinities. Dissecting the obtained binding free
energy into its contributing energy terms showed a dominant energy contribution for the
van der Waal interactions (∆Gvan der Waals) within the binding free energy calculation with
the highest values being assigned for compounds 10, 11, and 14. On the other hand, the
electrostatic energy contributions (∆GElectrostatic) were significantly higher in compounds
2, 10, and 11. Finally, lower polar solvation energies (∆GSolvation; Polar) were illustrtaed for
compound 1 and 14, as well as the reference control inhibitor, whereas the apolar solvation
energy (∆GSolvation; SASA) was almost comparable for all ligands.

Table 5. Total binding free energies and individual energy term (∆GTotal binding) concerning the
promising β-blockers and reference ligand at TraR A. tumefaciens protein binding site.

Energy
(kJ/mol ± SD)

Ligand–Protein Complex

HLC Comp.1 Comp.2 Comp.8 Comp.10 Comp.11 Comp.14

∆Gvan der Waals −122.79 ± 14.13 −140.41 ± 3.50 −145.10 ± 10.69 −141.05 ± 25.17 −154.95 ± 28.56 −178.84 ± 11.78 −157.27 ± 15.93
∆GElectrostatic −46.75 ± 2.55 −39.64 ± 2.46 −47.33 ± 2.69 −42.92 ± 3.70 −52.74 ± 8.07 −47.20 ± 3.46 −36.65 ± 9.51

∆GSolvation; Polar 120.42 ± 1.28 112.99 ± 5.10 135.90 ± 12.55 132.66 ± 16.36 155.59 ± 9.55 156.12 ± 5.68 122.03 ± 20.69
∆GSolvation; non-polar; SASA −18.75 ± 0.04 −17.26 ± 0.19 −16.34 ± 0.39 −18.21 ± 0.37 −18.21 ± 0.04 −19.79 ± 0.93 −17.17 ± 0.05

∆GTotal binding −67.87 ± 10.34 −84.32 ± 0.66 −72.87 ± 4.16 −69.52 ± 12.88 −70.31 ± 27.13 −89.71 ± 3.56 −89.05 ± 4.71

For gaining more insights regarding ligand–residue interactions, the binding free
energy decomposition within the g_mmpbsa module was utilized to identify the key residues
involved within the obtained binding free energies [36]. Significant residues that exhibited
favored contribution (high negative values) within the ligand–protein binding energy were
those comprising the TraR binding site as well as their vicinal residues (Figure 7). Residues
including Tyr53, Tyr61, Asp70, Val72, exhibited the most favored free energy contributions
(>−5.00 kJ/mol) across the simulated ligand–TraR models. On the other hand, Trp57 pocket
residue showed positive energy contribution with all ligands inferring a repulsion effect
and an unfavored role in ligand–pocket binding. It worth noting that this latter pocket
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residue (Trp75) depicted significant flexibility and instability (down to −0.64 Å) at the
above described ∆RMSF analysis.
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Figure 7. Binding free energy/residue decomposition illustrating the protein residue contribution at
ligand–TraR A. tumefaciens complex ∆GTotal binding calculation. The binding energy contributions are
represented as a function of residue number of the whole bounded protomer.

2.2.2. Analysis of Ligand–QscR P. aeruginosa Complexes

The typical MD thermodynamic behavior of the simulated QscR proteins was illus-
trated through monitoring the protein’s Cα-RMSD trajectories. The QscR protein managed
to attain early equilibration/convergence state for more than half the MD simulation run
(Figure 8A). Only compound 17-bound QscR protein showed limited fluctuations around
60 ns and at the far end of the MD simulation timeframe. Nevertheless, the latter fluctua-
tions were not exceeding an Cα-RMSD values of 0.5 Å above those of the other proteins.
Comparable findings were illustrated with compound 14-bound protein yet much limited
RMSD tone fluctuations were depicted. Average protein’s Cα-RMSD values were the lowest
for compound 10 and 14-bound proteins (2.76 ± 0.23 Å and 2.88 ± 0.37 Å, respectively),
while as being the highest for HLC and compound 21-bound QscR proteins (3.17 ± 0.30 Å
and 3.31 ± 0.36 Å, respectively).
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Figure 8. Stability analysis of generated Cα-RMSD trajectories for investigated compounds and
reference inhibitor in complex with QscR P. aeruginosa protein along 100 ns all-atom MD simulation.
(A) protein Cα-RMSD; (B) sole ligand Cα-RMSD trajectories (Å), both in reference to the protein
alpha-carbon atoms of the initial frame, across MD simulation time (ns).

Regarding the ligand’s Cα-RMSD and its confinement within the target pocket, an
overall steady trajectory pattern was observed for all ligands (Figure 8B). Managing to
achieve a Cα-RMSD plateau with average RMSD trajectories ranging from 1.52 ± 0.25 Å to
2.82 ± 0.29 Å, with only just highest RMSD values being assigned for compound 14. The
latter high ligand’s Cα-RMSD tones were never exceeding 1.5 Å of any of the simulated
ligands across the whole MD simulation time frame. Notably, the comparative RMSD
values for the same ligands across different QSs showed relatively lower values at the
QscR P. aeruginosa pocket in relation to the TraR A. tumefaciens binding site. Ligand’s
orientation stability within the QscR active site was illustrated through the conformational
analysis of the ligand–protein models across the MD simulation timeframes 0 ns and
100 ns (Supplementary Data, Figure S3). Limited orientation/conformation changes were
illustrated across the MD simulation run being even at more profound stability profiles as
compared to those for the same ligands at the TraR binding site.

Comparable residue-wise flexibility modes were depicted for the MD simulated QscR
protein targets in regard to TraR ones. Throughout the ∆RMSF analysis and along the
100 ns MD run, higher immobility profiles were assigned for the residue’s region being
vicinal to the carboxy end rather than those at the N-terminus (average 0.82 ± 0.23 Å
versus −0.62 ± 0.68 Å) (Figure 9). Corresponding residue ranges at the core region of the
simulated QscR proteins showed comparable flexibility/inflexibility profiles as those at
TraR proteins. That is why residue ranges along 75–90 and 110–130 showed the significantly
high immobility profiles with ∆RMSF up to 1.50 Å. On similar comparable bases to TraR
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proteins, residues across the 40–60, 65–70, 130–140, and 160–180 ranges were of the most
flexible patterns (∆RMSF down to the highest negative values~−2.50 Å). Unlike the TraR
targets, the simulated QscR proteins depicted an extra stabilized residue region (185–195)
near the carboxy terminus showing the highest immobility profile (∆RMSF = 2.50 Å). Trends
of less negative ∆RMSF values were assigned for the amino acids at proteins in complex
with compounds 11, 12, 14, and 17 relative to those of the other β-blockers or even the
reference ligand inhibitor. This was recognized across several ranges of protein residues
being most noticeable for the flexible regions across 1–70 residue range at the ligand-binding
domain. Specific flexibility of the pocket’s key lining residues in relation to bounded ligand
showed interesting findings (Supplementary Data, Table S5). Compounds 11, 12, and 17
showed the widest residue range of immobility, whereas the rest of investigated ligands
depicted nearly comparable pocket residue-associated inflexibility profile in relation to HLC.
Pocket’s residues including; Arg42, Ile77, Val78, Leu82, Trp90, Ile125, Met127, and Ser129
showed the most recognized inflexibility profiles (∆RMSF up to 1.02 Å). The latter three
amino acids (Ile125, Met127, and Ser129) showed consistent stability across all simulated
ligand–TraR models. Important pocket–ligand binding residues such as Ser38 and the
catalytic Asp75 amino acids were depicted significantly immobile at proteins in complex
with compounds 10–13 and/or HLC.
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Figure 9. Analysis of ∆RMSF trajectories versus residue number for QscR P. aeruginosa protein in the
complex with the investigated β-blockers and reference ligand, throughout the whole 100 ns MD
simulation window. The ∆RMSF values, in reference to protein backbone atoms, were estimated
considering independent MD simulation of QscR apo/unliganded state against the holo ones where
the latter were complexed with the investigated ligands or crystalline reference inhibitor, HLC. The
∆RMSF trajectories are represented as a function of residue number of the whole bounded protomer.

The MM/PBSA calculation of the ligand–QscR complexes’ binding free energy showed
higher negative values and better binding affinity for the simulated β-blockers as compared
to reference inhibitor, HLC (Table 6). Among the investigated β-blocker agents, compounds
10, 11, and 14 showed the highest comparable total binding free energies (−117.63 ± 6.12,
−118.47 ± 13.07, and −114.40 ± 13.87 kJ/mol, respectively). Compounds 12, 13, and 21
showed moderate binding free energies (−93.00 ± 9.32 to −109.04 ± 2.77 kJ/mol), where
as the acyl substituted β-blocker (compound 17) was of the lowest ligand–target binding
affinities among all investigated drug class members. It worth noting that similar ligands
depicted higher binding free energies at QscR as compared to TraR complexes. Dissecting
the obtained ligand–QscR binding free energy into its contributing energy terms showed
a dominant energy contribution of the van der Waal interactions. Compounds 11, 12, 14,
and 21 showed the highest hydrophobic energy contribution terms. On the other hand,
the electrostatic energy contributions were significantly higher in compounds 10 and 11.
Finally, lower polar solvation energies (∆GSolvation; Polar) were assigned for compound 13, as
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well as the reference control inhibitor, whereas the ∆GSolvation; SASA was almost comparable
for all lignads. Similar to TraR findings, the residues that showed favored contribution (high
negative values) within the ligand–protein binding energy were those comprising the active
binding site as well as their vicinal residues (Figure 10). Pocket’s residues including Phe54,
Asp73, Ile77, Val78, and Met127, exhibited the most favored free energy contributions
(>−5.00 kJ/mol) across the simulated ligands. Moderate energy contributions (around
−3.00 kJ/mol) were assigned for Ser38, Tyr66, Trp90, and Phe101 amino acids. On the
contrary, Tyr58, and Lys63 pocket residue showed positive energy contribution with few
simulated ligands (HLC, compounds 10, 11, 12, 13, 14, and/or 21) inferring repulsion effect
and unfavored role in their respective ligand–pocket binding.
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Figure 10. Binding free energy/residue decomposition illustrating the protein residue contribution
at ligand–QscR P. aeruginosa complex ∆GTotal binding calculation. The binding energy contributions
are represented as a function of residue number of the whole bounded protomer.

2.2.3. Analysis of Ligand–CviR C. violaceum Complexes

Monitoring the protein’s Cα-RMSD tones illustrated typical MD behavior and efficient
convergence for the simulated CviR proteins. These proteins managed to attain valid
equilibration/convergence state beyond the initial 30 ns and for more than half the MD
simulation run (Figure 11A). Limited initial fluctuations were depicted for compounds 2,
11, and 13, before they rapidly attain their equilibration plateau. These latter fluctuations
were not exceeding an Cα-RMSD values of 0.5 Å above those of other proteins where
they all converge within close tones (~3.50 Å) at the end of the MD simulation timeframe.
Average protein’s Cα-RMSD were of the lowest values for compounds 10 and 17-bound
proteins (2.72 ± 0.20 Å and 3.07 ± 0.26 Å, respectively), while their was the highest for
compound 2-bound CviR protein (3.66 ± 0.38 Å). Beyond the initial 30 ns MD run, the
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steadiest protein’s Cα-RMSD tones were assigned for the proteins bounded to compounds
10, 14, and 17 as well as reference inhibitor, HLC.
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Figure 11. Stability analysis of generated Cα-RMSD trajectories for investigated compounds and
reference inhibitor in complex with CviR C. violaceum protein along 100 ns all-atom MD simulation.
(A) protein Cα-RMSD; (B) sole ligand Cα-RMSD trajectories (Å), both in reference to the protein
alpha-carbon atoms of the initial frame, across MD simulation time (ns).

Moving towards the ligand’s Cα-RMSD and its confinement within the target pocket,
an overall steady trajectory pattern was observed for all ligands (Figure 11B). Managing
to achieve Cα-RMSD plateau, the average RMSDs trajectories ranged from 1.87 ± 0.28 Å
to 2.09 ± 0.36 Å, being only at the highest RMSD values for compound 14. The latter
high ligand’s Cα-RMSD tones were never exceeding 1.5 Å of any of the simulated ligands
across the whole MD simulation timeframes. Interestingly, the comparative RMSD values
for the same ligands across different QSs showed relatively lower values at the CviR
C. violaceum pocket in relation to the TraR A. tumefaciens binding site yet being almost
comparable to QscR P. aeruginosa. Ligand’s orientation stability within the CviR active site
was illustrated through the conformational analysis of the ligand–protein models across
the MD simulation timeframe at frames 0 ns and 100 ns (Supplementary Data, Figure S4).
Limited orientation/conformation changes were illustrated across the MD simulation run
being at more profound stability profiles as compared to those at the TraR binding site,
while as of slightly lower stability profiles as compared to those at QscR.

The ∆RMSF analysis along the 100 ns MD run showed interesting findings. Like the
above two QS proteins, significant immobility profiles were assigned for the C-terminus
residues as compared to those at the amine end of the proteins (average 0.88 ± 0.87 versus
−0.69 ± 0.63 Å) (Figure 12). However, the stability pattern at carboxy terminus is less
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profound as compared to both TraR A. tumefaciens and QscR P. aeruginosa. Residue ranges
along 65–80 and 95–115 showed a high inflexibility pattern with ∆RMSF up to 1.50 Å
which is somewhat comparable to the simulated TraR and QscR core protein regions.
Moreover, residues around 80–90, 135–140, 150–165, 180–195, and 210–225 ranges were of
the most flexible pattern (∆RMSF down to the highest negative values~−5.00 Å). Unlike
the previously described QS proteins, the simulated CviR proteins depicted an extra
stabilized residue region (45–55) near the N-terminus showing a significant immobility
profile (∆RMSF~1.20 Å). Compounds 2, 11, 13, and 17 depicted high negative ∆RMSF
values across the flexible regions; 180–195 and 210–225 residue range. Nevertheless, almost
all compounds showed comparable ∆RMSF-determined immobility trends across the
several regions at the ligand-binding domain. Specific flexibility of the pocket’s key lining
residues in relation to bounded ligand was illustrated in Supplementary Data, Table S6.
Notably, compounds 10, 14, and 17 showed the widest residue range of inflexibility as
compared to other ligands, whereas the rest of the investigated ligands depicted nearly
a comparable pocket residue-associated inflexibility profile in relation to HLC. Pocket’s
residues including; Leu57, Tyr80, Trp84, Tyr88, Asp79, Trp111, Ile153, Ser155, and Val250
showed the most recognized immobility profiles (∆RMSF up to 2.37 Å). Four amino acids
(Leu57, Tyr80, Trp111, and Ile153) showed consistent stability across all simulated ligand–
CviR models. Key pocket–ligand-binding residues including Leu85, Met89, Phe115, and the
catalytic Asp97 amino acids were depicted significantly immobile at proteins in complex
with compounds 10, 13, 14, 17, 21, and/or HLC.
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Figure 12. Analysis of ∆RMSF trajectories versus residue number for CviR C. violaceum protein in
complex with the investigated β-blockers and reference ligand, throughout the whole 100 ns MD
simulation window. The ∆RMSF values, in reference to protein backbone atoms, were estimated
considering independent M D simulation of CviR apo/unliganded state against the holo ones where
the latter were complexed with the investigated ligands or crystalline reference inhibitor, HLC. The
∆RMSF trajectories are represented as a function of residue number of the whole bounded protomer.

The MM/PBSA calculation of the ligand–CviR complexes’ binding free energy showed
higher negative values and better binding affinity for the simulated β-blockers as compared
to reference inhibitor, HLC (Table 7). Among the investigated β-blocker agents, compounds
10, 11, and 17 showed the highest comparable total binding free energies (−111.07 ± 6.04,
−104.64 ± 4.79, and −101.46 ± 4.40 kJ/mol, respectively). Compounds 13 and 14 showed
moderate binding free energies (−85.66 ± 4.18 and −98.51 ± 13.26 kJ/mol, respectively),
whereas compounds 2, 12, and 21, were of comparable ligand–target binding affinities. It
worth noting that similar ligands depicted moderate binding free energies at CviR being
in between the top affinities at QscR and the lower ones at TraR complexes. Dissecting
the obtained ligand–CviR binding free energy into its contributing energy terms showed
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a dominant energy contribution of the van der Waal interactions within the binding free
energy calculation of both the investigated and reference ligands. The highest van def
Waal values were for compounds 11, 14, and 17. On the other hand, the electrostatic
energy contributions were significantly higher in compounds 10 and 11. Finally, lower
polar solvation energies (∆GSolvation; Polar) were assigned for compound 12, as well as
the reference control inhibitor, whereas the ∆GSolvation; SASA was almost comparable for
all ligands. In similar fashion to both previously described QS complexes, residues of
the active binding site showed favored contribution (high negative values) within the
ligand–protein binding energies (Figure 13). Depicting high binding energy contribution
(>−5.00 kJ/mol), pocket’s residues including Leu57, Tyr88, Asp97, Ile99, and Leu100,
were considered significant for ligand–protein complex stability. The highest residue-wise
energy contribution was assigned for Tyr88 pocket residue being up to −12.33 kJ/mol
and −13.13 for compound 11 and 14, respectively. Moderate energy contributions (around
−3.00 kJ/mol) were assigned for Leu72, Val75, Leu85, Met89, Phe126, Ile153, and Ser155
amino acids. Nevertheless, both Arg71 and Tyr80 pockets residue showed positive energy
contribution with HLC and compound 12 (for Tyr80) as well as almost all simulated ligands
(for Arg71). The latter infers a repulsion effect and an unfavored impact on the stability of
respective ligand–target complexes.
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Figure 13. Binding free energy/residue decomposition illustrating the protein residue contribution
at ligand–CviR C. violaceum complex ∆GTotal binding calculation. The binding energy contributions are
represented as a function of residue number of the whole bounded protomer.
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Table 6. Total binding free energies and individual energy term (∆GTotal binding) concerning the promising β-blockers and reference ligand at QscR P. aeruginosa
protein binding site.

Energy
(kJ/mol ± SD)

Ligand–Protein Complex

HLC Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.17 Comp.21

∆Gvan der Waals −156.93 ± 22.35 −186.11 ± 6.21 −215.32 ± 5.77 −202.48 ± 6.06 −188.95 ± 0.89 −219.53 ± 1.04 −194.57 ± 5.13 −218.16 ± 8.55
∆GElectrostatic −67.65 ± 16.73 −109.52 ± 7.45 −71.01 ± 9.23 −56.97 ± 1.48 −48.43 ± 0.51 −58.31 ± 6.72 −54.54 ± 0.91 −46.50 ± 6.78

∆GSolvation; Polar 162.60 ± 5.19 195.45 ± 7.07 188.52 ± 1.51 170.69 ± 7.56 160.40 ± 6.81 185.98 ± 8.38 185.73 ± 8.25 192.86 ± 7.42
∆GSolvation; non-polar; SASA −17.52 ± 0.71 −17.45 ± 0.29 −20.66 ± 0.42 −20.28 ± 0.20 −19.34 ± 0.11 −22.53 ± 0.18 −18.87 ± 0.64 −21.20 ± 0.13

∆GTotal binding −79.50 ± 1.14 −117.63 ± 6.12 −118.47 ± 13.07 −109.04 ± 2.77 −96.33 ± 7.31 −114.40 ± 13.87 −82.25 ± 1.57 −93.00 ± 9.32

Table 7. Total binding free energies and individual energy term (∆GTotal binding) concerning the promising β-blockers and reference ligand at CviR C. violaceum
protein binding site.

Energy
(kJ/mol ± SD)

Ligand–Protein Complex

HLC Comp.2 Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.17 Comp.21

∆Gvan der Waals −120.62 ± 8.69 −173.26 ± 2.38 −170.77 ± 4.23 −181.41 ± 4.10 −147.37 ± 23.03 −171.40 ± 29.61 −182.07 ± 9.12 −184.75 ± 15.74 −168.13 ± 6.62
∆GElectrostatic −52.81 ± 15.96 −31.78 ± 8.88 −99.14 ± 7.53 −60.14 ± 4.73 −31.87 ± 9.69 −35.48 ± 12.10 −39.67 ± 1.36 −39.57 ± 22.05 −39.02 ± 16.73

∆GSolvation; Polar 120.50 ± 15.88 149.10 ± 1.64 176.95 ± 9.60 157.83 ± 4.39 126.96 ± 13.52 142.19 ± 47.71 144.95 ± 2.54 144.14 ± 34.16 150.94 ± 2.65
∆GSolvation; non-polar; SASA −18.00 ± 0.27 −17.06 ± 0.21 −18.11 ± 0.27 −20.92 ± 1.04 −18.83 ± 0.70 −20.96 ± 1.82 −21.72 ± 0.24 −21.28 ± 0.77 −20.30 ± 0.63

∆GTotal binding −70.93 ± 9.05 −73.00 ± 9.41 −111.07 ± 6.04 −104.64 ± 4.79 −71.10 ± 19.89 −85.66 ± 4.18 −98.51 ± 13.26 −101.46 ± 4.40 −76.51 ± 21.33



Pharmaceuticals 2022, 15, 110 26 of 47

2.3. Determination of Selected B-Blockers’ Minimum Inhibitory Concentrations (MICs) against
P. aeruginosa, C. violaceum and S. typhimurium

In order to attest the anti-virulence and anti-QS activities of promising β-blockers,
the virtually identified hits with relevant docking energies, significant thermodynamic
stability, and QS-directed binding affinity across MD simulation, were selected to be further
investigated. Atenolol (10), esmolol (11), and metoprolol (14) were selected to test their
anti-virulence activities against P. aeruginosa, C. violaceum, and S. typhimurium. Atenolol,
esmolol, and metoprolol inhibited the growth of P. aeruginosa at concentrations (4, 4 and
2 mg/mL, respectively), C. violaceum (2, 2 and 1 mg/mL, respectively), and S. typhimurium
at 2 mg/mL.

The potential inhibition of virulence and QS by tested β-blockers may be owed due to
their effects on bacterial growth. To exclude such possibility, bacterial overnight cultures in
(Luria-Bertani) LB broth with and without tested drugs at their sub-MIC (1/4 MIC) were
prepared and the turbidities of the bacterial suspensions were measured at 600 nm. There
were no significant differences between the turbidities of bacterial growth in presence or
absence of tested drugs at sub-MIC (Figure 14). All the subsequent assays were performed
using tested β-blockers at sub-MIC (1/4 MIC). The experiment was performed in triplicate
and the data were presented as means ± standard errors. Two-way ANOVA test followed
by the Bonferroni post-test was employed to calculate the significance, p values < 0.05 were
considered statistically significant.
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Figure 14. Effect of β-blockers on bacterial growth. The optical density of bacterial growth was
measured at OD600 after overnight incubation in the absence and presence of 1/4 MIC of tested
drugs. The test was done in triplicates. Two-way ANOVA test followed by Bonferroni post-test was
used, p value < 0.05 was considered statistically significant. There were no statistically significant
effects on bacterial growth.

2.4. Inhibition of Violacein Production

The biosensor C. violaceum CV026 is usually employed to assess the QS due to its ability
to release the pigment violacein in response to acyl-homoserine lactones under the CVi/R
QS system control [37]. To attest the ability of tested β-blockers to inhibit the QS systems,
the production of QS-controlled violacein dye was quantified in the presence and absence
of tested drugs at sub-MIC. The experiment was performed in triplicates and one-way
ANOVA test followed by the Tukey’s post-test was used to calculate the significance. The
results were presented as percentage change from untreated bacterial control as means ±
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standard errors. The three tested drugs significantly reduced the production of violacein at
their sub-MIC (p < 0.0001) (Figure 15).
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Figure 15. Effect of β-blockers on violacein pigment production. The absorbances of extracted vio-
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Figure 15. Effect of β-blockers on violacein pigment production. The absorbances of extracted
violacein from the cells incubated in the presence of tested drugs (1/4 MIC) were measured and
calculated as percentage change from untreated control. The test was done in triplicates and one-way
ANOVA test followed by Tukey’s post-test was applied to determine the significance; significance was
considered when p < 0.05. The three tested drugs significantly reduced the production of violacein
(*** = p < 0.0001).

2.5. Anti-Biofilm Activities of β-Blockers in P. aeruginosa and S. typhimurium

To investigate the anti-biofilm effects of tested drugs, the absorbances of the extracted
crystal violet that stained the adhered biofilm forming cells in the presence or absence
of tested drugs at their sub-MICs were measured. The assay was repeated in triplicates
and a two-way ANOVA test followed by the Bonferroni post-test was used to attest the
significance. The data were presented as percentage change from untreated bacterial control
as means ± standard errors. The three tested drugs at sub-MIC significantly reduced the
formation of biofilm by P. aeruginosa and S. typhimurium (p < 0.001) (Figure 16).

2.6. Effect of β-Blockers on the Expression of Virulence and QS-Encoding Genes in P. aeruginosa
and S. typhimurium

To investigate the effect of tested β-blockers on the expression levels of QS-encoding
genes of P. aeruginosa and bacterial adrenergic sensor kinases encoding genes in
S. typhimurium qRT-PCR was performed (Figure 17). The expressions of tested genes
were assessed in P. aeruginosa or S. typhimurium treated with tested drugs at sub-MIC using
2−∆∆Ct method. The test was done in triplicates and a two-way ANOVA test followed by
the Bonferroni post-test was used to test the significance (where p < 0.05 was considered
significant). A significant decrease in the expression levels of P. aeruginosa QS-regulating
genes rhlI, rhlR, lasI, lasR, pqsA, and pqsR was observed as compared to control P. aeruginosa
culture (p < 0.0001). Furthermore, the tested drugs significantly decreased the expressions
of S. typhimurium sensor kinases genes qseC and qseE as compared to untreated control
culture (p < 0.0001).
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Figure 16. The Inhibitory effects of β-blockers against the biofilm formation in P. aeruginosa and S. 

typhimurium. (A) Representative light microscope images: the formed biofilms on sterile glass cover 

slips in the absence and presence of metoprolol at sub-MIC were stained with crystal violet and 

examined under the light microscope. Tested drugs treated (i) P. aeruginosa and (ii) S. typhimurium 

samples showed much fewer scattered cells in comparison to untreated cells. (B) The absorbances 

of crystal violet staining biofilm forming cells were measured. The data are presented as means ± 

standard errors of percentage changes from untreated bacterial cells. Two-way ANOVA test fol-

lowed by the Bonferroni post-test was employed and significance was considered when p < 0.05. 

Three tested drugs significantly reduced the biofilm formation (p < 0.001). 
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Figure 16. The Inhibitory effects of β-blockers against the biofilm formation in P. aeruginosa and
S. typhimurium. (A) Representative light microscope images: the formed biofilms on sterile glass cover
slips in the absence and presence of metoprolol at sub-MIC were stained with crystal violet and exam-
ined under the light microscope. Tested drugs treated (i) P. aeruginosa and (ii) S. typhimurium samples
showed much fewer scattered cells in comparison to untreated cells. (B) The absorbances of crystal vi-
olet staining biofilm forming cells were measured. The data are presented as means ± standard errors
of percentage changes from untreated bacterial cells. Two-way ANOVA test followed by the Bon-
ferroni post-test was employed and significance was considered when p < 0.05. Three tested drugs
significantly reduced the biofilm formation (p < 0.001).
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Figure 17. β-blockers down-regulate the QS-encoding genes in P. aeruginosa and adrenergic sensor 

kinases encoding genes in S. typhimurium. The expressions of tested genes in the presence of β-
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was in vivo evaluated. All mice survived in the negative control (uninfected or PBS in-

jected) groups. Meanwhile only three mice survived after injection with untreated P. ae-
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Figure 17. β-blockers down-regulate the QS-encoding genes in P. aeruginosa and adrenergic sensor
kinases encoding genes in S. typhimurium. The expressions of tested genes in the presence of β-
blockers were compared to untreated bacterial cells, and the data shown are the means ± standard
errors. The test was done in triplicate and a two-way ANOVA test followed by the Bonferroni
post-test was used to test the significance as p < 0.05 was considered significant. The tested drugs at
sub-MIC significantly decreased the expression of all tested genes (p < 0.001).

2.7. Metoprolol Protects Mice against P. aeruginosa and S. typhimurium

The metoprolol protective activity against P. aeruginosa and S. typhimurium virulence
was in vivo evaluated. All mice survived in the negative control (uninfected or PBS injected)
groups. Meanwhile only three mice survived after injection with untreated P. aeruginosa,
metoprolol conferred the protection to eight mice (Figure 18A). Furthermore, metoprolol
protected six mice injected with S. typhimurium in comparison to eight deaths in the control
group injected with untreated S. typhimurium (Figure 18B). The treatment of P. aeruginosa
and S. typhimurium with metoprolol at sub-MIC significantly decreased their capacity to
kill mice (p < 0.0001) using the log-rank test for trend.
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Figure 18. Protection of mice from (A) P. aeruginosa and (B) S. typhimurium by metoprolol. The sur-

vival of mice in each group (n = 10) was reported every day for 5 days and plotted using the Kaplan–

Meier method and the significance (p < 0.05) was examined using the log-rank test. All mice in the 

negative control groups survived, while only 30% or 20% of mice survived in the groups that were 

injected with P. aeruginosa and S. typhimurium, respectively. Meanwhile, 80% or 60% of mice injected 

with metoprolol-treated P. aeruginosa or S. typhimurium survived, conferring 50% or 40% protection 

in comparison to the mice injected with untreated P. aeruginosa and S. typhimurium, respectively. 

Log-rank test for trend (*** = p < 0.0001). 
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naling systems in mammalian cells such as neuroendocrine (NE) stress hormones adren-
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ingly, bacterial pathogens exploit these NE as signals to regulate the expression of their 

virulence genes [14,41]. For example, in enterohemorrhagic E. coli, adrenaline and nora-
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Figure 18. Protection of mice from (A) P. aeruginosa and (B) S. typhimurium by metoprolol. The
survival of mice in each group (n = 10) was reported every day for 5 days and plotted using the
Kaplan–Meier method and the significance (p < 0.05) was examined using the log-rank test. All
mice in the negative control groups survived, while only 30% or 20% of mice survived in the groups
that were injected with P. aeruginosa and S. typhimurium, respectively. Meanwhile, 80% or 60% of
mice injected with metoprolol-treated P. aeruginosa or S. typhimurium survived, conferring 50% or
40% protection in comparison to the mice injected with untreated P. aeruginosa and S. typhimurium,
respectively. Log-rank test for trend (*** = p < 0.0001).

3. Discussion

Antimicrobial resistance is a growing global health threat particularly in the dimin-
ished supply of new agents [1]. Conquering bacterial resistance requires the adoption
of new treatment strategies and more efficient approaches to facilitate microbial eradi-
cation [4]. Targeting of bacterial virulence is one of the most resourceful approaches to
diminish the increasingly microbial resistance [38,39]. Bacterial communities employ QSs
to harmonize their responses competently and circumvent the host immune systems. These
QSs systems produce diffusible signal molecules, called autoinducers (AIs) that bind to
their cognate receptors to orchestrate the expression of bacterial virulence to guarantee
maximum chances of survival [3,8,10]. Parallelly, bacteria use an array of sensors to ac-
commodate themselves with their environment. For instance, bacteria can eavesdrop on
the signaling systems in mammalian cells such as neuroendocrine (NE) stress hormones
adrenaline and noradrenaline via membranal sensor kinase receptors [13,14,40]. Most
interestingly, bacterial pathogens exploit these NE as signals to regulate the expression
of their virulence genes [14,41]. For example, in enterohemorrhagic E. coli, adrenaline
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and noradrenaline can substitute for autoinducers (AI-3). This observation emphasize the
existence of crosstalk between the two signaling systems and the presence of adrenergic
receptors on the bacterial membranes [40,42]. Moreover, both adrenaline and noradrenaline
enable bacteria to acquire iron from the host, as they are ferric iron chelators which release
the iron from transferrin and lactoferrin [43]. Furthermore, bacterial lipopolysaccharides
activate the macrophage to induce the release of adrenaline and noradrenaline and hence
augment the bacterial pathogenesis [44]. Bearing in mind all the above findings, adrenergic
blockers are suggested as promising candidates to target bacterial virulence, they can at
least decrease the bacterial espionage on the mammalian signaling systems. The possibility
of repurposing approved safe adrenergic blocker drugs to target bacterial virulence can
decrease efforts, time, and costs. In this work, we further aimed to explore the anti-QS
activities of adrenergic β-blockers against Gram-negative bacteria which often employ QS
LuxR-type receptors to sense a wide array of AIs [9,10].

Molecular docking simulation was conducted to investigate the affinity of 22 FDA-
approved β-blockers towards the QSs of three highly resistant bacteria species. The adopted
133.74 kDa TraR biological target from A. tumefaciens is a homo-2-mer-A2 transcription fac-
tor solved at 1.66 Å atomic resolution as a heterocomplex with its respective DNA-binding
site and pheromone (Supplementary Data, Figure S5A). The other adopted QSs, QscR P.
aeruginosa (55.19 kDa) and CviR C. violaceum (120.20 kDa), are cyclic protein homodimers
solved at 2.55 Å and 3.25 Å, respectively, with their respective binding ligands (Supplemen-
tary Data, Figure S5B,C). The three biological targets are quite similar comprising of the
N-terminal α-helix/β-sheet/α-helix sandwiched ligand binding domains and α-helix/β-
turn/α-helix motifs for specific DNA binding sites down to the C-terminus. Ligands are
fully embedded within the protein targets and are virtually deprived from solvent con-
tacts, allowing them to form several hydrophobic interactions with pocket lining residues
in addition to few hydrogen bonding either being direct with polar residues or indirect
through water bridges. The lactone heads of the co-crystalline ligands are settled within
a small inner sub-pocket lining with polar residues that stabilize the hydrophilic head
via hydrogen interactions as well as hydrophobic ones. The amide portion of the ligands’
bodies are anchored near to several polar residues allowing interaction with significant
hydrogen bond donors/acceptors of the pocket residue sidechains. Finally, the crystallized
terminal acyl tails are directed deep into a larger hydrophobic sub-pocket possessing of
few polar residues.

Despite ligand binding domain similarity, the overall architecture of the adopted
dimers is quite different where TraR shows perpendicular two-fold symmetry axis of each
respective sub-unit resulting in pronounced overall complex asymmetry. On the other
hand, both QscR and CviR exhibit near symmetry across their protomer architectures. The
co-crystalline ligand of each target protein was used as QS reference inhibitor within our
two-stage docking protocol. Literature reports have illustrated the potent inhibition activity
of HLC allowing protection of Caenorhabditis elegans against the quorum-sensing-driven
lethality mediated by the C. violaceum virulence microorganism [45]. This synthetic com-
pound also showed superior antagonism for C. violaceum CviR over other tested inhibitors,
N-octanoyl-L-homoserine lactone (C8-HSL) and C10-HSL, where the latter ligands showed
partial antagonism in presence of CviR natural autoinducer, C6-HSL [25]. Additionally,
Geske et al. showed significant antagonistic activity of HLC across three strains; TraR A.
tumefaciens, LasR P. aeruginosa, and LuxR Vibrio fischeri which was preferentially higher
than most other closely related synthetic multi-target antagonists [46]. Since HLC is an
available potent co-crystalline wide-range LuxR-type QS inhibitor, the ligand was also
adopted as an additional relevant reference standard for the other two target proteins.
Therefore, the adrenoreceptor blocker exhibiting more negative docking energies than the
reference co-crystalline ligands and HLC, as well as illustrating comparable binding modes
relative to HLC, would be highly suggested to confer preferential competitive inhibition
potentiality towards these QS targets.
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The depicted differential ligand orientation/conformation for the investigated ligands
across the three biological pockets were rationalized for the small-sized binding site of TraR
A. tumefaciens in relation to other targets. This was clearly reported by Geske et al., where
investigating several synthetic antagonists across three QSs proteins revealed that the TraR
A. tumefaciens ligand-binding domain appeared the most restrictive being highly sensitive to
the length of pheromone’s acyl group [46]. This was further confirmed via the CASTp server
analysis, where as expected, the TraR A. tumefaciens was assigned the least accommodating,
whereas the largest pocket volume was assigned to CviR C. violaceum having its ligand
extend into the solvent region. On the other hand, the pocket of QscR P. aeruginosa was of
tighter packing density, the thing that is consistent with the reported binding modes of
different pheromones [24]. It worth noting that the CASTp server analysis showed that the
CviR’s large-spaced pocket was wide rather than being elongated or narrow which was the
case of the QscR pocket. This finding was confirmed through conformational analysis of the
obtained docking poses where the docked ligands at the CviR’ pocket adopted an inverted
L-shaped conformation rather than the almost linear one being seen by the same ligands at
the QscR pocket. Despite the differential pocket size/topology of both QscR P. aeruginosa
and CviR C. violaceum target proteins, several ligands (1, 3, 5, 7–10, 17, 18, 21) showed
comparable binding energies across both targets. Nevertheless, the rest of the investigated
ligands, particularly compounds 11, 13, and 14, predicted preferentially higher docking
energies for the QscR binding site. The latter findings could confer the significant impact of
ligand’s topology, type/number of ligand’s substitutions, and the nature of pocket lining
residues on the ligand–protein bindings and pocket accommodation.

It worth mentioning that the second sophisticated docking approach provided valida-
tion of the docking workflow where redocking the co-crystalline ligands through the same
adopted second-stage docking protocol revealed significantly low RMSDs. To our delights,
the RMSD values of redocked co-crystalline ligands were 1.0332 Å, 1.2416 Å, and 1.5834 Å
at TraR A. tumefaciens, QscR P. aeruginosa, and CviR C. violaceum, respectively, with great
superimposition binding modes (Supplementary Data, Figure S6). Clearly, depicting RMSD
values below 2.0 Å indicates that both the adopted docking parameters and algorithms
were sufficient for determining the best docking pose [47]. Therefore, findings obtained
out of the adopted directed docking protocol was confirmed valid, ensuring the biological
significance of the obtained docking binding modes and in turn their respective docking
energies. It worth mentioning that the second-stage docking analysis further validated the
preliminary docking results where the obtained hits still exhibited higher docking scores
than those of the reference ligands across this sophisticated docking step. In this regard, it
was of great importance to thoroughly investigate the depicted ligand–protein interactions
in correlation with the obtained valid docking scores. The latter would provide valuable
insights regarding the ligands’ structural characteristics impacting their respective pocket
binding.

Differential docking scores across the investigated hits against TraR A. tumefaciens were
significantly correlated to the ligands’ terminal aryl groups rather than their N-substituted
propanolamine scaffolds. Despite the fact that Gln58 is one of the limited polar residues of
the large hydrophobic site that can be even charged under physiological condition, such
amino acid depicted van der Waal interactions via their side chain Cβ and Cδ atoms with
certain investigated ligands including compound 1 and the reference inhibitor (HLC). On
the contrary, ligands with specific terminal aryl moieties managed to furnish polar contacts
with the few hydrophilic residues lining the large hydrophobic site (Thr51 and Gln58).
The latter was illustrated for the top-docked ligands, 10, 11, and 14, where extended polar
networks were maintained with the sidechains of Thr51, Gln58, and/or the mainchain
of Phe62 residue through the ligands’ terminal polar substitutions. Depicting these polar
interactions at the target’s hydrophobic was suggested to satisfy the H-bonding or ion-
pairing potentiality of the limited hydrophilic residues comprising this large hydrophobic
site.
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Notably, compound 8 with its hydrogen bond acceptor morpholine ring showed no
predicted hydrogen bonding with the large site lining residues. It was suggested that
the deep anchoring of the morpholine nucleus being directed towards the site’s polar
residues (Thr51 and Gln58) would lessen the electrostatic penalty assigned for the ligand at
such highly hydrophobic site. The latter was reasonably translated into an intermediate
docking energy of −7.4923 Kcal/mol being only second to the top-docked ligands. The
opposite could be translated for other short-tailed adrenoreceptor blockers which failed to
achieve better docking scores than the reference inhibitor (HLC) at the TraR’s target pocket.
Having their polar functionalities such as sulphonamide, carboxamide, or ester groups
close to their central aryl core, compounds such as 9, 15, and 16 were predicted to lack the
relevant closeness towards the site’s polar residues (Thr51 and Gln58) that allows favored
ligand–protein and high docking score. On the contrary, extended tails with terminal
hydrocarbon chains, as incorporated within compounds 12, 13, 17, and 18, were predicted
to impose steric hinderance at the TraR tight pocket as well as being unable to compensate
the electrostatic penalty assigned for these ligands at such a highly hydrophobic site. In
brief, ligands of proper length terminal aryloxy scaffold and harboring polar substitutions
at close proximity towards the hydrophobic sub-pocket’s polar residues could be translated
into significant ligand anchoring and potential stability at the TraR A. tumefaciens binding
site.

The above ligand–target preferential bindings came in great agreement with current
literature were the above-described interactions were thoroughly reported as being im-
portant for binding several small molecule inhibitors at the TraR A. tumefaciens binding
site. Both Trp51 and Asp70 sidechains at the TraR’s small sub-pocket were found essen-
tial for mediating polar contacts with crystalline ligand’s lactone ring. Further ligand
stability was mediated through polar interaction with the two carbonyl moieties of the
O-C8-HSL body [23]. Several solid phase organic synthesized analogues of N-sulfonyl-
and N-nicotinyl-L-HSL reported by Kim et al. exhibited significant hydrogen bonding
with Tyr53 polar sidechain. The docking results of these were highly correlated with their
significant in vivo inhibition activity against TraR A. tumefaciens via reporter systems as
well as anti-biofilm activity towards P. aeruginosa [48]. The authors reported high biological
activities for the derivatives mediating the above-mentioned polar interactions. Similarly,
derivatives of 2,2-dimethylbutanoyl-, N-(fluoroalkanoyl)-, N-(sulfanyl ethanoyl)-, and N-
(fluorosulfonyl)-L-HSL showed significant antagonism against TraR quorum sensing of
A. tumefaciens as per furnishing polar contacts with Thr129, Tyr53, Tyr57, Gln58, and/or
Tyr61 confirmed through molecular modelling studies [49]. Molecular docking investiga-
tion of several 4-quinolone and phenazine-based analogues illustrated the important role
of several pocket’s polar residues including; Tyr53, Trp57, Tyr61, Asp70, and/or Thr129,
providing good explanation for their differential in vitro anti-quorum sensing activity in
relation to respective docking scores [50]. The above reported polar interactions were
also consistent with several anthraquinone- and chromone-derived active components of
the traditional Chinese medicines possessing antibacterial activities and being identified
as promising anti-QSTR agents through structure-based virtual screening, in vitro inhibi-
tion of bacterial biofilm formation, and/or proteolysis of bacterial quorum sensing signal
receptor approaches [51,52].

Preferential docking scores for the investigated ligands at QscR P. aeruginosa in re-
lation to TraR A. tumefaciens were reasoned for the earlier where residues at the large
hydrophobic sub-pocket impose less steric hinderance for anchoring the ligand’s terminal
aromatic/heterocyclic groups. This also had a significant impact on ligand–target binding
since hits exhibited more extended polar networks with the QscR’s lining residues as
compared to those of the TraR binding site. Such observation could confer the higher com-
parative importance of hydrophilic interactions as an important driving force for anchoring
small molecules within the QscR binding pocket. Significance of binding to Ser38 was
highlighted through our docking studies which was also reported crucial for determining
the signal specificity of QscR, where this polar uncharged residue can guide the preferential
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binding of native 3-O-HSL over the unsubstituted native ligands [24]. Thus, significant
affinity towards the QscR pocket site has been suggested for the investigated adrenorecep-
tor hits depicting relevant hydrogen bonding with Ser38 residue. Ligand–protein target
interactions were thoroughly investigated to explore the differential docking scores across
the investigated hits. Since hydrophobic interactions were illustrated to be conserved for all
docked ligands, it was suggested that polar-directed binding was of more significant impact
on the ligand/pocket accommodation. The latter was reasoned since several high-docking
scored adrenoreceptor hits (−9.3164 up to −9.7616 kcal/mol) showed highly ordered and
more extended polar contacts with the QscR lining residues. Compound 13 predicted
significant double polar interactions with Asp75 and Ser38 as well as relevant hydrogen
bonding with Tyr58, Trp90, and Ser129 all being mediated via its 3-oxo-propanol central
scaffold. A comparable pattern of extended polar interactions was depicted for compounds
14 and 17 where Ser38, Tyr58, Asp75, and/or Ser129 showed preferential strong hydro-
gen bond distances and angles. The docking of these three ligands were further fortified
via extended non-polar interactions with aromatic/heterocyclic as well as alkyl chained
residues. The latter confer the important balance between polar and non-polar interaction
for mediating best docking scores for the ligand/QscR binding.

It worth mentioning that the polar substitutions at the tail part of compounds 14 and
17 showed relevant polar interactions with specific hydrophilic residues (Arg42 and Thr72)
at the large hydrophobic QscR sub-pocket. Despite possessing polar oxygen functionality
at its tail part, compound 13 could not depict relevant polar contacts at the QscR distal sub-
pocket in similar fashion to the other two top-docking ligands. Such differential binding
mode could be due to possible steric clashes imposed by the longer terminally branched
alkyl ether chain of compound 13 which would disfavor its close contact with the pocket’s
specific hydrophilic residues (Arg42 and Thr72). The latter docking poses were reasoned
to minimize potential steric penalties due to the presence of branched bulky hydrophobic
residues (Tyr52, Val78, Leu82, Ile125, and Arg42) at the distal end of the QscR binding
pocket. On the contrary, compounds 13 and 17 possess shorter linear terminal substitutions
(methoxyethyl and butylamido, respectively) the thing that would favor unhindered an-
choring of their respective terminal polar functionalities near the polar residues at the distal
pocket. A similar differential binding mode was also obvious for compounds 10–12, where
the latter exhibited highly hindered orientation at the distal hydrophobic sub-pocket. Hav-
ing a long four-atom distance alkyl ether chain with a terminal bulky cyclopropyl moiety
as its crown, compound 12 predicted upright conformation of its terminal tail rather than a
linear coplanar one in relation to its central aromatic ring. Thus, compound 12 lacked polar
contacts with distal polar residues, yet compounds 10 and 11 predicted hydrogen bonding
with Tyr52 and Arg42, respectively. These binding modes were reasonably translated
into a lower docking score for compound 12 (−8.2918 kcal/mol) while higher comparable
docking energies for compound 10 and 11 (−8.9102 and −8.9182 kcal/mol, respectively).
The above depicted size-directed binding mode for the investigated ligands was highly
rationalized through reported literature where the distal portion of QscR binding pocket
impose preferential binding for short chained acyl native ligands rather than large steric
ones [24]. Single amino acid mutagenesis for these distal branched bulky hydrophobic
residues with more bulkier residues showed a significant reduction of QscR activated
signaling in response to autoinducer with longer acyl chains.

Significant docking findings were also represented for the largest size docked adrenore-
ceptor hits, compound 21. Compared to its aryloxy propanol-based member, compound 21
exhibited reversed orientation where it quaternary alkylate nitrogen atom is positioned
at the center of the QscR binding site rather than typical orientation at the small sized
sub-pocket. The possession of a large extended flexible substitution on the ligand’s nitrogen
head imposed disfavored anchoring at the smaller sized sub-pocket. The inherited flexibil-
ity of the N-substitution allowed the ligand to adopt a favored orientation at the distal large
QscR pocket with predicted reduced steric clashes with the end branched bulky hydropho-
bic residues. However, adopting such reversed docking pose caused compound 21 to lose
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key polar binding interactions with Asp75 which in turn furnished a moderate docking
score of −8.7880 Kcal/mol. In brief, ligands possessing a moderately sized terminal tail
with polar functionalities and significant flexibility would exhibit favored maneuvers to
bind at the QscR distal pocket with minimal steric clashes while being able to mediate
relevant polar interactions with specific polar residues at the pocket end.

Interestingly, the above depicted ligand–QscR binding interactions were consistent
with current literature where several promising anti-P. aeruginosa QS small molecules have
depicted these kinds of interactions being correlated to significant in vitro biological ac-
tivities. Screening hits reported by Xu et al. were novel anti-QS scaffold of substituted
double phenyl rings and a central amide-based linker/spacer which showed significant
Pseudomonas aeruginosa biofilm inhibition activities [53]. These promising hits were identi-
fied through combined pharmacophores of LasR antagonist and QscR agonist, followed
by docking simulations. Consistent polar interactions were depicted between their amide
linkers and sidechains of QscR homologous pocket residues; Trp62, Tyr66, and/or Asp75.
Stability of these ligands were further mediated through π-mediated interactions with
Tyr66 or Trp90, in addition to hydrophobic contacts with Ala41, Tyr52, Val78, Leu82, Ile125,
and Met127. Similar polar interactions were illustrated by Sadiq et al. where several FDA-
approved sulphonamide antibacterial agents and their carboxamide-based close analogues
showed favored hydrogen bonding with QscR homologous residues; Trp62 and Asp75 as
well as additional polar contacts with Tyr58 and Ser129 through docking and subsequent
molecular dynamics simulations [54]. Significant π–π hydrophobic interaction with Tyr66
was also depicted stable for all sulphonamide antibacterial agents across the simulation
studies. The above hydrogen bonding with Try58, Trp62, Asp75, and Ser129 was also
considered significant for stabilizing a series of triphenyl-structured antagonists within the
ligand binding domain of P. aeruginosa QS protein at preferentially higher binding ener-
gies than a synthetic triphenyl mimic super-inducer, TP-1 [55]. The triple aromatic-based
pharmacophores of these ligands further permitted favored ligand anchoring within the
binding site through face-to-face hydrophobic interactions with Tyr66, Trp63, Trp90, and/or
Phe101 residues. The in vitro LasR-reporter gene assay came to recapitulate their in silico
findings, revealing significant antagonistic activity of these triphenyl-based compounds in
the presence of native autoinducer, O-C8-HSL.

Moving towards the obtained β-blocker/CviR binding complexes, the differential
docking scores of these ligands at CviR in relation to the other QS could be reasoned to the
inherited differences within each pocket size and topology. Our CASTp analysis showed
that both CviR and QscR pockets are large-sized spaces owing to the relevant orientation
of the large hydrophobic sub-pocket residues imposing minimal steric hinderance against
the anchoring of the ligand’s terminal aromatic/heterocyclic groups. In this regard, our
investigated ligands at the CviR active pocket exhibited higher docking scores as compared
to their respective positions at the TraR binding site. On the other hand, the CviR terminal
sub-pocket is considered wider at its large hydrophobic sub-pocket as being compared
to that of QscR. This would further allow less steric hindering binding and more favored
pocket orientations for the bulky β-blocker agents the thing that was highly obvious for
the second generation β-blocker (Compounds 19–21). The latter compounds exhibited
significant steric groups like the large aliphatic-associated aromatic substitution at their
respective quaternary nitrogen heads. These bulky ligands managed to exhibit higher
docking scores at CviR in relation to QscR, where they managed to establish favored
polar interactions with key residues, including catalytic Asp97 at CviR, the thing that
was missing for compound 21 at QscR pocket. Nevertheless, the wider CviR’s pocket
topology rather than being narrow and elongated seemed to allow several small-sized
ligands to be at far proximity from the pocket’s lining residues making them unable to
mediate relevant ligand–target binding interactions. The latter was confirmed since several
investigated β-blockers (compounds 10, 11, 13, and 14) depicted higher docking scores at
the relatively narrower, more elongated QscR pocket rather than at the CviR binding site.
Notably, the obtained ligand–CviR docking scores were correlated with less extended polar
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interaction networks for these investigated small-sized ligands as compared to QscR. Based
on such docking behavior, it was suggested that polar-directed binding has a significant
impact on the ligand/pocket accommodation at different QS proteins. The latter pocket
structures differences and their impact on ligand binding were also highlighted by Lintz
et al. where they investigated the comparative architectures of the ligand-binding domains
and AHL-related binding pockets of several QS including CviR, QscR, LasR, TraR, and
SdiA [24,56].

Differential docking analysis between investigated ligands at CviR has correlated
better ligand’s docking scores to the extent and magnitude of furnished polar contacts
between the ligands and conserved key polar residues. One of the top docked small-sized
ligands, compound 10, showed highly ordered polar contacts with Tyr80, Asp97, and
Ser155 via its quaternary nitrogen head and free hydroxy group of its propanolamine linker.
Despite that, the latter polar network was also assigned to other β-blockers, compounds 2,
11, 13, and 14, yet these ligands depicted lower docking scores as compared to compound
10 (−8.9128 Kcal/mol versus −8.0192, −8.2830, −8.6064, and −8.7912 Kcal/mol). Such
differential docking behavior was suggested for the extra polar contacts mediated by the
terminal polar functionalities at the compound 10 tail chain which furnished significant
hydrogen bond pairing with Met89 and Met253 at the large hydrophobic sub-pocket.
Similar to QscR-associated binding modes, polar interactions with these large hydrophobic
sub-pocket residues could have minimized the potential steric penalties during ligand
anchoring which are mainly mediated by the branched bulky hydrophobic residues (Leu57,
Leu72, Val75, Leu85, Ile153, and Val250) at the distal end of the CviR binding pocket.
On the other hand, compounds 11–14 lacked these kinds of terminal polar interactions
despite sharing significant polar substitutions (ester, ether, or diether) at their respective
tail scaffolds. The latter docking result could be reasoned for the end alkyl groups (methyl,
ethyl, or cyclopropyl) at compounds 11–14 that could disfavor the proper orientation
of the ligand’s tail towards these end terminal polar residues as a result of repulsion
forces. However, this was not the case for the several same ligands at QscR pocket where
compounds 11 and 14 exhibited polar interactions with large pocket end residues, Arg42
and Thr72. Thus, it was suggested that the CviR wide topology might have either brought
the end polar residues at far distances or non-proper orientations/angles from the ligand
functionalities causing compounds 11–14 to just miss such relevant binding interactions.

It was interesting that despite the lack of polar interactions with the CviR terminal
polar residues, compound 17 managed to achieve a high docking score (−9.0849 Kcal/mol)
which was even more profound than that obtained by compound 10. Despite the fact
that both compounds 10 and 17 possess the carboxamide moiety at their terminal alkyl
chains, only compound 10 managed to predict significant binding interaction with large
sub-pocket terminal residues. This was reasoned for the hydrophobic terminal alkyl group
at compound 17 being next to the carboxamide moiety which could impose repulsive
penalties against these polar amino acids. Both CviR complexes with compounds 10
and 17 were stabilized via comparable pattern of extended non-polar interactions with
aromatic/heterocyclic as well as alkyl chained residues. Nevertheless, it was noticed that
only compound 17 managed to achieve more extended π-mediated hydrophobic contacts
with several non-polar pocket residues, Tyr80 (π-π) Tyr88 (π-π), and Trp111 (π-H), the thing
that could be correlated to its high docking energy. In these regards, it was concluded that
a balance between polar and non-polar interactions mediated by a certain ligand would be
efficiently translated into best docking scores for the ligand/CviR binding.

Validity of the obtained residue-wise ligand/CviR interactions was assured since
several reported studies depicted comparable ligand/residue profiles during their quest for
identifying new potential CviR-based quorum sensing inhibitors form synthetic, natural,
and/or chemical library sources. Structural-based screening hits obtained from Mu.Ta.Lig
Virtual-Chemotheca and ZINC/FDA-approved databases showed significant energy con-
tributions of Met72, Tyr80, Trp84, Leu85, Tyr88 and/or Ser155 within the ligand free-energy
binding calculations [57]. The four top performing ligands shared a common structural



Pharmaceuticals 2022, 15, 110 37 of 47

topology of central heterocyclic ring core (triazole or piperazine) flanked on both of its
sides with terminal aromatic/heterocyclic scaffolds having variable polar substitutions.
Interestingly, the negatively charged Asp97 residues which is considered crucial for native
ligand binding was of lower, yet still relevant, contribution for stabilizing the identified
promising hits at the CviR C. violaceum binding site. Another study identified several
flavonoid and chalcone-based hits from natural product libraries as promising inhibitors of
the CviR quorum sensing protein through virtual-screening as well as in vitro violacein
and biofilm inhibition biological assays [58]. These promising natural-based hits exhibit
preferential polar interactions with Trp84, Asp97, Met135, and Ser155, in addition to rel-
evant hydrophobic contacts towards Tyr80, Leu85, Tyr88, Met89, Trp111, Phe115, and
Phe126, which have been successfully translated into high biological findings. Compara-
ble residue-wise binding interactions were reported for several chemically synthesized
2-imidazoline/oxazoline-based analogues through molecular docking and dynamics sim-
ulations [59]. The compounds predict favourable polar binding contributions for Trp84,
Asp97, Tyr88, Ser155, and Pro189 residues with the ligands’ 2-imidazoline/oxazoline polar
heads. Hydrophobic π-mediated interactions with Tyr111 and Phe126 pocket residues were
significant for these synthesized ligands. Finally, the active natural metabolites isolated
from Passiflora edulis ethyl acetate extract showed relevant accommodation of the CviR
binding site, particularly for hexadecanoic acid methyl ester [60]. Polar interactions with
Tyr84 as well as hydrophobic contacts with Ile57, Tyr80, Leu85, Tyr88, Ile99, Trp111, Phe115,
Met135, and Ile153 were found consistent across the top active metabolites. The letter
suggested the important role of these residue-wise binding interactions for mediating
promising in vitro C. violaceum-oriented inhibition activities.

Following our depicted docking study, we aimed to investigate the thermodynamic
stability of the predicted β-blocker/QS complexes. Throughout the 100 ns all-atom MD
runs, the examined agents illustrated significant global stability within the three target’s
canonical binding site as being confirmed through the monitored Cα-RMSD trajectories.
All the above-described dynamic behaviours of the investigated target proteins indicate
the successful convergence of the target proteins across the designated MD simulation
timeframe. Moreover, the above-depicted protein’s RMSD tones also infer that successful
system minimization, relaxation, and thermal equilibration stages have been adopted
before the MD production step and thus, no further extension of the MD simulation beyond
the 100-ns period was needed. Achieving steady ligand’s Cα-RMSD tones as well as the
rapid attaining of dynamic equilibrium for more than 50 ns, all highlighted the significant
ligand’s retainment within the protein active site, the thing that was highly comparable to
the potent QS inhibitor, HLC. The latter ligand–pocket confinement was further confirmed
through the illustrated conformational analysis where limited ligand orientation shifts
were depicted within any of the three QSs binding site. However, preferential ligand’s
conformational/orientation stability were assigned to QscR and CviR as compared to the
TraR binding site. The latter could explain the depicted comparatively lower Cα-RMSD
values for the same ligands at QscR P. aeruginosa or even CviR C. violaceum in relation to
TraR A. tumefaciens binding sites. In this regard, it was suggested that these preferential
ligand accommodations could be highly correlated to differentiate the pocket size. The latter
dynamic behavior further confirmed the reported TraR A. tumefaciens pocket constriction
as well as great sensitivity towards the length of pheromone’s acyl group [46]. It is worth
mentioning that ligand’s versus respective protein’s Cα-RMSD trajectories were not more
than 1.5-fold, the thing that further confirms the successful convergence of ligand–protein
complexes and ligand–pocket confinement, as well as inferring the suitability of 100 ns MD
simulation runs requiring no further extension.

Findings obtained from monitoring the RMSFs came in great concordance with the
above- mentioned RMSD-based stability analysis. To our delight, the depicted comparable
residue-wise flexibility modes across the three investigated bacterial LuxR-type QSs based
on the ∆RMSF analysis would highlight the validity of the MD simulation study and
adopted protocol. Additionally, the illustrated higher immobility profiles for the residue
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regions towards the carboxy terminal as compared to N-terminus conferred the inherited
preferential stability of the DNA binding domain over the ligand anchoring one. This was in
good concordance with the reported conformational stability analysis of both domains at the
LuxR-type QS proteins [23–25]. The significantly high stability profiles for pocket residues
as well as vicinal residues across the corresponding regions 70–90 and 100–130 inferred
the significant influence of ligand’s binding upon the stability of these residue ranges.
It worth noting that these residue ranges were proven to possess relatively conserved
hydrogen bond interactions among the constituting residues as well as with the binding
ligands [23–25,58,61–63]. On the other hand, the flexible residue ranges around 130–145 and
170–180 are at regions being at distance of >15 Å from the binding site residues, indicating
the capability of the active site to accommodate bulkier inhibitors. As a final observation,
several pocket lining residues which were reported as relevant for ligand anchoring showed
significantly high immobility profiles being consistent across several simulated ligands.
The latter dynamic behavior highlights the pivotal role of these residues for the stability of
ligand within the protein’s binding site. Moreover, the majority of these ligand-conserved
inflexible pocket residues are hydrophobic in nature the thing that confers the significant
role of the large hydrophobic pocket as well as the structure of the ligands terminal chain
for mediating stabilized ligand–target complexes [63]. Nevertheless, selected polar pocket
residues (Ser, catalytic Asp and others) were also shown with significant inflexibility which
would emphasize the importance of these amino acids to satisfy the polar functionality of
the ligands as well as permitting selectivity for their respective binding [25].

Interestingly, the above-described pocket’s residue-wise flexibility profiles and prefer-
entiality for hydrophobic contacts in stabilizing the simulated ligands were also highlighted
within the MM/PBSA binding free energy calculations. Both QS pocket’s lining residues
and vicinal amino acids showed the favored contribution (high negative values) within
the ligand–protein binding energy, the thing that implied significant ligand confinement
within the target binding sites. Dominance of ∆Gvan der Waals over the electrostatic energy
contributions conferred the significant role of hydrophobic contacts with the QSs large
hydrophobic sub-pocket to stabilize the binding ligands. Additionally, the nature of the
top-energy contributing residues is mostly hydrophobic which further emphasizes the
predominance of the van der Waals potentials for binding the investigated ligands deep
into the target binding site. This came in great agreement with the reported data within the
current literature considering the LuxR-type QSs pocket to be more hydrophobic in nature
being deep, and with conserved hydrophobic pocket lining residues [23–25]. However, the
strong polar contacts with the catalytic Asp residue as well as key polar pocket residues
provided a significant role of the Coulomb’s electrostatic potential energy for enforced
ligand–protein biding.

Notably, the β-blocker members possessing higher numbers of polar functionalities
(hydrogen bond donors and acceptors), as seen in compounds 8, 10, and 11, were able to
furnish higher ∆GElectrostatic as compared to other drug class members. The latter would be
reasoned for the ability of the earlier compounds to satisfy the electrostatic potentiality of
polar lining residues at the small QSs sub-pocket as well as at the terminal part of the large
hydrophobic site. On the contrary, lignads with less polar potential, particularly at the ter-
minal aromatic chains (HLC and compounds 1, 12, 13, and 14), illustrtaed beneficial lower
polar solvation energies (∆GSolvation; Polar) that favoures their respective relevant target
binding since the latter is a solvent-substitution process. In this regard, the β-blocker agents
with balanced hydrophobic/polar functionalities, particularly at their terminal aromatic
schaffold, would mediate favoured non-polar contacts with the QSs large hydrophobic
pocket and polar interactions with hydrophilic lining residues being vicinal to the small
more polar QSs sub-pocket, while as minimize any potential solvation energy penealties
that would compromise the ligand’s anchoring process.

Finally, the differential pocket topology across the three investigated QSs was high-
lighted via the estimated binding free energies where the same ligand depicted higher
binding energies at QscR following by CviR and then TraR. This was in corcordance with
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the initial docking findings suggesting preferential β-blockers’ affinity towards the narrow
elengated QscR pocket. Additionally, the obtained higher total non-polar interactions
(∆Gvan der Waal plus ∆GSASA) for ligands at the QscR and CviR in regard to TraR binding
sites would have been directly related to the larger surface area of the earlier pockets. Thus,
the ability of β-blocker agents to attain more extended conformation within the target’s
pocket would be beneficial for effeceint binding at QscR and CviR, in relation to TraR. This
has been throughly explained through presented docking simulation, pocket size analysis,
as well as reported literature [24,46].

Based on the findings of the in silico molecular study; atenolol, esmolol, and meto-
prolol (compounds 10, 11, and 14, respectively) were selected to be further investigated
for their anti-virulence and anti-QS activities. The biosensor C. violaceum CV026 is usu-
ally employed to assess the QS in Gram-negative bacteria due to its ability to release the
pigment violacein in response to acyl-homoserine lactones under the CViI/R QS system
control [18,37]. Initially, the anti-QS effects of three tested β-blockers on violacein produc-
tion were assessed. In great compliance with the molecular docking findings, three of the
tested drugs significantly diminished the production of violacein pigment indicating the
predicted anti-QS activities of the tested drugs. It is worth noting that the tested β-lockers
were assayed at their sub-MIC in all the tests to exclude any effect on the bacterial growth.

For attesting the anti-QS activities of the tested β-blockers, two famed pathogenic
Gram-negative bacterial models P. aeruginosa and S. typhimurium were chosen for this pur-
pose. P. aeruginosa is the causative agent of diverse types of infections including eye, wound,
and respiratory infections [17]. Moreover, the elevated levels of resistance to various an-
tibiotics and disinfectants books a place for P. aeruginosa among the major global health
concerns [15]. P. aeruginosa employs three QS systems, two LuxI/LuxR types (LasI/LasR
and RhlI/RhlR), and one non-LuxI/LuxR PQS system in addition to QscR (LuxR ho-
molog) [9,10]. The other Gram-negative bacteria S. typhimurium was chosen because of
its pathogenesis and also for its different QS system. Different Salmonella spp. cause a
wide range of infections from localized to systematic infections [64]. Salmonella spp. do not
synthetize their own AHLs; but they acquire a sdiA-encoded functional AHL receptor that
responds to AHLs [65–67]. In vitro, S. typhimurium respond to AHLs in a sdiA-dependent
manner to activate sdiA-regulated genes (srgs) to regulate the bacterial virulence [66,67].
Interestingly, S. typhimurium harbors adrenergic sensor kinases QseC and QseE that bind
to adrenaline or noradrenaline which greatly enhance the virulence [14,41,68], these re-
sponses can be inhibited by adrenergic β-blockers. Interestingly, the tested β-blockers
down-regulated the expression of qseC and qseE genes in S. typhimurium indicating the
ability of tested drugs to diminish the bacterial eavesdrop on host cells that results in
mitigating the bacterial virulence.

In Gram-negative, autoinducers bind to their cognate receptors forming to complexes
which in turn bind to bacterial chromosome at what are called lux boxes regulating the
expression of QS-controlled virulence encoding genes [11]. In this study, the three tested
β-blockers significantly down-regulated the expression of QS receptor and inducer encod-
ing the main three P. aeruginosa QS systems LasI/LasR, RhlI/RhlR, and PqsR/PqsA. These
results are in compliance with the molecular docking findings which approve the ability of
β-blockers to compete on QS receptors conferring a considered possibility to quench the QS
activities. Bacterial biofilm formation is a QS-controlled virulence factor that enhances the
bacterial pathogenesis as extensively reviewed [69], as they confer an additional increase
in resistance to antibiotics [70,71]. The three tested β-blockers significantly decreased the
biofilm formation by P. aeruginosa or S. typhimurium. To attest the anti-virulence activi-
ties of β-blockers, the in vivo ability of metoprolol to protect mice from P. aeruginosa or
S. typhimurium was explored. Our results indicate that the treatment of P. aeruginosa or
S. typhimurium with sub-MIC of metoprolol significantly reduced the bacterial capacity to
kill mice.
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4. Materials and Methods
4.1. Target Preparation and Ligand Construction for Docking Analysis

The designated adrenoreceptor blockers and reference antagonist were constructed
within MOE2019.01 software package (CCGTM, Montreal, QC, Canada). The ligands’ re-
spective isomeric/canonical SMILES strings, obtained from the PubChem database, were
utilized to build the ligands. Each constructed ligand was energy-minimized through a
conjugate-gradient approach of 2000 steps till reaching a root-mean-square gradient conver-
gence of 1 × 10−3 Kcal/mol/Å2 using MMFF94s partial charges and MMFF94s-modified
forcefield. Biological targets were obtained from the RCSB-Protein Data Bank TraR A.
tumefaciens (PDB entry: 1L3L), QscR P. aeruginosa (PDB entry: 3SZT), and CviR C. violaceum
(PDB entry: 3QP5). Proteins were structurally prepared via 3D protonation, as well as
autocorrection of atoms types, partial charges, and bond connectivity at physiological
pH [72]. Finally, MOE Loop modeler was used for modeling missing loops within the
LuxR-type QscRs PDB files.

4.2. Two-Stage Multi-Target Docking Protocol

The binding site of each target was defined by the MOE-Alpha Site Finder geometrical
approach while being refined for including the crucial residues reported in current literature.
The size of the defined pockets for the TraR, QscR, and CviR quorum sensing transcription
factor were of 51, 83, and 93, respectively, where these values indicate the number of
alpha spheres (geometric features of the target’s Voronoi diagram) comprising each binding
site [73]. The lining residues of TraR A. tumefaciens binding site include; Ala38, Tyr39, Leu40,
Thr51, Tyr53, Trp57, Tyr61, Phe62, Asp70, Val72, Trp85, Phe101, Tyr102, Ala105, Ile110,
Thr115, Met127, Phe128, and Thr129. Concerning QscR P. aeruginosa active pocket; Ser38,
Phe39, Gly40, Ala41, Arg42, Tyr52, His53, Phe54, Ser56, Tyr58, Trp62, Lys63, Tyr66, Ile67,
Thr72, Asp75, Ile77, Val78, Leu82, Trp90, Phe101, Trp102, Ala105, Ile110, Ile125, Met127, and
Ser129. Lastly, CviR C. violaceum pocket residue involves; Leu57, Ile69, Gln70, Arg71, Leu72,
Val75, Asn77, Tyr80, Trp84, Leu85, Tyr88, Met89, Ala94, Gln95, Asp97, Pro98, Ile99, Leu100,
Arg101, Trp111, Phe115, Phe126, Ala130, Met135, Thr140, Ile153, Ser155, and Val250.

Docking workflow was performed on two stages, where the first was a rapid prelimi-
nary screening stage using MOE high-throughput virtual screening docking protocol for
identifying the significant hits exhibiting more negative docking energies (Kcal/mol) in
relation to reference antagonist. Throughout the virtual screening docking protocol, all
protein residues were kept rigid and the ligand conformations were developed through
a bond rotation method and ligand placement technique, within the defined active site,
being guided via the triangular matcher protocol which is the most efficient approach for
well-defined binding sites [74]. Finally, the obtained ligand conformations were ranked
via the London_dG scoring system. The second more sophisticated stage was considered
as a refinement approach which was performed for the preliminary identified hits of each
target and proceeded through MOE induced-fit docking protocol for increasing the pose
prediction accuracy of the preliminary identified hits. Adopting the induced-fit docking
protocol allowed significant flexibility of residues building up the canonical binding pocket
of each target protein. Both the triangular matcher and London_dG scoring function were
utilized for ligand placement and initial scoring in the induced-fit (flexible) docking pro-
tocol. However, the top ten docked poses for each ligand were retained for subsequent
refinement and energy minimization, within the target pockets, where only the sidechains
of the protein residues were set to tethered within the forcefield configuration options.
Following refinement, the poses were then rescored using GBVI/WSA_dG forcefield for
a second scoring. The latter forcefield-based scoring function relies on explicit solvation
electrostatics, current-loaded charges, exposure-weighted surface area, and Coulombic
electrostatics via protein–ligand van der Waals scores [75,76]. High docking energy, RMSD
values at 2.0 Å cut-off in relation to co-crystalline ligand, as well as significant interactions
with reported crucial pocket residues were all considered for selecting the best docking
pose of the investigated ligands.
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Visual inspection and protein–ligand interaction analysis for the furnished dock-
ing poses were achieved through using PyMol2.0.6 Graphical Visualization Software
(SchrödingerTM, New York, NY, USA) [77]. The cut-off values for all polar hydrogen bond
(Donor-H . . . Acceptor) were assigned at a respective angle (20◦) and distance (3.3 Å) being
optimal for hydrogen bond strength [78,79]. Hydrophobic interactions were determined
via the MOE ligand interactions tool, in addition to manual measurements performed via
PyMol bond distance measurement tools keeping a distance cut-off 5.0 Å measured from
the nearest interacting ligand atom to residue’s α-carbon atom.

4.3. Molecular Dynamics Simulations

Models of promising hits or HLC, in complex bacterial QS were chosen as starting
coordinates for 100 ns all-atom MD simulations using GROMACS-2019 software package
using CHARMM36m forcefield and CHARMM-General Forcefield program for protein and
ligands, respectively [80]. Each ligand–protein model was solvated within a TIP3P cubic
box under periodic boundary conditions implementation with 10 Å marginal distance [81].
Residues of bacterial QS target protein were assigned at their standard ionization states
under physiological conditions pH (7.4), while the net charge of the entire system was
neutralized using sufficient numbers of potassium and chloride ions being added via
Monte-Carlo ion-placing approach [82].

Constructed system were minimized for 5 ps under the steepest descent algorithm
double-staged equilibration for 100 ps easch, and production at 100 ns. First-stage equili-
bration was proceeded under a constant number of particles, Volume, and Temperature
(NVT) ensemble (303.15 K; Berendsen temperature coupling method), while as the sec-
ond equilibration stage was performed under a constant number of particles, Pressure,
and Temperature (NPT) ensemble (303.15 K, 1 atmospheric pressure; Parrinello–Rahman
barostat method). A force constant of 1000 kJ/mol.nm2 was used for preserving original
protein folding and restraining all heavy atoms during the minimization and equilibration
processes. Production stage involved 100 ns MD simulation runs under (NPT ensemble
using the Particle Mesh Ewald algorithm for computing the long-range electrostatic inter-
actions [83]. All covalent bond lengths, including hydrogens, were modeled under the
implemented linear constraint LINCS method with s fs integration time step [84]. Both
Coulomb’s and van der Waals non-bonded interactions were truncated at 10 Å using the
Verlet cut-off scheme [85].

Both RMSD and RMSF analyses were estimated using GROMACS built-in tools.
The ∆RMSF was estimated for each ligand-bound protein relative to the bacterial QS
apo/unliganded state (∆RMSF = RMSF(apo—holo)) being simulated at same procedures as
the holo state proteins. GROMACS “g_mmpbsa” module and was used to estimate the
ligand–protein binding free energy using the MM/PBSA calculation [36]. The MM/PBSA
calculations of all simulated systems were applied on representative frames for the whole
MD simulation runs (100 ns). For representing the ligand–protein conformational analysis
across specific timeframes, the PyMol2.0.6 was used.

4.4. Chemicals, Microbiological Media and Bacterial Strains

All microbiological media, Luria-Bertani (LB) broth and agar, Mueller Hinton (MH)
broth and agar, and Tryptone soya broth (TSB) were obtained from Oxoid (Hampshire, UK).
P. aeruginosa PAO1 (ATCC BAA-47-B1), C. violaceum CV026 (ATCC 31532) and S. enterica
serovar typhimurium (NCTC 12023) were used in this study. β-blockers atenolol, esmolol,
and metoprolol (CAS Numbers: 29122-68-7, 81161-17-3 and 56392-17-7, respectively) were
ordered from Sigma-Aldrich (St. Louis, MO, USA). All the chemicals used were of pharma-
ceutical grade.
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4.5. Determination of MICs of β-Blockers, and the Effect of β-Blockers at Sub-MIC on
Bacterial Growth

To determine the MICs of tested β-blockers, the agar dilution method was employed
according to the protocol of Clinical and Laboratory Standards Institute (CLSI, 2015) [86].
To ensure that the tested β-blockers had no influence on the growth of P. aeruginosa,
S. typhimurium or C. violaceum, the effects of 1/4MIC of tested drugs on bacterial growth
were evaluated [64]. Briefly, overnight cultures of each bacterial strain were inoculated in
LB broth provided with atenolol, esmolol or metoprolol at sub-MIC, and cultured at 37 ◦C
for 24 h. The turbidity of bacterial cultures was measured at 600 nm.

4.6. Assy of Violacein Production

To evaluate the anti-QS activities of tested drugs, their abilities to inhibit the production
of QS- controlled violacein pigment by C. violaceum were assessed as described earlier [5].
Briefly, LB broth aliquots (100 µL) containing the autoinducer N-hexanoyl homoserine
lactone in the presence and absence of 1/4 MIC of tested drugs were transferred to the
wells of microtiter plates and mixed with 100 µL of C. violaceum suspensions (1 at O.D600).
The plates were incubated for 16 h at room temperature and then completely dried at 60 ◦C.
One hundred µL dimethyl sulfoxide (DMSO) were added to elute violacein pigment by
incubation with shaking at 30 ◦C. The violacein in presence of tested drugs was quantified
by measuring the absorbance at 590 nm and was evaluated as a percentage change from
untreated cultures (negative control).

4.7. Assay of Biofilm Formation

The tested β-blockers’ abilities to inhibit biofilm formation were assessed as described
before [87]. Aliquots of 100 µL of P. aeruginosa or S. typhimurium (1 × 106 CFU/mL) were
added to the wells of microtiter plates in the presence or absence of tested drugs at sub-MIC.
After incubation for 24 h at 37 ◦C, the non-adhered cells were washed out and the attached
biofilm-forming cells were fixed with methanol and stained with 1% crystal violet for
20 min. Excess crystal violet was removed, washed and left to air dry. Then, attached
crystal violet was eluted with glacial acetic acid (33%), and the absorbances were measured
at 590 nm. The formation of biofilm was calculated for each drug as a percentage change
from untreated bacterial cultures.

To visualize the effect of tested drugs on the formation of biofilms, the biofilms
were allowed to be developed on cove slips in the presence or absence of tested drugs
as described before [18]. Briefly, cover slips were placed in Falcon tubes with TSB with
or without tested drugs at sub-MIC, and inoculated with P. aeruginosa or S. typhimurium
(1 × 106 CFU/mL). After overnight incubation at 37 ◦C, the cover slips were washed
to remove the non-adherent cells and the adhered biofilm-forming cells were fixed with
methanol and stained with 1% crystal violet. Then, the coverslips were imaged under a
light microscope (Leica DM750 HD digital microscope, Mannheim, Germany).

4.8. Quantitative RT-PCR of P. aeruginosa QS-Encoding Genes and S. typhimurium Sensor Kinase
Encoding Genes

To approve the inhibitory activity of tested β-blockers against QS and virulence of
P. aeruginosa and S. typhimurium, a quantitative real-time PCR was performed. The RNA of
β-blocker treated and untreated P. aeruginosa or S. typhimurium cultures were extracted by
the Purification Kit Gene JET RNA (Thermoscientific, Waltham, MA, USA) according to the
manufacturer’s protocol, and the extracted RNA were stored at −80 ◦C until use [39].

The expression of P. aeruginosa QS-encoding genes (rhlI, rhlR, lasI, lasR, pqsA and pqsR)
were evaluated in the presence and absence of tested drugs at sub-MIC by qRT-PCR. The
relative expression levels were normalized to the expression level of the housekeeping gene
ropD. Furthermore, the expression levels of sensor kinase encoding genes qseC and qseE in
S. typhimurium were quantified in the presence and absence of tested β-blockers at sub-MIC
and normalized to the expression of endogenous control gene gyrB. (The primers used in



Pharmaceuticals 2022, 15, 110 43 of 47

this study are listed in Supplementary Data, Table S7). Untreated bacteria and bacteria
treated with sub-MIC of tested drugs, were employed for cDNA synthesis by reverse
transcription using a high-capacity cDNA reverse transcriptase kit (Applied Biosystem,
Waltham, MA, USA).Then, the Syber Green I PCR Master Kit (Fermentas, Waltham, MA,
USA) was used to amplify the cDNA in a multi-well plate using the Step One instrument
(Applied Biosystem, Waltham, MA, USA).To attest the specific PCR amplification, agarose
gel electrophoresis and a melting curve analysis of products were used according to the
recommendation of the manufacturer. The relative genes’ expressions were calculated by
the comparative threshold cycle (∆∆Ct) method [88].

4.9. In-Vivo Mice Protection Assay

In order to evaluate the in vivo anti-Qs and anti-virulence activities of β-blockers; the
mice survival model was employed to assess the in vivo protective activity of metoprolol
against P. aeruginosa or S. typhimurium pathogenesis as previously described [17]. Briefly,
fresh P. aeruginosa or S. typhimurium overnight cultures in LB broth containing or not
metoprolol at sub-MIC, were adjusted to ≈1 × 106 CFU/mL) in phosphate-buffered saline
(PBS). For evaluating the protective activity of metoprolol against P. aeruginosa, female Mus
musculus mice at three weeks old were divided into 4 groups (n = 10). Group one was
intraperitoneally injected with 100 µL of metoprolol-treated P. aeruginosa in sterile PBS. The
positive control group was intraperitoneally injected with untreated P. aeruginosa. Two
negative controls were injected with sterile PBS or kept uninfected.

For evaluating the protective activity against S. typhimurium, four mice groups were
recruited and each comprises ten mice. Group one was injected with S. typhimurium treated
with metoprolol at sub-MIC. One positive and two negative mice groups were injected
with untreated S. typhimurium, PBS or kept uninfected, respectively. The mice survival was
observed over five days and plotted using the Kaplan–Meier method.

5. Conclusions

Bacterial resistance development to diverse antimicrobial agents is an emerging prob-
lem that mandates an efficient solution. Several approaches have been conducted, among
the most promising ones is tackling bacterial virulence because of its numerous advantages.
In the current study, a detailed in silico study was performed to evaluate the ability of
22 β-adrenergic blockers to compete on three different structurally Gram-negative QS re-
ceptors. The tested drugs showed diverse abilities to bind different QS receptors; however,
atenolol, esmolol, and metoprolol showed the highest binding affinity to the different QS
receptors. Atenolol, esmolol, and metoprolol as representative for β-adrenergic blockers
were selected for further in vitro and in vivo investigations. Atenolol, esmolol, and meto-
prolol significantly in vitro diminished the QS-controlled virulence in Chromobacterium
violaceum, Pseudomonas aeruginosa, and Salmonella typhimurium. Furthermore, the three
tested drugs down-regulated the QS-encoding genes in P. aeruginosa and sensor kinase en-
coding genes that sense adrenergic hormones on the surface of S. typhimurium. Interestingly,
metoprolol was selected to be tested in vivo where it protected mice from P. aeruginosa and
S. typhimurium pathogenesis. β-adrenergic blockers are promising anti-virulence agents,
hindering bacterial QS systems, decreasing the adrenergic hormones induced virulence,
and diminishing the bacterial espionage on host cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph15020110/s1, Figure S1: Three-dimensional representation of the binding site topology
at the three bacterial LuxR-type quorum sensing transcription factors; Figure S2: Conformational
analysis of simulated ligand–TraR A. tumefaciens protein complexes; Figure S3: Conformational
analysis of simulated ligand–QscR P. aeruginosa protein complexes; Figure S4: Conformational
analysis of simulated ligand–CviR C. violaceum protein complexes; Figure S5: The architecture of
three bacterial LuxR-type quorum sensing transcription factors; Figure S6: Superimposing the co-
crystallized (magenta sticks) and redocked (yellow sticks) ligands; Table S1: Descriptive ligand–TraR
A. tumefaciens binding interactions through directed flexible docking protocol; Table S2: Descriptive
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ligand–QscR P. aeruginosa binding interactions through directed flexible docking protocol; Table S3:
Descriptive ligand–CviR C. violaceum binding interactions through directed flexible docking protocol;
Table S4: Estimated ∆RMSF values for ligand–TraR A. tumefaciens proteins along the whole MD
simulation; Table S5: Estimated ∆RMSF values for ligand–QscR P. aeruginosa proteins along the whole
MD simulation; Table S6: Estimated ∆RMSF values for ligand–CviR C. violaceum proteins along the
whole MD simulation; Table S7: Sequences of the used primers in this study.
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