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Abstract: The purpose of this study was to compare vascular calcification (VC), serum osteoprotegerin
(OPG) levels, and other biochemical markers to determine their value as available predictors of all-
cause and cardiovascular (CV) mortality in patients on peritoneal dialysis (PD). A total of 197 patients
were recruited from seven dialysis centers in Mexico City. VC was assessed with multi-slice computed
tomography, measured using the calcification score (CaSc). OPG, albumin, calcium, hsC-reactive
protein, phosphorous, osteocalcin, total alkaline phosphatase, and intact parathormone were also
analyzed. Follow-up and mortality analyses were assessed using the Cox regression model. The
mean age was 43.9 ± 12.9 years, 64% were males, and 53% were diabetics. The median OPG was
11.28 (IQR: 7.6–17.4 pmol/L), and 42% of cases had cardiovascular calcifications. The median VC
was 424 (IQR:101–886). During follow-up (23 ± 7 months), there were 34 deaths, and 44% were
cardiovascular in origin. In multivariable analysis, OPG was a significant predictor for all-cause
(HR 1.08; p < 0.002) and CV mortality (HR 1.09; p < 0.013), and performed better than VC (HR 1.00;
p < 0.62 for all-cause mortality and HR 1.00; p < 0.16 for CV mortality). For each mg/dL of albumin-
corrected calcium, there was an increased risk for CV mortality, and each g/dL of albumin decreased
the risk factor for all-cause mortality. OPG levels above 14.37 and 13.57 pmol/L showed the highest
predictive value for all-cause and CV mortality in incident PD patients and performed better than VC.

Keywords: vascular calcification; diabetes mellitus; osteoprotegerin; cardiovascular mortality; risk
factor; peritoneal dialysis

1. Introduction

Cardiovascular diseases (CVD) are the main cause of comorbidity and mortality in
the population with chronic kidney disease (CKD) [1], but the incidence has not been fully
explained by traditional risk factors. Cardiovascular calcifications have been included
among non-traditional risk factors; they may involve cardiac valves and the intima layer
(atherosclerosis) or the middle layer (arteriosclerosis) of coronary arteries and peripheral
vessels [2].
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Arterial calcifications are a frequent finding in patients with CKD, even in non-dialysis
patients, and they are directly associated with the extent of renal damage [3]. Moreover,
vascular calcifications (VC) are an important marker of cardiovascular risk [4].

Various studies have shown that their presence is associated with greater all-cause and
CV mortality in hemodialysis patients [5]. On the basis of this association, coronary artery
calcification, quantified by means of multi-detector spiral computed tomography (CT), has
been suggested as a screening test to assess cardiovascular risk in patients undergoing
renal replacement therapy. However, the limited availability of the technique and its
operator dependency complicate its routine use [6] and have prompted the need for other
calcification biomarkers. Moreover, one of the more controversial points comes from
controlled clinical trials, in which various interventions, aimed at modifying the evolution
of coronary artery calcifications, showed little or no effect on mortality [7].

In recent years, various studies have highlighted the value of some bone metabolism-
related proteins as biomarkers of vascular wall calcification. Among them, osteoprotegerin
(OPG) seems to be particularly promising. OPG is a soluble glycoprotein, belonging to the
soluble proteins of the tumor necrosis factor (TNF) receptor superfamily, and is classified
as an osteoclastogenesis inhibition factor [8] because it is a decoy of the receptor activator
of nuclear factor kappa-β ligand (RANKL) and TNF-related apoptosis-inducing ligand
(TRAIL) [9]. OPG is expressed in most human tissues, including bone and vasculature
(endothelial and vascular smooth muscle cells (VSMC)). It is induced by inflammatory
cytokines, such as pro-inflammatory mediators, such as TNFα [10].

Although studies in vitro and in animal models suggest that OPG inhibits vascular
calcification, clinical studies suggest that elevated serum OPG levels are directly associated
with vascular calcifications, coronary artery disease, stroke, and future cardiovascular
events [11], and common carotid artery intima-media thickness (CCA-IMT). Moreover, it
has been shown to be a prognostic marker of cardiovascular risk in dialyzed patients [12]
and of mortality in hemodialysis (HD) patients [13]. Furthermore, in diabetic patients with-
out CKD, elevated circulating OPG levels are associated with acute myocardial infarction
and chronic heart failure of ischemic etiology [14], and mortality in patients with angina
pectoris [15]. Additionally, OPG is a predictor of mortality in patients with other diseases,
such as cancer or amyloidosis [16,17].

These findings may suggest that OPG could serve to evaluate cardiovascular risk in
dialysis patients. This may be of greater importance in younger patients without evident co-
morbidities, as, in this context, it may lead to identifying subjects that need a cardiovascular
evaluation and specific interventions, and may support treatment modulation.

The present study aimed to evaluate the role of osteoprotegerin compared to vascular
calcification, and some mineral metabolism markers with all-cause and cardiovascular
mortality in a multi-center cohort of patients on peritoneal dialysis (PD).

2. Materials and Methods
2.1. Study Design

A prospective observational cohort of incident patients in PD programs was recruited
from 7 hospitals belonging to the National Network of the lnstituto Mexicano of Seguro
Social (IMSS) in Mexico City and was followed up for at least 16 months. All-cause and CV
mortality were the primary end points of the study.

2.2. Patient Selection

Participation was offered to all the patients who began peritoneal dialysis (>3 months
and <4 months), either continuous ambulatory peritoneal dialysis (CAPD) or automated
PD (APD) treatment, at the PD centers of each hospital. Written informed consent was
obtained from the patients.

The inclusion criteria were: adult (>18 years), free of acute complications, including
peritonitis and hospitalizations during the month prior to enrolment. Patients with pre-
viously known CVD (defined as heart failure, ischemic disease, arrhythmia, myocardial
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infarction), chronic infections, malignancies, chronic obstructive pulmonary disease, ongo-
ing steroid therapy, positivity for hepatitis B or C and HIV were excluded. Patients with
incomplete data were also excluded.

2.3. Dialysis Schedule

Patients received 2 L, four times a day, for CAPD and four or five exchanges per night
and a wet day for APD. Only dextrose solutions were available and the concentration was
prescribed by the attending nephrologist according to the patient’s needs. Dialysis adequacy
was calculated by total Kt/V: renal Kt/V+ peritoneal Kt/V and peritoneal ultrafiltration.
Kt/V is a number used to quantify the adequacy of peritoneal dialysis and hemodialysis,
and represents the clearance of Urea by the peritoneum and/or by the kidney, normalized
by total body water. K is the clearance of urea by the peritoneum or the kidney, in ml/min,
t is the time on dialysis (min), and V is the volume of distribution of urea, approximately
equal to the volume of the patient’s total body water. The minimal recommended values
were a weekly urea Kt/V of 1.7 and a daily ultrafiltration of 750 mL [18]. Residual renal
function was calculated as the mean of urea and creatinine clearance.

2.4. Data Collection

Demographic and relevant clinical data were collected from medical records by trained
nurses. A CT was performed at the baseline stage. Patients were censored at the end of
the follow-up: kidney transplantation, or in the shift to hemodialysis or transfer to other
hospitals, in case of voluntary withdrawal or death. Causes of death were obtained from
the death certificate and were reviewed according to a caregiver.

2.5. Biochemical Assessments

Blood samples were drawn from an antecubital vein without stasis, after overnight
fasting. The samples were centrifuged and the plasma and serum were separated and
stored at –70 ◦C until assayed. Osteoprotegerin (OPG) was determined using ELISA (Mi-
croVue Eia Kit. Quidel Corp. Specialty Products, San Diego, CA, USA). The intra-assay
precision was 3% and the inter-assay precision was 4.5%, with a limit of detection of 1.16
to 60 pmol/L. N-MID osteocalcin and intact parathormone (iPTH) were analyzed by elec-
trochemiluminescence immunoassay (Elecsys Modular Analytics 2010 Roche, Mannheim,
Germany) The intra and inter coefficients of variation (% CoV) were 2.5% and 2.0%, re-
spectively. Serum phosphorous (P), serum albumin (Alb), and albumin-corrected calcium
(cCa) were calculated with the formula: cCa = (Ca (mg/dL) + 0.8(4-Alb g/dL)); total
cholesterol (Chol), glucose (Glu), creatinine (Cr), total alkaline phosphatase (tALP), and
high-sensitivity C-reactive protein (hsCRP) were measured using standard techniques
(Hitachi 902 autoanalyser, Tokyo, Japan). Twenty-four-hour urine and dialysate collection
was performed for both CAPD and APD patients.

2.6. Measurement of Arterial Calcifications

A 16-cut multi-slice computed tomography (MSCT) using Bright Speed, (GE, Bei-
jing, China), was used to quantify the vascular calcifications (VC) in a standardized section
of the abdominal aorta and pelvic vessels. The acquired images were reviewed using
Advantage Workstation Swart Core software, v4.5, (GE, Waukesha, Wisconsin, WI, USA),
and a calcification score (CaSc) was generated. The calcification score indicates the amount
of calcified plaque in the arteries. The CaSc (AJ130 score) refers to the detection of densities
of more than 130 Hounsfield units (HU) in areas of at least 1mm2. It is obtained from
the product between the area of calcified plaque and its maximum density in Hounsfield
units and is expressed in Agatston units (AU). A score of 0 implies the absence of calcified
plaques, 1–10 AU shows minimal calcified plaques, 11–100 AU shows mild calcification,
101–300 AU shows moderate calcification, and >300 AU shows severe arterial calcification,
as in other studies [19]. An example of a patient with calcifications is shown in Scheme 1.
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No contrast-enhancing agent was used; scanning was performed on sequential 2 mm
thick layers. Two independent investigators, blind to the patient’s clinical history, evaluated
the MSCT scans. Inter-observer reproducibility between the investigator and radiologist
was assessed for all patients, with a coefficient of variation of 3.5%, the intra-observer
coefficient of variation was 2.8% during three days, and the correlation between observers
was 0.95 (CI%; 0.92 to 0.98).
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2.7. Statistical Analysis

Data are expressed as mean ± standard deviation (SD) in the case of continuous
variables with normal distribution, or median and interquartile range (IQR) in case of
non-normal distribution, or as frequencies in the case of categorical variables. Differences
between groups were analyzed using a Student’s t-test, Mann–Whitney U test, or Chi-
square test, as appropriate. Cox proportional hazards regression, using the Enter method,
was used to estimate the all-cause and cardiovascular mortality hazard ratios, unadjusted
and adjusted by: serum OPG, cCa, sAlb, P, iPTH, and hsCRP as predicting variables, and
hsCRP was converted to a logarithm. The Cox models were determined with baseline
co-variables. We additionally performed a Cox regression analysis using the forward
conditional method to determine the score statistics for each variable.

Receiver operating characteristic (ROC) curves were made to determine the diagnostic
OPG value. The area under curve (AUC) was evaluated, and we determined the concen-
tration of OPG as the cut-off point for all-cause mortality and CV death, according to the
Youden index method, with a significance of p < 0.05. Analysis was performed using SPSS
Statistics for Windows, version 21.0. (IBM Corp, Armonk, NY, USA).

3. Results

Figure 1 shows the study flow chart: 328 patients were assessed for eligibility at the
dialysis centers, and 230 of them were eligible. Thirty-three were excluded because of
several causes: 18 patients did not meet the selection criteria, mainly because of age, catheter
dysfunction, peritonitis, and hospitalizations during the previous month; 7 patients refused
to participate; 4 patients moved to another city; 4 patients lost social security coverage.
Thus, 197 patients were included in the final analysis.

3.1. Baseline Biochemical Data

Demographic and relevant clinical and biochemical data of the 197 included patients
are shown inTable 1. The mean age was 43.9 ± 12.9 years old, 64% were males, and 53%
were diabetics. The most frequent etiology was diabetic nephropathy, found in 52.8% of
the patients. The median OPG was 11.28 pmol/L, with an interquartile range of 25–75;
(7.6–17.1) comparable with other studies; 10.9 (IQR 8–10.3 pmol/L) [20].
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Table 1. Patient´s demographic, clinical and biochemical data.

Variables Mean ± SD

Number of patients. 197

Age (year) 43.97 ± 12.92

Sex: male (%) 64%

Diabetes (%) 53%

CAPD/APA (%) 73/27%

Systolic blood pressure (mmHg) 136.41 ± 26.44

Diastolic blood pressure (mmHg) 84.20 ± 15.71

Total Kt/V, median (IQR) 1.46(1.07–2.3)

Patients prescribed with Ca CO3 n (%) 125(63.5)

Patients prescribed with Calcitriol n (%) 105 (53.3)

Body mass index (kg/m2) 24.83 ± 4.28

Hemoglobin Hg (g/dL) 10.15 ± 2.44

Glucose (mg/dL) 97.9 (87.6–138.1)

Creatinine (mg/dL) 8.66 ± 3.22

Total cholesterol (mg/dL) 192.12 ± 44.26

Triglycerides, (mg/dL), median(IQR) 155 (119.1–226.3)

Albumin (g/dL) 3.41 ± 0.51

cCa(mg/dL) 9.1 ± 1.38

Phosphorus, mg/dL, median (IQR) 4.5 (1.6–9.8)

Intact parathormone pg/mL, median(IQR) 104.8 (50.4–199.7)

Osteocalcin, ng/mL, median (IQR) 186.2 (105.4–300)

Ln C-Reactive protein, mg/L, median (IQR) 1.8 (0.6–5.0)

Alkaline phosphatase, U/L, median (IQR) 99.4 (77.2–138.2)

Osteoprotegerin, pmol/L median (IQR) 11.28 (7.6–17.1)

Vascular calcification, CaSc, median (IQR) 424 (101–886)
Data are expressed as mean ± SD, or Median (IQR), interquartile range; (25–75). CAPD /APA: continuous
ambulatory peritoneal dialysis/automated peritoneal dialysis. Total Kt/V = renal Kt/V+peritoneal Kt/V.
cCa = albumin-corrected calcium.
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A significant difference was noted between diabetic patients and non-diabetic ones
in terms of OPG (16.78 ± 3.37 vs. 8.50 ± 3.88 pmol/L, respectively, p < 0.001), as well as
in CaSc (424 (IQR, 144 to 928) vs. 118 (IQR 41 to 533), respectively, p < 0.001). Multiple
correlations between variables adjusted by diabetes are shown in Table 2; OPG correlated
positively with age, cCa, and VC, and negatively with albumin. With respect to treatments,
we did not find differences between dialysis modalities, CAPD, or APD, in regard to
OPG levels.

Table 2. Multiple correlations between variables adjusted by diabetes.

Variables Age SBP cCa PO4 iPTH OPG Alb CRP

SBP
r 0.142

0.055
10.000

p

cCa
r 0.091

0.222
−0.034
0.643

10.000
p

P
r −0.197

0.008 b
−0.055
0.459

0.094
0.206

10.000
p

iPTH
r −0.212

0.004 b
0.123
0.098

−0.323
0.001a

0.092
0.215

10.000
p

OPG
r 0.333

0.001 a
0.134
0.070

0.161
0.030 c

−0.023
0.754

−0.087
0.242

10.000
p

Alb
r −0.045

0.545
−0.108
0.147

−0.090
0.227

0.149
0.044 c

0.078
0.292

−0.180
0.015 c 10.000

p

CRP
r −0.029

0.694
−0.069
0.351

−0.044
0.552

0.041
0.585

0.001
0.986

−0.029
0.694

−0.153
0.039 c 10.000

p

VC
r 0.113

0.127
0.064
0.393

0.066
0.376

0.038
0.606

0.002
0.982

0.200
0.007 b

0.015
0.836

0.015
0.839P

SBP: systolic blood pressure, (mmHg), cCa: albumin-corrected calcium, (mg/dL), P: phosphorus, (mg/dL), iPTH:
intact parathormone, (pg/mL), OPG: osteoprotegerin, (pmol/L), Alb: albumin, (g/dL), CRP: C reactive protein,
(mg/L), VC: vascular calcification. (CaSc). Multivariate analysis adjusted by diabetes, a p < 0.001, b p < 0.01,
c p < 0.05.

3.2. Follow-up

During a two-year follow-up, 34 patients died. Causes of death were: CVD in
15 patients (44%), including acute myocardial infarction, sudden death, arrhythmia, and
heart failure, PD-related peritonitis in 2 patients (5.9%), non-peritoneal-related infections in
2 patients (5.9%), uremia/hyperkalemia in 5 patients (14.7%), cancer/stroke in 2 patients
(5.9%), hypovolemic shock in 2 patients (5.9%), and hyperglycemia/acidosis in 6 patients
(17.7%).

Table 3 shows the differences in patient demographics, as well as clinical and bio-
chemical baseline data between the survivors and non-survivors. Non-survivors were
older, more frequently diabetic, and had higher values of systolic blood pressure, OPG,
and a higher incidence and severity of vascular calcifications. They also had lower levels of
serum albumin.

Table 4 presents the results of the unadjusted Cox model analysis (univariate analysis)
of factors associated with all-cause and CV mortality. The presence of diabetes mellitus
increases by 82% and 85%, respectively, the possibility of having the risk of all-cause and
CV mortality. Diabetes mellitus, age (by year), systolic blood pressure (for each mmHg),
OPG (pmol/L), VC (for each CaSc), and low albumin (for each g/dL) were predictors for
all-cause mortality while, diabetes, age, OPG, cCa, VC, and decreased Alb were predictors
for CV mortality.
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Table 3. Patient´s demographic, clinical and biochemical data according to survival.

Variables Survivors
(n = 163)

Non-Survivors
(n = 34) p-Value

Age (year) 42.25 ± 12.98 51.06 ± 9.91 0.001 a

Sex, male, (%) 50.3% 40% 0.840

Diabetes n (%) 76 (46.6%) 29 (85.3%) 0.001 a

CAPD/APD (%) (51.5%)/(48.5%) (43.2%)/(56.8%) 0.400

Urine volume (mL/24 h) 573.78 ± 516.71 585.7 ± 547.97 0.904

Systolic blood pressure (mmHg) 134.22 ± 26.34 146.79 ± 24.72 0.011 b

Dyastolic blood pressure (mmHg) 84.61 ± 16.02 82.26 ± 14.25 0.431

total Kt/V 1.81 ± 1.1 1.85 ± 1.2 0.809

Body mass index (kg/m2) 24.57 ± 4.32 26.05 ± 3.94 0.067

Hemoglobin (g/dL) 10.03 ± 2.42 10.69 ± 3.01 0.171

Glucose (mg/dL) 95.7 (86.7–129.4) 115.2 (95.9–185.9) 0.004 a

Creatinine (mg/dL) 8.81 ± 3.28 7.98 ± 2.89 0.173

BUN (mg/dL) 56.23 ± 19.79 57.07 ± 21.19 0.824

Total Cholesterol (mg/dL) 193.16 ± 44.04 187.14 ± 45.61 0.472

Triglycerides (mg/dL) 163.2 (112.6–232.1) 140.6 (104.7–209.9) 0.175

Albumin (g/dL) 3.48 ± 0.51 3.10 ± 0.44 0.001 a

Calcium (mg/dL) 8.69 ± 1.17 8.76 ± 2.07 0.798

cCa (mg/dL) 9.09 ± 1.21 9.47 ± 2.07 0.168

Phosphorus (mg/dL) 4.45 (3.7–5.8) 4.7 (3.5–6.0) 0.663

iPTH (pg/mL) 107.15 (55.3–199.5) 97.8 (22.2–216.7) 0.922

Osteocalcin (ng/mL) 195.8 (104–300) 111.5 (109–285) 0.606

Ln C-reactive protein (mg/L) 0.53 (−0.5–1.6) 0.69 (−0.5–1.9) 0.519

Alkaline phosphatase (U/L) 95.5 (76.8–130.7) 111.5 (86.4–151.3) 0.249

Osteoprotegerin (pmol/L) 10.33 (7.23–15.34) 17.61 (10.48–23) 0.005

Vascular calcification (Ca Sc) 306.83 ± 898.91 960.16 ± 1888.08 0.014 a

Data are expressed as mean ± SD or median (IQR). Total Kt/V = renal Kt/V+ DL Kt/V. cCa = albumin-corrected
calcium. CaSc = calcium score. Student´s t-test and median test with significance of: a p < 0.005, b p < 0.05.

Table 5 shows the multivariable analysis (adjusted Cox analysis) of mortality with
baseline data of calcium metabolism biomarkers (Model 1); high OPG and low albumin
levels were associated with all-cause mortality. OPG, cCa, and iPTH were associated with
CV mortality. OPG was significant in both mortalities. Model 2 adds DM to Model 1. OPG
was significant only in all-cause mortality; cCa and PTH were significant in cardiovascular
mortality. Model 3 adds age to Model 2. Albumin was significant for all-cause mortality.
cCa, PTH, and age were significant for CV mortality. OPG was not significant. This was due
to the high association and collinearity that OPG had with age, as was shown in multiple
correlations.
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Table 4. Factors associated with all-cause and cardiovascular mortality in peritoneal dialysis patients.

Univariate Cox Regression Analysis

All-Cause Mortality Cardiovascular Mortality

Variable p-Value HR CI 95% p-Value HR 95% CI

Low Upper p Low Upper

Diabetes (non) 0.001 a 0.182 0.070 0.472 0.013 b 0.15 0.03 0.673

Age (y) 0.001 a 1.018 1.004 1.031 0.014 b 1.08 1.02 1.15

SBP (mmHg) 0.009 b 1.02 1.00 1.03 0.107 1.02 0.99 1.04

OPG(pmol/L) 0.013 b 1.09 1.01 1.16 0.001 a 1.10 1.04 1.17

sAlb (g/dL) 0.001 a 0.12 0.06 0.23 0.016 b 0.30 0.11 0.79

cCa (mg/dL) 0.119 1.29 0.88 1.91 0.001 a 1.41 1.15 1.73

VC (CaSc) 0.019 b 1.00 1.00 1.00 0.003 a 1.00 1.00 1.00

P (mg/dL) 0.723 0.96 0.76 1.21 0.885 0.90 0.69 1.37

iPTH (pg/mL) 0.530 1.00 1.00 1.01 0.965 1.00 0.99 1.01

LnCRP (mg/L) 0.057 1.28 0.99 1.65 0.147 1.32 0.91 1.92

Baseline variable Cox enter model analysis. a p < 0.005, b p < 0.05. SBP: systolic blood pressure, OPG: osteoprote-
gerin, sAlb: serum albumin, cCa: albumin-corrected calcium, VC: vascular calcification, P: phosphorus, iPTH:
intact parathormone, lnCRP: C reactive protein.

Table 5. Factors associated with all-cause and cardiovascular mortality in peritoneal dialysis patients.

Multivariate Cox Regression Analysis

All-Cause Mortality Cardiovascular Mortality

Variable: p HR 95% CI p HR 95% CI

Model 1: OPG (pmol/L) 0.002 a 1.08 1.03 1.14 0.013 b 1.09 1.02 1.66

Alb (g/dL) 0.012 b 0.35 0.15 0.79 0.194 0.45 0.13 1.50

cCa (mg/dL) 0.353 1.13 0.87 1.46 0.001 a 1.53 1.19 1.98

VC (CaSc) 0.616 1.00 1.00 1.00 0.163 1.00 1.00 1.00

P (mg/dL) 0.445 1.11 0.85 1.44 0.691 0.91 0.59 1.40

PTH (pg/mL) 0.297 1.00 0.99 1.01 0.030 b 1.00 1.00 1.01

LnCRP(mg/L) 0.090 1.29 0.96 1.74 0.092 1.45 0.94 2.25

Model 2: Model 1 + DM

OPG (pmol/L) 0.040 1.06 1.00 1.12 0.279 1.05 0.96 1.13

Alb (g/dL) 0.054 0.43 0.182 1.05 0.385 0.58 0.17 1.98

cCa (mg/dL) 0.231 1.17 0.90 1.53 0.001 a 1.65 1.25 2.17

VC (CaSc) 0.791 1.00 1.00 1.00 2.242 1.00 1.00 1.00

P (mg/dL) 0.353 1.41 0.86 1.50 0.843 0.96 0.62 1.48

iPTH (pg/mL) 0.154 1.002 0.99 1.00 0.008 b 1.00 1.00 1.01

Ln CRP (mg/L) 0.069 1.32 0.97 1.79 0.060 1.54 0.982 2.415

DM (yes) 0.087 0.343 0.101 1.16 0.054 7.14 0.966 52.786
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Table 5. Cont.

Multivariate Cox Regression Analysis

All-Cause Mortality Cardiovascular Mortality

Variable: p HR 95% CI p HR 95% CI

Model 3: Model 2 + Age

OPG (pmol/L) 0.127 1.048 0.987 1.112 0.409 1.03 0.954 1.124

Alb (g/dL) 0.042 b 0.411 0.174 1.53 0.155 0.420 0.127 1.389

cCa (mg/dL) 0.225 1.181 0.903 1.544 0.001 a 1.67 1.25 2.219

VC (CaSc) 0.819 1.00 1.00 1.00 0.190 1.00 1.00 1.00

P (mg/dL) 0.252 1.18 0.89 1.56 0.891 0.970 0.624 1.508

iPTH (pg/mL) 0.225 1.18 0.90 1.54 0.012 b 1.01 1.00 1.009

lnCRP (mg/L) 0.074 1.32 0.97 1.79 0.079 1.51 0.954 2.393

DM (yes) 0.321 0.51 0.13 1.93 0.300 3.14 0.361 27.21

Age (y) 0.227 1.03 0.98 1.08 0.030 b 1.08 1.007 1.159

Model 1 shows multivariable analysis with calcium metabolism biomarkers. Model 2 shows and adds DM
to Model 1 plus DM. Model 3 shows and adds age to Model 1 plus DM and age2. Significance = a p < 0.005,
b p < 0.05.

Vascular calcification was not a risk factor in multivariate analysis of either all-cause
or CV mortality.

To know the categorical value of each variable in combination with all other variables,
we performed Cox regression analysis using the forward conditional method (Table 6).
The highest score, according to all-cause mortality, was obtained by OPG (18.77, p < 0.001,
followed by sAlb (13.84, p < 0.001), DM (13.67, p < 0.001), Age (10.56, p > 0.006), VC (5.59,
p > 0.018), and SBP (5.24, p < 0.022). For CV mortality; OPG had the highest score (11.90,
p < 0.001), followed by cCa (11.07, p <0.001), VC (10.38, p < 0.001), DM (8.70, p < 0.003), Age
(7.55, p < 0.006), and Alb (5.99, p < 0.014). With this analysis, it was possible to confirm
the highest value of OPG as a predictor of death in combination with markers of calcium
metabolism, inflammation, DM, and age.

Table 6. Scores of variables associated with all-cause and cardiovascular mortality in incident
peritoneal dialysis patients.

Variable All-Cause Mortality Cardiovascular Mortality

Score p-Value Score p-Value

OPG (pmol/L) 18.77 0.001 a 11.90 0.001 a

sAlb (g/dL) 13.84 0.001 a 5.99 0.014 b

cCa (mg/dL) 2.24 0.134 b 11.07 0.001 a

VC (CaSc) 5.59 0.018 10.38 0.001 a

P (mg/dL) 0.03 0.865 0.08 0.775

iPTH (pg/mL) 0.16 0.690 0.04 0.838

lnCRP (mg/L) 3.09 0.078 2.38 0.122

DM 13.67 0.001 a 8.70 0.003 a

Age (y) 10.56 0.006 b 7.55 0.006 b

SBP (mmHg) 5.24 0.022 b 2.54 0.111

Cox regression using forward conditional model analysis, a p < 0.005, b p < 0.05. OPG: osteoprotegerin, sAlb: serum
albumin, cCa: albumin-corrected calcium, VC: vascular calcification, P: phosphorus, iPTH: intact parathormone,
ln CRP: C reactive, protein, SBP: systolic blood pressure.



Biomolecules 2022, 12, 551 10 of 14

Figure 2a shows the diagnostic value of OPG for all-cause mortality in a ROC curve,
where the area under the curve (AUC) was 0.72, p < 0.001 (95% CI: 0.627–0.821). The Youden
index was identified as 14.37 pmol/L as the OPG cut-off value, with a sensitivity of 72.4%
and a specificity of 62.5%. Figure 2b shows the diagnostic value of OPG for CV mortality
in a ROC curve, where AUC was 0.70, p < 0.011 (95% CI: 0.552–0.845). The Youden index
was identified as 13.57 pmol/L as the OPG cut-off value with a sensitivity of 77.3% and a
specificity of 64.8%.
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for OPG = 14.37 pmol/L, p < 0.001; with 72.4% sensitivity and a specificity of 62.5%. (b) ROC curve
of OPG for CV mortality (AUC: 0.70; CI 95%: 0.552–0.845), cut-off point for OPG = 13.57 pmol/L,
p < 0.011, with a sensitivity of 77.3% and a specificity of 64.8%.

Figure 3a shows the association of OPG concentration with all-cause mortality (Cox
analysis), classified as 14.37 pmol/L. It is important to note that the highest OPG concentra-
tion (>14.37 pmol/L) had the lowest survival compared to those of the lowest OPG levels
(<14.37 pmol/L), with an HR of 0.203 (95% CI: 0.096–0.43, p < 0.001). Figure 3b shows the
association of OPG concentration with cardiovascular mortality (Cox analysis), classified as
13.57 pmol/L. It is important to note that the highest OPG concentration (>13.57 pmol/L)
had the lowest survival compared to those of the lowest OPG levels (<13.57 pmol/L), HR
of 0.198 (95%CI 0.006–0.432, p < 0.006).
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the cut-off point for osteoprotegerin (13.57 pmol/L), p < 0.006.
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4. Discussion

Data from this study suggest that high OPG concentrations, a molecule related to
mineral metabolism, inflammation, and vascular calcification, have a high predictive value
for both all-cause (>14.37 pmol/L) and cardiovascular mortality (>13.57 pmol/L) in incident
PD patients. Its predictive value is greater than those of other commonly used biomarkers,
such as VC. Low albumin and high cCa levels were risk factors for only all-cause and
cardiovascular death.

The novelty of this study resides in the fact that the PD cohort was composed of
relatively young patients and that the selection criteria excluded those with higher mortality
risk. The adopted inclusion/exclusion criteria allowed us to verify whether OPG, already
associated with mortality in older cohorts of dialysis patients, was a mortality predictor in
younger ones, a population in which focusing on cardiovascular risk may be of practical
relevance.

The cut-off point values of OPG >14.37 pmol/L and >13.57 pmol/L were defined as
a higher risk factor for all-cause and CV death using ROC curves. This was one of the
main findings of the present study and is not surprising because of its relevance as a risk
factor for the development and progression of heart valve calcification in PD patients [21],
thoracic and femoral arterial calcification [22], as well as atherosclerosis, all-cause mortality,
and cardiovascular dysfunction, which have already been demonstrated in other studies in
hemodialysis and 3–5 CKD patients [23–26]. A recent meta-analysis showed that elevated
circulating OPG levels independently predicted an increased risk for CV mortality in
patients with CKD [27].

In the in vitro studies, OPG inhibits vascular calcification and protects endothelial
cells from apoptosis, and it also promotes neovascularization in vivo as it is a soluble
decoy receptor for TRAIL and RANKL [28–31]. In kidney patients, serum OPG levels
increase, which is associated with vascular calcification and cardiovascular disease [11].
This apparent paradox can be understood as a compensatory mechanism to counteract
calcification, endothelial damage, and ongoing inflammation. In this way, the positive
association between OPG and diabetes, age, systolic blood pressure, calcium, vascular
calcifications, as well as the negative correlation with serum albumin, found in the present
study, can be explained.

Mechanisms other than mineral metabolism may be involved in increasing OPG,
including the expansion of extracellular volume. In healthy humans, high sodium intake
significantly elevates OPG in the blood. On the other hand, chronic inflammation through
the increase in pro-inflammatory cytokines can also be a stimulus for an increase in circu-
lating OPG [32]. Both conditions, extracellular expansion, and chronic inflammation, are
frequent findings in PD patients [33]. Some studies have suggested that high levels of circu-
lating OPG and inflammation have independent and additive values as predictors of death
in patients with CKD and end-stage renal disease (ESRD) [34]. The lack of association of
OPG with hsCRP in this and other studies does not invalidate the association, since hsCRP
is not the only marker of inflammation [26]. As a member of the TNF superfamily, OPG
may be involved in several inflammatory pathways. It is also important to mention that
the OPG–inflammation relationship is bidirectional, and OPG can regulate the expression
of interleukins in response to inflammatory stimuli, while its expression and production
are regulated by several cytokines [35].

The ability of pro-inflammatory mediators, such as TNFα, interleukin-1, and platelet-
derived growth factor, to enhance OPG expression and production in vascular cells, may
explain the association between OPG concentrations and cardiovascular diseases [36].

Another important finding of our results was that OPG was a better predictor of both
cardiovascular and all-cause mortality than VC or other biomarkers of calcium metabolism
and inflammation. This suggests that OPG is associated with vascular damage and mortal-
ity through mechanisms independent of VC.
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In keeping with our results, the authors of a published review concluded that circulat-
ing OPG levels could be used as an independent biomarker of cardiovascular disease in
patients with acute or chronic cardio-metabolic diseases to improve the prognosis [37].

The useful prognostic value of calcification in patients with CKD is doubtful. It has
been shown, in previous studies, that the quantification of coronary artery calcifications
(CAC) with CT is valid for patients without CKD; however, VC association with cardiovas-
cular death is not significant in CKD patients when adjusted for cardiovascular risk factor
markers [38]. Our study confirms the findings that vascular calcifications in multivariate
analysis (in combination with biomarkers of calcium metabolism and inflammation) were
not associated with the risk of all-cause and cardiovascular death.

Although cardiovascular risk stratification with vascular calcification is used in the
clinical setting, it is rather impractical for routine use. On the contrary, OPG, albumin, and
cCa level determinations are widely available and can be repeatedly tested during patient
follow-up by means of routine laboratory assessments.

Previous studies in PD patients showed that cCa was significantly associated with
cardiovascular mortality and the results of our study are in line with these findings [39,40].

Serum albumin (sAlb) was the other circulating marker found to be associated with
all-cause death. Previously, in several clinical studies, sAlb has been shown to be associated
with CV death. It is speculated that hypoalbuminemia is a surrogate marker of proteinuria
or inflammation [41].

The practical implications of the present study in the care of PD patients are that OPG
and cCa levels could be an alternative or a complementary evaluation in the assessment
of cardiovascular risk in PD patients. VC assessment, by means of a CT scan, could be
reserved for specific cases due to its limited availability, high cost (150 USD compared to
13 USD for an OPG test) and its major operator dependency.

This study has some limitations; most importantly, the sample size is possibly con-
sidered to be too small. However, selection criteria allowed us to analyze a representative
sample of a common population of PD patients in Mexico. Moreover, our study is the first,
to date, to include only incident patients on PD and determine the risk of cardiovascular
death, taking VC, OPG, and biochemical markers of mineral metabolism into account.

5. Conclusions

The data presented here show that OPG concentrations above 14.37 and 13.57 pmol/L
have the highest all-cause and cardiovascular mortality predictive values in incident PD
patients. The OPG predictive value overcomes other biomarkers, such as vascular calcifica-
tion. Its systematic use could help in identifying patients with higher mortality risk, with
the aim of providing a more intensive follow-up and adapting treatment. Future research
could be conducted in intervention studies.
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