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Abstract

In this paper, we propose a new estimation method in estimating optimal dynamic treatment

regimes. The quadratic inference functions in myopic regret-regression (QIF-MRr) can be

used to estimate the parameters of the mean response at each visit, conditional on previous

states and actions. Singularity issues may arise during computation when estimating the

parameters in ODTR using QIF-MRr due to multicollinearity. Hence, the ridge penalty was

introduced in rQIF-MRr to tackle the issues. A simulation study and an application to antic-

oagulation dataset were conducted to investigate the model’s performance in parameter

estimation. The results show that estimations using rQIF-MRr are more efficient than the

QIF-MRr.

Introduction

A dynamic treatment regime (DTR) is a branch of personalized medicine that uses informa-

tion from the patient to minimize health problems. In reality, the treatment response for each

patient is different, which influenced to the development of the DTR and personalized medi-

cine. The advantages of personalized medicine include the following: a cutback in the total

cost of health care; the patient receiving an option to intensive health care by deciding an opti-

mal decision for the treatment; and increased compliance and devotion towards treatment [1].

Throughout the years, researchers have shown an interest in DTR. For example, [2]

described anticoagulant data to obtain an optimal strategy for the warfarin-treated patient who

is at risk of thrombosis (i.e., abnormal blood clotting). Another example of DTR is the estima-

tion of the optimal time by [3] for an asymptomatic HIV-infected subject to start highly active

retroviral therapy (HAART). Others include [4–7].

DTR, also known as adaptive strategies, adaptive interventions, or treatment policies, is a

multi-stage decision rule of personalized medicine. It defines a set of decision rules to deter-

mine the treatment of an individual based on their health condition and treatment history.

The term “dynamic” indicates a variation of treatment using the patient’s current state and

previous treatment decisions. The purpose of DTR is to optimize the mean outcome for each

patient, also called optimal dynamic treatment regime (ODTR).
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[8] proposed a regret function to estimate ODTR semi-parametrically and parameterized

the optimal rules using the iterative minimization of regrets (IMOR) method. Following the

development of ODTR, [9] proposed a regret-regression method where the ODTR was esti-

mated by incorporating the regret function into regression modeling. A doubly robust version

of the regret regression by [10] claimed to be equivalent to a reduced form of the efficient g-

estimation method [11, 12].

[13] introduced the myopic regret-regression (MRr) which is a short-term strategy of the

regret-regression. In a short-term strategy, the ODTR was estimated at each time point. The

MRr provides good estimates when the outcome is measured through time. However, in the

previous works mentioned above, no attention has been given to the correlation within-subject.

ODTR is actually a longitudinal dataset where the observations of one subject are dependent on

each other over time. Many studies made use of longitudinal data, for example in [14–16].

To estimate ODTR for correlated data, [13] proposed a method called QIF-MRr which inte-

grates the MRr into the quadratic inference functions (QIF). The QIF method was proposed

by [17] where it is an extension to the generalized estimating equations (GEE) [18] which has

widely been used in the analysis of longitudinal and correlated data [19–22]. Hence, the

QIF-MRr is able to provide unbiased and efficient estimates even with the misspecified work-

ing correlation structure.

In the early years [23], proposed the penalized estimating equations, which considered a

bridge penalty, and applied them to the GEE method. Meanwhile, [24] proposed the penalized

QIF by using the penalized spline and QIF method. In this paper, we proposed an estimation

strategy called the ridge quadratic inference function for myopic regret-regression (rQIF-MRr)

to estimate ODTR for correlated data. The ridge penalty, also known as L2 penalty [25]. The

reason we choose the ridge penalty over the other penalties is that the ridge penalty can control

inflation and general instability related to the least square estimates [26] and it also can solve

singularity issues [27].

The paper is organized as follows: We first define the notations and assumptions needed

throughout the paper. Then, we propose the rQIF-MRr in estimating ODTR. The proposed

method is illustrated using simulation and application to anticoagulant dataset.

Methods

In this section, we will propose a ridge quadratic inference function for myopic regret-regres-

sion (rQIF-MRr) to estimate the parameter for ODTR. We follow the notations obtained from

[9]. Suppose,

• j = 1, 2, . . ., K is the number of time visits, with K is the final time visit for subject i.

• n is the sample size where subject i = 1, 2, . . ., n.

• Sj represents the current state of the subject i at visit j.

• Aj represents an action or treatment decision made for subject i at visit j.

• �Sj ¼ ðS1; S2; . . . ; SjÞ is the cumulative information of the states for subject imeasured from

the first to the jth visit.

• �Aj ¼ ðA1;A2; . . . ;AjÞ is the cumulative actions given to subject i from the first to the jth visit

based on the previous history ð�Sj� 1;
�Aj� 1Þ.

• The action given at visit j is determined by the state of the subject at visit j with the actions

given at the previous visits, Aj−1.
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• The states and actions ð�Sj; �AjÞ were assumed to be independent between the subjects and

dependent within a subject.

• The response Yj were measured at each visit j.

• From the notion of the potential outcome or counterfactual [28, 29], aj is a set of all possible

actions that can be given at visit j.

• �Sjð�aj� 1Þ ¼ ðS1; S2ða1Þ; . . . ; Sjð�aj� 1ÞÞ is the potential state history under the possible action

�aj� 1.

• Yð�aKÞ is the potential outcome under the possible action �aK .

• doptj is the optimal dynamic treatment regime which optimizes the expected value of outcome

Yj.

• EðYðdoptj Þj�Sj; �Aj� 1Þ is the expected value of the potential outcome or counterfactual final

responses

• EðYðaj; d
opt
jþ1
Þj�Sj; �Aj� 1Þ is the expected value of the potential outcome if action aj is chosen at

time j and then subsequently the optimal decision rules are followed.

Three assumptions were made in this study, which are consistency, no unmeasured con-

founders, and positivity. The assumption of consistency is when the observed outcome Y is

equal to the potential outcome Yð�aKÞ and the observed state history �SK is equal to the potential

state history �S�aK� 1
under the observed treatment aK = AK. The treatment is given in a way that

it is possible for all the treatment options to be assigned to all patients in the population under

consideration.

The assumption of no unmeasured confounders is that the decision for each treatment

depends only on the observed states and treatment history. For any regime �aK , the action

given at visit j, Aj is independent of any future or potential states or outcome given the previ-

ous history, for j = 1, 2, . . ., K. If there is no drop-out, the assumption is equivalent to the

exchangeability. If the subjects are censored, further assumption is needed where the censoring

is non-informative conditional on history. That is, the potential outcome of a censored patient

will follow the same distribution as the uncensored patients.

The third assumption about positivity is that the optimal treatment regime has a nonzero

or positive probability of being observed in the data. In continuous treatment, the optimal

treatment regime is identifiable from the observed data. The assumption may be theoretically

and practically violated. A theoretical violation occurs when the study’s design prevents a

patient from receiving a specific therapy. Practical violations, on the other hand, occur when a

portion of the patient has a very low probability of receiving therapy.

Ridge quadratic inference function for myopic regret-regression

(rQIF-MRr)

Suppose the mean response of the MRr from [13] is

hj ¼ EðYjj�Sj; �AjÞ

¼ b0 þ �jð
�Sjj�Sj� 1;

�Aj� 1; bÞ � mjðAjj�Sj; �Aj� 1;cÞ;
ð1Þ

where �jð
�Sjj�Sj� 1;

�Aj� 1; bÞ ¼ b
T
j ð

�Sj� 1;
�Aj� 1ÞZj. The coefficients, b

T
j ð

�Sj� 1;
�Aj� 1Þ depend on the his-

tory before visit j of the states and actions [9, 10]. Meanwhile, the residuals, Zj ¼ Sj �
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EðSjj�Sj� 1;
�Aj� 1Þ is a linear combination between Sj and the expected value of Sj given the his-

tory, ð�Sj� 1;
�Aj� 1Þ. The regret function mjðAjj�Sj; �Aj� 1;cÞ is zero if the optimal action is selected

at visit j. Otherwise, the regret function is positive since the aim is to maximize the response Yj
[9].

[17] defines R(ρ) to be the working correlation matrix with parameter ρ, and the inverse

function of R−1(ρ) can be approximated by a linear combination of several basis matrices

defined as

R� 1ðrÞ ¼
Xm

l¼1

tlMl; ð2Þ

where τ1 are unknown coefficients andMl are known basis matrices.

There are several types of working correlation structures [17], but in this paper, we only

focus on three common types of working correlation structures, which are the first order auto-

regressive, AR(1), exchangeable and unspecified working correlation structures. The estimat-

ing equation of the QIF-MRr is

Xn

i¼1

@hi
@ðb;cÞ

� �T

D�
1
2

i ðt1M1 þ . . .þ tmMmÞD
� 1

2
i ðYi � hiÞ; ð3Þ

and can be written in the form of its extended score as

gnðb;cÞ ¼
1

n

Xn

i¼1

giðb;cÞ ¼
1

n

Pn
i¼1

@hi
@ðb;cÞ

� �T

D�
1
2

i M1D
� 1

2
i ðYi � hiÞ

Pn
i¼1

@hi
@ðb;cÞ

� �T

D�
1
2

i M2D
� 1

2
i ðYi � hiÞ

..

.

Pn
i¼1

@hi
@ðb;cÞ

� �T

D�
1
2

i MmD
� 1

2
i ðYi � hiÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð4Þ

where gi(β, ψ) is the estimating equations from Eq (3), and the linear coefficients, τl can be

viewed as nuisance parameters [24]. The Di is a diagonal matrix of the marginal variances for

subject i, andM1, . . .,Mm are the basis functions for the working correlation matrix with

dimension (K × K). The derivatives of the hj(β, ψ) term, @hT/@(β, ψ) and vector gi((β, ψ)) have

(p × K) dimension where p is the number of parameters (β, ψ).

As there are more equations than the parameters, the generalized method of moments

(GMM) from [30], can be applied to create the QIF-MRr as

Qnðb;cÞ ¼ gTn C
� 1
n gn; ð5Þ

where,

Cn ¼
1

n

2Xn

i¼1

gTi ðb;cÞÞgiðb;cÞ:
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The parameters β and ψ can be estimated by setting the extended score, gn(β, ψ) in Eq (4) as

close to zero as possible, which is by minimizing the Qn(β, ψ) function as

ðb̂; ĉÞ ¼ arg min
ðb;cÞ

gTn C
� 1

n gn: ð6Þ

Singularity problem often occurs during estimation using QIF-MRr in ODTR. [27] used a

ridge-regression to solve singularity problem. Thus, by applying the penalized QIF from [31],

we introduce the ridge penalty in QIF-MRr and define a new Qn function of Eq (5) as

rQnðb;cÞ ¼ gTn C
� 1
n gn þ l

Xp

v¼1

jðb;cÞvj
2
; l � 0 ð7Þ

where λ is the tuning parameter, and
Pp

v¼1
jðb;cÞvj

2
is a ridge penalty function where v = 1,

. . ., p is the number of parameter (β, ψ), and p is the total number of parameter (β, ψ). The pen-

alty function will act as a weight during estimation, and stabilize the estimation of the parame-

ter in the computation. The rQIF-MRr minimizes the parameters β and ψ as

ðb̂; ĉÞ ¼ arg min
ðb;cÞ

gTn C
� 1

n gn þ l
Xp

v¼1

jðb;cÞvj
2

ð8Þ

Results and discussions

The parameter estimates of the proposed method were investigated using simulations. The

simulation dataset were generated sing the scenario from [8] in order to estimate the mean

response Yj at each visit. Let i = 1, 2, . . ., n be the observed subject, and n is the sample size.

Then, j = 1, 2, . . ., K is the time visit where K = 10 is the final visit.

We generate the first state S1 for each i from a normal distribution with mean 0.5 and vari-

ance 0.01. For the second state onwards, the states Sj� N(mj, 0.01), where

mj ¼ 0:5þ 0:2Sj� 1 � 0:07Aj� 1;

for j = 2, 3, . . ., K. In this simulation, we only consider one action per visit. The action, Aj were

generated from uniform distribution, Aj� U{0, 1, 2, 3}.

The regret function is defined as

mjðajj�Sj; �Aj� 1;cÞ ¼ c1jaj � c2 � c3Sjj ð9Þ

where min
mj
mjðajj�Sj; �Aj� 1;cÞ ¼ 0. We define

Ij ¼
1 if Aj � c2 � c3Sj � 0

� 1 if Aj � c2 � c3Sj < 0

8
<

:
ð10Þ

where Ij is a vector of length K for each subject.

The response, Yj is generated from a normal distribution with mean,

hjðb;cÞ ¼ EðYjj�Sj; �AjÞ

¼ b0 þ b1Zj � c1jaj � c2 � c3Sjj
ð11Þ

PLOS ONE Estimation in regret-regression using QIF with ridge estimator

PLOS ONE | https://doi.org/10.1371/journal.pone.0271542 July 21, 2022 5 / 15

https://doi.org/10.1371/journal.pone.0271542


and variance s2
Y ¼ 0:64, where

Zj ¼ Sj � EðSjÞ

¼ Sj � mj:

The residuals, 2 � Nð0; s2
YSÞ where S is obtained from an autoregressive true correlation

matrix. Applying the Cholesky decomposition, S = CCT which decomposed a positive-definite

matrix into the product of a lower triangular matrix and its conjugate transpose. We take � = C
W where W� N(0, IR). Thus,

varð�Þ ¼ s2
YCvarðWÞC

T

¼ s2
YCC

T

¼ s2
YS

Then, the response variable for each subject i is

Yj ¼ b0 þ b1Zj � mjðAjj�Sj; �Aj� 1;cÞ þ �:

The correlation in the response variable was levelled into three levels: ρ = 0.1, 0.5, 0.95. ρ =

0.1 indicates a low correlation, while ρ = 0.5 is a medium correlation, and ρ = 0.95 is a high cor-

relation. The initial parameter values for the coefficients are β = {3, −5} and ψ = {1.5, 0.1, 5.5}.

To estimate the parameters, we first regress each Sj on history ð�Sj� 1;
�Aj� 1Þ and define Zj [9].

Then, we differentiate hj(β, ψ) from Eq (11) with respect to β0, β1, ψ1, ψ2 and ψ3 to obtain @h/

@(β, ψ). For each subject i, the partial derivative with respect to β0 is

@h
@b0

¼

1

..

.

1

0

B
B
B
B
@

1

C
C
C
C
A

and the partial derivative with respect to β1 is

@h
@b1

¼ Z

where Z is the residual vector for subject i. The partial derivatives with respect to ψ1, ψ2 and ψ3

are then

@h
@c1

¼ � I;

@h
@c2

¼ c1I;

@h
@c3

¼ c1SjI:

where I is an indicators sign of the regrets for subject i from Eq (10).

The parameters ðb̂; ĉÞ can be obtained using the optim built-in function in R by minimiz-

ing Eq (8). The tuning parameter, λ was obtained using a cross-validation technique [32]. The

optimal tuning parameter for this simulation is λ = 0.01. For the simulation, we used bootstrap
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resampling 1000 times with two sample sizes (n = 25 and n = 500). [33] considered that n = 25

as a small sample size. Hence, we used a sample size n = 25 to compare the performance in esti-

mates between the rQIf-MRr and QIF-MRr methods. We fit the models (i.e. QIF-MRr and

rQIF-MRr) using AR(1), exchangeable, and unspecified working correlation structures.

For the AR(1) working correlation structure, the inverse working correlation structure can

be written as

R� 1ðrÞ ¼ t0M0 þ t1M1 þ t2M2

whereM0 is an identity matrix

M0 ¼

1 0 . . . 0

0 1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

M1 is a matrix with 1 on the two main off-diagonals and 0 elsewhere,

M1 ¼

0 1 . . . 0

1 0 1 . . . 0

0 1 0 1 . . . 0

..

. ..
. . .

. . .
. . .

. ..
.

0 . . . . . . . . . . . . 0

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

andM2 is a matrix with 1 on the corners (1, 1) and (K, K) and 0 elsewhere

M2 ¼

1 0 . . . 0

0 0 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

Here τ0 = (1 + ρ2)/(1 − ρ2), τ1 = (−ρ)/(1 − ρ2) and τ2 = (−ρ2)/(1 − ρ2).

For an exchangeable working correlation structure, R(ρ) consists of 1’s on the diagonal and

ρ’s everywhere off-diagonal. Then, R−1 is given as

R� 1ðrÞ ¼ t0M0 þ t1M1

whereM0 is an identity matrix

M0 ¼

1 0 . . . 0

0 1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A
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andM1 is a matrix with diagonal elements 0 and off-diagonal elements 1

M1 ¼

0 1 . . . 1

1 0 . . . 1

..

. ..
. . .

. ..
.

1 1 . . . 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

Note that, τ0 = −{(K − 2)ρ + 1}/{(K − 1)ρ2 − (K − 2)ρ − 1} and τ1 = ρ/{(K − 1)ρ2 − (K − 2)ρ
− 1} and K is the dimension of R.

The unspecified working correlation structure can be used to determine the working corre-

lation structure when there is some difficulty and challenges in obtaining it. For the

Table 1. Parameter estimation for correctly specified working correlation structure of the QIF-MRr and rQIF-MRr with different correlation values, ρ.

ρ Methods Coefficients n = 25 n = 500

Mean SE RMSE Mean SE RMSE

ρ = 0.1 QIF-MRr β0 3.0442 0.3685 0.3712 3.0596 0.3803 0.3850

β1 -4.9017 0.1962 0.2195 -4.8988 0.2135 0.2362

ψ1 1.5558 0.3601 0.3644 1.5561 0.3894 0.3934

ψ2 0.1956 0.2691 0.2856 0.2037 0.2665 0.2859

ψ3 5.6546 0.2147 0.2646 5.6269 0.2171 0.2515

rQIF-MRr β0 3.0528 0.2974 0.3020 3.0324 0.3120 0.3137

β1 -4.9154 0.1731 0.1926 -4.9166 0.1656 0.1854

ψ1 1.5316 0.3404 0.3419 1.5333 0.3342 0.3358

ψ2 0.2168 0.2530 0.2786 0.2400 0.2625 0.2975

ψ3 5.6035 0.1928 0.2188 5.6036 0.1999 0.2252

ρ = 0.5 QIF-MRr β0 3.0311 0.3521 0.3535 3.0292 0.3428 0.3441

β1 -4.9223 0.1916 0.2067 -4.9212 0.1961 0.2113

ψ1 1.6086 0.3687 0.3844 1.5549 0.3340 0.3384

ψ2 0.2245 0.3203 0.3436 0.2323 0.2759 0.3060

ψ3 5.6301 0.2163 0.2524 5.6416 0.2295 0.2697

rQIF-MRr β0 3.0352 0.3101 0.3121 3.0448 0.2970 0.3003

β1 -4.9165 0.1789 0.1974 -4.9266 0.1720 0.1870

ψ1 1.5513 0.3242 0.3282 1.5363 0.3446 0.3465

ψ2 0.2155 0.2656 0.2896 0.2428 0.2522 0.2899

ψ3 5.6063 0.2031 0.2292 5.6026 0.1939 0.2194

ρ = 0.95 QIF-MRr β0 3.0824 0.3606 0.3699 3.0514 0.3118 0.3160

β1 -4.8987 0.2140 0.2367 -4.9067 0.2045 0.2248

ψ1 1.5349 0.3998 0.4013 1.5637 0.3731 0.3785

ψ2 0.2027 0.2925 0.3100 0.2107 0.2674 0.2894

ψ3 5.6263 0.2216 0.2551 5.6302 0.2201 0.2557

rQIF-MRr β0 3.0503 0.2901 0.2944 3.0339 0.3014 0.3033

β1 -4.9251 0.1698 0.1856 -4.9098 0.1679 0.1907

ψ1 1.5355 0.3352 0.3371 1.5332 0.3613 0.3628

ψ2 0.2267 0.2618 0.2908 0.2281 0.2720 0.3007

ψ3 5.6058 0.1846 0.2127 5.6060 0.1979 0.2245

https://doi.org/10.1371/journal.pone.0271542.t001
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unspecified working correlation structure, the basis matricesM0 = In andM1 ¼ Û , where

Û ¼
1

N
SðYi � hiÞðYi � hiÞ

T
; ð12Þ

and the matrix Û is a consistent estimator of the variance matrix of Y [19].

The correctly specified working correlation structure is when we use the AR(1) working

correlation structure to generate the data and fit the models. Otherwise, the model is consid-

ered a misspecified working correlation structure. The results below give the mean value of the

parameter estimates for 1000 bootstrap resampling (Mean), standard error (SE), and the root

mean square error (RMSE).

With sample sizes of n = 25 and n = 500 at different correlation values, ρ, Table 1 compares

parameter estimations using QIF-MRr and rQIF-MRr. The rQIF-MRr is more efficient than

the QIF-MRr for small and large sample sizes, with small SE and RMSE.

The results for the correctly specified working correlation structure was shown in Table 1,

where the data is generated and fitted using AR(1) working correlation structure. The

Table 2. Parameter estimation of the misspecification working correlation structures for the QIF-MRr and rQIF-MRr at low correlation value, ρ = 0.1.

ρ Methods Correlation Structure Coefficients n = 25 n = 500

Mean SE RMSE Mean SE RMSE

ρ = 0.1 QIF-MRr AR(1) β0 3.0442 0.3685 0.3712 3.0596 0.3803 0.3850

β1 -4.9017 0.1962 0.2195 -4.8988 0.2135 0.2362

ψ1 1.5558 0.3601 0.3644 1.5561 0.3894 0.3934

ψ2 0.1956 0.2691 0.2856 0.2037 0.2665 0.2859

ψ3 5.6546 0.2147 0.2646 5.6269 0.2171 0.2515

Exchangeable β0 3.0645 0.3672 0.3728 3.0790 0.3613 0.3699

β1 -4.8821 0.2071 0.2383 -4.8961 0.2096 0.2340

ψ1 1.5157 0.4074 0.4077 1.5514 0.3795 0.3830

ψ2 0.1980 0.2941 0.3100 0.1909 0.2613 0.2767

ψ3 5.6276 0.1952 0.2332 5.6270 0.2277 0.2607

Unspecified β0 2.9806 0.4761 0.4765 2.9593 0.4881 0.4898

β1 -4.9094 0.2694 0.2843 -4.9037 0.2389 0.2576

ψ1 1.5900 0.5022 0.5103 1.5900 0.5650 0.5721

ψ2 0.2376 0.3304 0.3579 0.2361 0.2575 0.2913

ψ3 5.6526 0.2461 0.2896 5.6581 0.2357 0.2838

rQIF-MRr AR(1) β0 3.0528 0.2974 0.3020 3.0324 0.3120 0.3137

β1 -4.9154 0.1731 0.1926 -4.9166 0.1656 0.1854

ψ1 1.5316 0.3404 0.3419 1.5333 0.3342 0.3358

ψ2 0.2168 0.2530 0.2786 0.2400 0.2625 0.2975

ψ3 5.6035 0.1928 0.2188 5.6036 0.1999 0.2252

Exchangeable β0 3.0552 0.3411 0.3455 3.0373 0.3554 0.3573

β1 -4.9108 0.1659 0.1883 -4.9051 0.1643 0.1897

ψ1 1.5284 0.3452 0.3464 1.5199 0.3650 0.3656

ψ2 0.2122 0.2545 0.2781 0.1989 0.2618 0.2799

ψ3 5.5959 0.2063 0.2275 5.6178 0.1911 0.2245

Unspecified β0 3.0111 0.4069 0.4071 2.9980 0.3949 0.3949

β1 -4.9116 0.1951 0.2142 -4.9123 0.1928 0.2119

ψ1 1.5272 0.4894 0.4902 1.5415 0.5086 0.5103

ψ2 0.2339 0.2960 0.3249 0.2326 0.2512 0.2840

ψ3 5.6149 0.2122 0.2413 5.6203 0.1876 0.2228

https://doi.org/10.1371/journal.pone.0271542.t002
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advantage of using the QIF-MRr and rQIF-MRr in estimation is that the estimates are still effi-

cient even with the misspecified working correlation structure.

The estimation for the misspecified working correlation structures for both QIF-MRr and

rQIF-MRr are given in Tables 2–4. For low correlation, ρ = 0.1 in Table 2, the parameter esti-

mation for rQIF-MRr are unbiased and efficient with small SE and RMSE even with misspeci-

fied working correlation structures. The correctly specified AR(1) for rQIF-MRr gives slightly

smaller SE compared to exchangeable and unspecified working correlation structures.

When the correlation is medium (ρ = 0.5), and high (ρ = 0.95) in Tables 3 and 4 respec-

tively, estimation using misspecified working correlation structures still gives unbiased and

efficient estimates with small SE and RMSE. Although the true model (i.e. AR(1)) gives slightly

better estimates, but the difference is not far. This is one of the advantage of using the QIF in

estimation, where the parameter estimates is efficient even with the misspecified working cor-

relation structure [24, 34].

Table 3. Parameter estimation of the misspecification working correlation structures for the QIF-MRr and rQIF-MRr at medium correlation value, ρ = 0.5.

ρ Methods Correlation Structure Coefficients n = 25 n = 500

Mean SE RMSE Mean SE RMSE

ρ = 0.5 QIF-MRr AR(1) β0 3.0311 0.3521 0.3535 3.0292 0.3428 0.3441

β1 -4.9223 0.1916 0.2067 -4.9212 0.1961 0.2113

ψ1 1.6086 0.3687 0.3844 1.5549 0.3340 0.3384

ψ2 0.2245 0.3203 0.3436 0.2323 0.2759 0.3060

ψ3 5.6301 0.2163 0.2524 5.6416 0.2295 0.2697

Exchangeable β0 3.0382 0.4092 0.4110 3.0596 0.4076 0.4119

β1 -4.8863 0.1930 0.2240 -4.8863 0.1998 0.2298

ψ1 1.5769 0.3343 0.3430 1.5301 0.3806 0.3818

ψ2 0.1984 0.2691 0.2865 0.2049 0.2762 0.2954

ψ3 5.6305 0.2191 0.2550 5.6194 0.1988 0.2319

Unspecified β0 3.0109 0.4180 0.4181 3.0342 0.4024 0.4038

β1 -4.9027 0.2338 0.2533 -4.9305 0.2197 0.2304

ψ1 1.5958 0.4666 0.4764 1.6050 0.5100 0.5207

ψ2 0.2211 0.3208 0.3429 0.2631 0.2868 0.3300

ψ3 5.6165 0.2055 0.2363 5.5904 0.2032 0.2224

rQIF-MRr AR(1) β0 3.0352 0.3101 0.3121 3.0448 0.2970 0.3003

β1 -4.9165 0.1789 0.1974 -4.9266 0.1720 0.1870

ψ1 1.5513 0.3242 0.3282 1.5363 0.3446 0.3465

ψ2 0.2155 0.2656 0.2896 0.2428 0.2522 0.2899

ψ3 5.6063 0.2031 0.2292 5.6026 0.1939 0.2194

Exchangeable β0 3.0594 0.3355 0.3407 3.0422 0.3355 0.3382

β1 -4.9105 0.1606 0.1838 -4.9146 0.1771 0.1966

ψ1 1.5171 0.3443 0.3447 1.5107 0.3758 0.3759

ψ2 0.2007 0.2496 0.2691 0.2083 0.2561 0.2781

ψ3 5.6083 0.1878 0.2168 5.6162 0.1998 0.2311

Unspecified β0 3.0182 0.4152 0.4156 2.9904 0.4173 0.4174

β1 -4.9158 0.1944 0.2118 -4.9178 0.1868 0.2041

ψ1 1.5059 0.4972 0.4972 1.5257 0.5301 0.5307

ψ2 0.2308 0.2858 0.3143 0.2471 0.2620 0.3005

ψ3 5.6149 0.2098 0.2392 5.6232 0.1913 0.2275

https://doi.org/10.1371/journal.pone.0271542.t003
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Application to Warfarin data

For application, we use the data from Warfarin-treated patients who at risk of thrombosis [2].

The data consists of 303 patients with 14 clinic visits. The states, Sj, is defined as the difference

between the International Normalized Ratio (INR) at visit j and the INR within the target

range. Meanwhile, Aj is defined as the dose given to patients at each visit j. Suppose the INR is

used to measure blood clotting speed, and a positive Sj indicates that the clotting time was too

long and that the dose Aj should be reduced, and vice versa. The goal of the treatment is to

make sure the INR is within the target range.

From the 14 clinic visits, only 9 visits were considered, where the first 4 visits were treated

as a stabilization period, and the last visits had no contribution to the outcome. At each visit j,
the response Yj is measured for j = 1, 2, . . ., K with K = 9. Hence, the mean response for Yj con-

ditional on ð�Sj; �AjÞ as in Eq (1). The mixture model for Sj is used to obtain the state residuals,

Zj. The model consists of a logistic component for P(Sj = 0) and linear component for |Sj|
given (Sj 6¼ 0).

Table 4. Parameter estimation of the misspecification working correlation structures for the QIF-MRr and rQIF-MRr at high correlation value, ρ = 0.95.

ρ Methods Correlation Structure Coefficients n = 25 n = 500

Mean SE RMSE Mean SE RMSE

ρ = 0.95 QIF-MRr AR(1) β0 3.0824 0.3606 0.3699 3.0514 0.3118 0.3160

β1 -4.8987 0.2140 0.2367 -4.9067 0.2045 0.2248

ψ1 1.5349 0.3998 0.4013 1.5637 0.3731 0.3785

ψ2 0.2027 0.2925 0.3100 0.2107 0.2674 0.2894

ψ3 5.6263 0.2216 0.2551 5.6302 0.2201 0.2557

Exchangeable β0 3.0917 0.3967 0.4071 3.0433 0.3566 0.3593

β1 -4.9110 0.2219 0.2391 -4.8956 0.1836 0.2112

ψ1 1.5109 0.3888 0.3890 1.5925 0.3413 0.3536

ψ2 0.2113 0.2789 0.3003 0.2072 0.2833 0.3030

ψ3 5.6337 0.2271 0.2635 5.6022 0.1977 0.2226

Unspecified β0 3.0447 0.4625 0.4646 3.0129 0.4968 0.4970

β1 -4.8935 0.1912 0.2189 -4.9421 0.2372 0.2442

ψ1 1.5760 0.4772 0.4832 1.5813 0.4911 0.4978

ψ2 0.2113 0.2811 0.3023 0.2701 0.3556 0.3941

ψ3 5.6389 0.2353 0.2732 5.6423 0.2583 0.2948

rQIF-MRr AR(1) β0 3.0503 0.2901 0.2944 3.0339 0.3014 0.3033

β1 -4.9251 0.1698 0.1856 -4.9098 0.1679 0.1907

ψ1 1.5355 0.3352 0.3371 1.5332 0.3613 0.3628

ψ2 0.2267 0.2618 0.2908 0.2281 0.2720 0.3007

ψ3 5.6058 0.1846 0.2127 5.6060 0.1979 0.2245

Exchangeable β0 3.0282 0.3621 0.3632 3.0463 0.3371 0.3402

β1 -4.8960 0.1728 0.2016 -4.9026 0.1741 0.1995

ψ1 1.5156 0.3482 0.3485 1.5032 0.3687 0.3687

ψ2 0.2070 0.2559 0.2774 0.2198 0.2571 0.2836

ψ3 5.6102 0.2042 0.2320 5.5970 0.1978 0.2203

Unspecified β0 3.0027 0.4507 0.4507 2.9941 0.3957 0.3957

β1 -4.9160 0.2012 0.2180 -4.9011 0.1739 0.2000

ψ1 1.5389 0.4213 0.4231 1.5199 0.4691 0.4696

ψ2 0.2321 0.2768 0.3067 0.2415 0.2448 0.2827

ψ3 5.6229 0.2122 0.2452 5.6142 0.1927 0.2240

https://doi.org/10.1371/journal.pone.0271542.t004
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The regret function is modeled as in Eq (9). The first step will be estimating the residual of

the state function, Zj. Then, for each i, we estimate the gi(β, ψ) functions, the extended score

matrix gn(β, ψ), and the partial derivatives @hTi =@ðb;cÞ. In estimation, the initial value for

(β, ψ) = {8.00, 0.00, 2.00, 0.25, −5.00} given that (β, ψ) is unknown for this application [13].

The parameter estimates of ðb̂; ĉÞ can be obtained as in Eqs 6 and 8 for QIF-MRr and

rQIF-MRr respectively. Using a cross-validation technique, the optimal tuning parameter

λ = 0.1375436. 100 bootstrap resamplings were performed to test the consistency and effi-

ciency of the estimation using AR(1), exchangeable, and unspecified working correlation

structures.

Table 5 shows the results of parameter estimations for Warfarin data using the QIF-MRr

and rQIF-MRr with three different types of working correlation structures. In comparison to

AR(1) with an unspecified working correlation structure, estimation using rQIF-MRr with an

exchangeable working correlation structure is more efficient with a smaller SE. Estimation

using the rQIf-MRr with the AR(1) working correlation structure produces better results than

the QIF-MRr. Meanwhile, the findings for both methods are almost similar when we estimate

the parameters using an exchangeable and unspecified working correlation structure.

Conclusions

The rQIF-MRr method was proposed in this paper with the goal of improving estimation in

ODTR. There is huge potential to explore rQIF-MRr in personalized medicine, particularly in

estimating ODTR. The study of ODTR is a branch of personalized medicine and it is a promis-

ing and developing field.

The simulation studies show that the parameter estimation using rQIF-MRr is unbiased

and efficient even with the misspecified working correlation structure. In the simulation analy-

sis, the proposed rQIF-MRr method performed well for small and large sample sizes at any

correlation level. In comparison to the QIF-MRr, parameter estimation using the rQIF-MRr

gives an efficient estimate with a minimal standard error when applied to Warfarin data.

Comparisons of different methods for determining the optimal tuning parameter λ, such as

generalized cross-validation technique [35, 36], are in our best interest. Genetic algorithm [37]

and particle swarm optimization [38] are two other methods.

When working with participants or patients with a defined time study in ODTR, there may

be dropouts during data collection. It’s possible that this will result in either missing or survival

Table 5. Parameter estimation of Warfarin data with AR(1), exchangeable, and unspecified working correlation structures for QIF-MRr and rQIF-MRr.

Method b̂1 b̂2 ĉ1 ĉ2 ĉ3

QIF-MRrAR(1) Mean 10.5870 1.6317 2.5877 0.0720 -8.2011

SE 2.9063 2.6250 1.8113 1.3275 4.9005

QIF-MRrExchangeable Mean 6.5295 -2.2246 0.6014 -0.0254 -2.5608

SE 0.3169 0.1561 0.1246 0.0418 0.4755

QIF-MRrUnspecified Mean 6.9895 -2.0406 1.0450 -0.0452 -3.4159

SE 0.1733 0.2822 0.1606 0.0810 0.3609

rQIF-MRrAR(1) Mean 6.7960 -2.3492 1.1033 -0.1296 -3.2082

SE 0.4594 0.4512 0.5022 0.1987 0.4037

rQIF-MRrExchangeable Mean 6.5844 -2.0634 0.6057 -0.0566 -2.8881

SE 0.2497 0.1261 0.1742 0.1711 0.2019

rQIF-MRrUnspecified Mean 6.9572 -2.0550 1.0379 -0.0383 -3.4174

SE 0.2037 0.2756 0.1662 0.0585 0.3791

https://doi.org/10.1371/journal.pone.0271542.t005
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data. The proposed method is incompatible with this type of data. Improvisation is required to

deal with missing and survival data.
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