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Motivation: Retinal microvasculature is a unique window for predicting and monitoring

major cardiovascular diseases, but high throughput tools based on deep learning

for in-detail retinal vessel analysis are lacking. As such, we aim to develop and

validate an artificial intelligence system (Retina-based Microvascular Health Assessment

System, RMHAS) for fully automated vessel segmentation and quantification of the

retinal microvasculature.

Results: RMHAS achieved good segmentation accuracy across datasets with diverse

eye conditions and image resolutions, having AUCs of 0.91, 0.88, 0.95, 0.93, 0.97,

0.95, 0.94 for artery segmentation and 0.92, 0.90, 0.96, 0.95, 0.97, 0.95, 0.96 for

vein segmentation on the AV-WIDE, AVRDB, HRF, IOSTAR, LES-AV, RITE, and our

internal datasets. Agreement and repeatability analysis supported the robustness of the

algorithm. For vessel analysis in quantity, less than 2 s were needed to complete all

required analysis.

Keywords: artificial intelligence, automated analysis, hierarchical vessel morphology, cardiovascular disease,

epidemiology

INTRODUCTION

The morphology of the retinal vessels is closely correlated with the microvascular state of the
body. The retinal vasculature is organized within a delicate, optimized structure that minimizes
shear stresses due to blood flow and energy used for perfusion, achieving sufficient energy supply
with minimal cost (1). Changes in retinal vascular morphology have previously been reported to
be associated with a wide range of ocular and systemic diseases (2–5), including life-threatening
cardiovascular disease. Deviation from the geometric ideal and measurement of vessel changes
may provide a quantitative assessment of vessel deformity and pathology. Quantification of
these changes may enhance our understanding of the relationship between ocular and systemic
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changes and promote the use of the retinal vessels as novel
biomarkers in the management of chronic diseases.

Computer-assisted technology has enabled the quantification
of retinal morphology. A series of machine learning methods
and software tools have been developed for the quantified
assessment of the retinal vasculature. Widespread use of
these tools however has been limited due to their need for
manual input [IVAN (6), SIVA (7), VAMPIRE (8)], time-
consuming nature [IVAN (6), SIVA (7)], applicability to only
specific retinal regions [IVAN (6), SIVA (7)], or a limited
number of measurement parameters [IVAN (6), VAMPIRE (8),
QUARTZ (9, 10)].

Deep learning (DL) has been established in recent years
as the dominant paradigm for retinal image processing. It
has outperformed other machine learning (ML) methods in
achieving retinal vessel segmentation with minimal time and
state-of-the-art accuracy (11). Widespread adoption in real-
world settings however depends on its ability to address
variations in image quality and artifacts, resolutions andmodality
of various fundus cameras, and the interference of pathologic
lesions on vessel segmentation. A further common challenge for
vessel segmentation is broken vessels at branching or crossing
points, which often result in misclassification of arteries and
veins, or discontinued vessels. In addition to vessel segmentation,
SIVA-DLS (12) is a recently developed deep learning system that
directly predicts vessel caliber based on cropped retinal fundus
without performing segmentation. However, this tool is restricted
to a limited region of the retina and evaluates only a small
number of vessel parameters.

Training deep learning algorithms with larger datasets
and sufficient variation may help address these challenges.
However, given the labor intensiveness in labeling vessels
manually, there are much fewer training data available for
vessel segmentation than disease classification. Most databases
with annotated vessels used in algorithm development are
homogeneous, small, and free of eye diseases, compromising
the adoption of algorithms trained on these data in real-world
clinical settings.

As such, we developed and validated a deep learning
system (Retina-based Microvascular Health Assessment System,
RMHAS) using multi-source data to provide fast, reliable, and
detailed retinal vessel quantification. We intend to provide
RMHAS as a public tool to enable automated high-throughput
retinal vessel analysis on large collections of fundus images.

Abbreviations: RMHAS, retina-based microvascular health assessment system;

AMD, age-related macular degeneration; PM, pathologic myopia; DR, diabetic

retinopathy; HR, hypertensive retinopathy; LECS, lingtou eye cohort study;

GTES, guangzhou twin eye study; CLAHE, contrast limited adaptive histogram

equalization; CNN, convolutional neural network; FOV, field of view; CRAE,

central retinal artery equivalent; CRVE, central retinal vein equivalent; AVRe,

artery to vein ratio from equivalents; LDR, length diameter ratio; BA, branching

angle; BA_edge, branching angle from edges; BC, branching coefficient; AA,

angular asymmetry; AR, asymmetry ratio; JED, Junctional exponent deviation; SD,

standard deviation; CI, confidence interval; ICC, intraclass correlation coefficient;

ROC, receiver operator characteristic; AUC, area under the receiver operator

characteristic curve; ROI, region of interest.

METHODS

Study Design and Overview
RMHAS consisted of several functional parts. Firstly, the image
quality assessment module assessed overall image quality before
segmentation. Secondly, the segmentation module generated
artery, vein, and optic disc segmentation maps. Thirdly, based
on segmentation, the measurement module computed region-
specific measurements within the Standard zone (a zone 0.5–
1.0 disc diameter away from the optic disk margin), (13) and
global physical or geometric measures for the whole fundus
image. Lastly, a second quality assessment was carried out to filter
out abnormalmeasurements and exclude incompetent detections
based on specific criteria. Final results were subsequently
generated. Figure 1A outlines a flowchart of the software
development process.

Fundus Datasets
In-house Dataset

To train the segmentation algorithm for RMHAS, we built a large
manually labeled retinal artery/vein segmentation database. This
database included diverse eye diseases, age groups, and imaging
devices. Two hundred and twenty images with significant
variations were initially included, of which 20 came from the
UK Biobank (14), 120 from the LabelMe platform (15). 50
from the Lingtou Eye Cohort Study (LECS) (16). and 30 from
the Guangzhou Twin Eye Study (GTES) (17). These images
were composed of 60 images with diabetic retinopathy ranging
from mild to severe non-proliferative, 20 images with age-
related macular degeneration (AMD), 20 with glaucoma, 20 with
pathologicmyopia (PM), and 20 with hypertension. 20 images for
each age group of <18, 18 to 50, and ≥ 50 years were included.
To represent healthy images, another 200 images were randomly
selected from the UK Biobank population-based study (Table 1).

Vessel annotation was performed according to the
following procedure. Firstly, we generated artery/vein
(A/V) segmentation maps by supplying the fundus images
to the W-Net model (18). After this, image graders using
custom software can modify or fine-tune vessel segmentation
as per A/V segmentation maps. Secondly, to make low-
contrast small vessels more identifiable, we carried out image
enhancements using contrast limited adaptive histogram
equalization (CLAHE). Pre-segmentations generated by
the W-Net model could be overlaid on the original fundus
or the augmented image. Image graders could switch
between different modalities to verify their segmentation
and erase or add vessels. The custom software interface
developed for this image annotation process is illustrated in
Supplementary Figure 1.

All images were randomly assigned to one of four image
graders who were trained by an ophthalmologist. These
image graders were requested to independently modify
and segment the retinal arteries, veins, and optic disc. To
assess inter-observer variability, ∼10 percent of images
were repeatedly labeled between different graders. To
assess intra-observer consistency, around 10 percent of the
images were repeatedly labeled by the same grader. Cohen’s
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FIGURE 1 | Software development flowchart. (A) Retina-based Microvascular Health Assessment System (RMHAS) workflow. (B) The multi-branch U-Net used in

RMHAS for segmentation. The trunk generates an intermediate retinal vessel feature map, which is concatenated with the input image and divided into three separate

branches for retinal artery, vein, and optic disc segmentation.

kappa score was computed to assess inter-observer and
intra-observer reliability.

Public Datasets

To improve model generalizability and robustness, data from
20 public datasets were also used in the development of the
segmentation algorithm. The STARE (19), VEVIO (20, 21).
CHASEDB (22), DR HAGIS (23), UoA-DR (24), and PRIME-
FP20 (25) datasets were used for vessel segmentation. The RITE
(26), HRF (27), AV-WIDE (28, 29), IOSTAR (30, 31), LES-AV
(32), and AVRDB (33) datasets were used for artery and vein
classification. For optic disc segmentation, the ONHSD (34),
DRIONS-DB (35), Drishti-GS (36), RIGA (37), REFUGE (38),
G1020 (39), PALM (40), and ADAM (41) datasets were used.
Although those datasets have previously been used to develop
segmentation algorithms, their label quality varies.

In summary, a diverse collection of datasets composed
of fundus images of varying image qualities, resolutions,
pathologies, and modalities were included in developing this
algorithm. As the size of datasets varied significantly, training and
validation set splits were carried out as follows: 20 official training
and test set images were split from the CHASEDB dataset; if
the dataset had fewer than 100 total images, training and test
images followed an 80/20 split; and if the dataset had more than
100 images, only 20 images were split into the test set. Table 2
describes the characteristics of the 21 datasets used to develop the

segmentation algorithm. Diagrams in Supplementary Figure 2

outlines the train/test division.
The study was conducted in accordance with the Declaration

of Helsinki, using deidentified retinal photographs from
previously published studies. Ethics Committee ruled that
approval was not required for this study.

Image Quality Assessment
As noted earlier, the first functional part of RMHAS is a
classification of overall image quality before before vessel
segmentation. This was carried out using a convolutional neural
network (CNN) model built from the EyeQ dataset (42),
and enabled classification of overall image quality into three
grades: “good,” “usable,” and “reject.” Images with clear and
identifiable main structures and lesions, but with some low-
quality factors (blur, insufficient illumination, shadows) were
classified as “usable”. Images with serious quality issues that
could not be reliably diagnosed by an ophthalmologist were
classified as “reject”.

A second quality assessment was performed after
segmentation. Images with the following conditions were
excluded: no detectable optic disc; <6 arteries six veins
detectable in the Standard zone; or <2 arteries and two veins
detected in the whole fundus. Excluded images, the reason for
their exclusion, and their available measurements were saved
separately from the main measurements.
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TABLE 1 | The composition of the newly-built dataset for retinal artery, vein, and

optic disc segmentation. LECS, Lingtou Eye Cohort Study; GTES, Guangzhou

Twin Eye Study.

Category Number of images Source

DR 60 LabelMe

r1 20

r2 20

r3 20

Glaucoma 20 LabelMe

AMD 20 LabelMe

PM 20 LabelMe

HBP 20 LECS

Age 60

<18 20 GTES

18–50 20 GTES, LECS

50+ 20 LECS

UK Biobank 20 UK Biobank

UK Biobank 200 UK Biobank

Total 420

Optic Disc and Vessel Segmentation
We extended the U-Net component from W-Net (18) into
multiple branches to enable simultaneous and efficient retinal
artery, vein, and optic disc segmentation. Figure 1B outlines
the details of the RMHAS segmentation architecture. The input
for RMHAS was a fundus image, cropped to the field of view
(FOV) and resized to 512×512 pixels. The first intermediate
layer generated a segmentation map based on the whole retinal
vessel map and concatenated it to the original fundus image. This
first segmentation map could then be used by the downstream
network as an attention map, to focus more on targeted areas of
the image. The following segmentations were carried out in three
separate branches for the retinal arteries, veins, and optic disc,
using these features as guidance.

We trained the RMHAS step-by-step by first training the
root branch to generate an intact vessel map. The root branch
was then frozen, with the artery, vein, and optic branches
unfrozen and trained iteratively. We trained RMHAS with a
preset of 200 epochs, a batch size of 8, and a cosine-shaped
learning rate from 0.1 to 0.00001. To tackle class imbalance
issues – i.e., far more background pixels than foreground
(vessel) pixels, we used a weighted combination of Cross-entropy
loss and Dice loss (1:3) as the objective function (detailed in
the Supplementary Methods). The Adam optimizer (43) was
used in backpropagation to minimize the objective function by
optimizing the model parameters. To reduce overfitting, we did
data augmentation by random horizontal and vertical flipping,
rotating between 0 and 45◦, and by transforming contrast
and illumination (Supplementary Methods). We also used early
stopping if validation loss did not improve for 10 epochs.
To alleviate issues of broken vessels at branch-ing/crossing
points, we performed further data augmentation by specifically
cropping out a random number of branching/crossing regions

with random sizes for training (to create more pieces of crossing
vessel segments and increase variations). This model was trained
on the PyTorch platform.

Retinal Vessel Measurement
We measured retinal vessel morphology by using custom
region-specific summarization and global physical/geometric
parameters. For region-specific summarization, the vessel
calibers were summarized as central retinal artery equivalent
(CRAE) and central retinal vein equivalent (CRVE) from the 6
largest arteries and veins detected in the Standard zone, based
on the revised Knudtson-Parr-Hubbard formula (44). Artery to
vein ratio from equivalents (AVRe) was generated by dividing
CRAE by CRVE. For global physical/geometric parameters,
vessels were converted into segments separated by interruptions
at the branching or crossing points. Short vessels <10 pixels in
length were excluded from the analysis. Using methods similar
to SIVA (13), the diameters (mean, standard deviation [SD]),
arc length, chord length, length diameter ratio (LDR), tortuosity,
branching angle (BA), branching angle from edges (BA_edge),
branching coefficient (BC), angular asymmetry (AA), asymmetry
ratio (AR), junctional exponent deviation (JED) were measured
and computed. The vessel orders and Strahler orders of each
segment were built using graphical representation, resulting in
a series of hierarchical nodes and edges. In summary, 16 basic
parameters were included. Detailed formulas and methods are
presented in the Supplementary Methods. Graphs were built
using the Python package NetworkX.

Accuracy of Segmentation
We assessed the accuracy of segmentation at the pixel level.

Quantitative evaluation criteria including the area under
the receiver operator characteristic curve (AUC), accuracy,
sensitivity, specificity, between manually labeled and predicted
segmentations were computed.

Qualitative evaluation was performed by overlaying predicted
segmentations with manually labeled segmentation, using
different colors for visual analysis.

For external validation, we performed retinal vessel
segmentation and width measure using the pubic REVIEW
(45) dataset as reference.

Reliability of Vessel Measurements
For reliability, intraclass correlation coefficient (ICC) and
Bland–Altman plots were used to assess agreement in
Standard zone measurements between manually labeled
and predicted segmentation.

For repeatability, the ICCs were computed between all
measurements on photographs taken repeatedly under
similar illumination and locations for the same eye with
the same camera.

ICC values of <0.5, 0.5–0.75, 0.75–0.9, and ≥ 0.90 are
indicative of poor, moderate, good, and excellent reliability,
respectively (46).

Statistical analysis was completed with R version 4.0.1 and
Python 3.6.
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TABLE 2 | Characteristics of the 21 datasets used to develop the segmentation algorithm. Only images with available labels were included. AMD, age-related macular

degeneration; HR, hypertensive retinopathy; PM, pathologic myopia; DR, diabetic retinopathy.

Dataset Label Year No. Centered Field Size Eye disease Camera

STARE vessel 2000 20 macula 30◦-45◦ 605 × 700 various TRV-50 fundus camera

(Topcon)

VEVIO vessel 2011 16 macula 640 × 480

600 × 500

Video indirect

ophthalmoscopy

CHASEDB vessel 2012 28 optic-disc 25◦ 960 × 999 – NM-200D (Nidek,

Japan)

DR HAGIS vessel 2017 40 macula 45◦ 2816 × 1,880

4,752 × 3,168

DR, HBP, AMD,

glaucoma

TRC-NW6s (Topcon),

TRC-NW8 (Topcon), or

CR-DGi (Canon)

UoA-DR vessel, optic

disc

2017 200 macula-disc 45◦ – DR –

PRIME-FP20 vessel 2020 15 macula 200◦ 4,000 × 4,000 DR Optos 200Tx (Optos

plc, Dunfermline,

Scotland, UK)

RITE artery/vein 2013 40 macula 45◦ 565 × 584 DR CR5 non-mydriatic

3CCD camera (Canon)

HRF artery/vein,

optic disc

2013 45 macula 45◦ 3,504 × 2,336 DR, glaucoma

AV-WIDE artery/vein 2015 30 macula 200◦ 1,300 × 800

2,816 × 1,880

1,500 × 900

DR Optos 200Tx (Optos

plc, Dunfermline,

Scotland, UK)

IOSTAR artery/vein,

optic disc

2015 30 macula 45◦ 1,024 × 1,024 SLO (i-Optics Inc., the

Netherlands)

LES-AV artery/vein 2018 22 optic-disc 30◦−45◦ 1,620 × 1,444

1,958 × 2,196

glaucoma

AVRDB artery/vein 2020 100 macula-disc 30◦ 1,504 × 1,000 HR, DR

ONHSD optic disc 2004 99 macula 45◦ 640 × 480 DR CR6 45MNf fundus

camera (Canon)

DRIONS-DB optic disc 2008 110 optic-disc 30◦ 600 × 400 glaucoma, ocular

hypertension

Drishti-GS optic disc 2014 50 macula 25◦ 2,045 × 1,752 glaucoma –

RIGA dataset optic disc 2018 750 macula-disc – 2,240 × 1,488

2,743 × 1,936

2,376×1,584

DR, glaucoma –

REFUGE2 optic disc 2020 1200 macula 2,124 × 2,056

1,634 × 1,634

glaucoma Zeiss Visucam

500/Canon CR-2

G1020 optic disc 2020 1020 macula-disc 45◦ – various –

PALM optic disc 2019 400 macula-disc – – PM –

ADAM optic disc 2020 400 macula – – AMD –

Ours artery/vein,

optic disc

2021 420 macula-disc various various DR, glaucoma,

AMD, PM

Various

Data Availability Statement
The UK Biobank is an open-access resource to researchers
through registration of proposed research. The remaining in-
house dataset is available from the corresponding author upon
reasonable request.

Code Availability Statement
The code of this study is available from the corresponding author
upon request. All models were built using publicly available
software and packages.

RESULTS

The four observers achieved moderate consistency in intra-
and inter-observer agreement analysis. Detailed kappa scores

are presented in Supplementary Table 1. For segmentation
accuracy, the algorithm achieved AUC (95% CI) of 0.914
(0.914–0.915), 0.913 (0.913–0.914), 0.948 (0.948–0.948), 0.919
(0.918–0.920), 0.959 (0.959–0.960), 0.953 (0.952–0.953), 0.922
(0.922–0.922) for artery segmentation and 0.930 (0.929–0.931),
0.940 (0.939–0.940), 0.956 (0.956–0.956), 0.935 (0.934–0.936),
0.961 (0.961–0.962), 0.959 (0.959–0.960), 0.948 (0.948–0.949) for
vein segmentation on the AV-WIDE, AVRDB, HRF, IOSTAR,
LES-AV, RITE and our dataset, respectively. Figure 2 plots the
model’s ROC curves in different datasets. Detailed evaluation
results are presented in Table 3. Figure 3 shows representative
examples of overlaid segmentations for images with different
features, including a normal fundus, fundus image from young
participants with prominent retinal nerve fiber layer reflections,
blurred image from older participants, fundus with AMD, PM,
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FIGURE 2 | Receiver operating characteristic (ROC) curves of Retina-based Microvascular Health Assessment System (RMHAS) for segmentation of artery and vein

within different datasets.

TABLE 3 | Segmentation performance of Retina-based Microvascular Health

Assessment System (RMHAS) on the test set in different datasets.

Accuracy Sensitivity Specificity F1 score

Artery Vein Artery Vein Artery Vein Artery Vein

AV-WIDE 0.95 0.95 0.68 0.73 0.96 0.96 0.45 0.47

AVRDB 0.94 0.95 0.72 0.78 0.95 0.96 0.47 0.62

HRF 0.93 0.94 0.83 0.87 0.93 0.94 0.46 0.50

IOSTAR 0.94 0.95 0.72 0.77 0.95 0.96 0.51 0.59

LES-AV 0.95 0.95 0.86 0.85 0.96 0.96 0.58 0.61

RITE 0.94 0.94 0.86 0.87 0.94 0.95 0.57 0.63

Ours 0.95 0.96 0.72 0.80 0.96 0.97 0.48 0.57

and severe DR. Blue pixels represent false negatives (pixels that
were manually labeled but missed by the model). Red pixels
represent false positives (pixels identified by the model but
missed by manual labeling). Green pixels represent pixels with
consistent segmentation between model and manual labeling.

For external validation, the vessel segmentation performance
and width measure results in the REVIEW database are shown in
the Supplementary Table 2 and Supplementary Figure 3.

Agreement between retinal vessel caliber in the Standard
zone, measured on RMHAS predicted segmentation and human
segmentations were estimated using ICC. Agreements of vessel
equivalent measurements on our dataset were excellent, good,
or excellent on LES-AV (a dataset composed purely of disc-
centered fundus images) but moderate or below on AVRDB,
HRF, RITE (composed of macula-centered photos), suggesting
to achieve ideal Standard zone measures, images should be

optic-disc centered (similar to SIVA). Detailed ICC results are
presented in Table 4. Bland-Altman plots of the agreement of
(a) retinal arteriolar caliber and (b) retinal venular caliber, (c)
AVRe between manual and predicted vessel maps, (d) differences
between AVRe measures on manual and predicted vessel maps;
vs. the distance of the optic disc center to the edge of FOV are
displayed in Supplementary Figure 3.

The reproducibility and robustness of the measurements
were measured by comparing measurements generated from
photographs taken repeatedly under similar conditions. For
measurements in the Standard zone, 198 of 1290 (15.3%)
images failed quality control in Standard zone measures. Of
these, 9, 22, and 120 images were classified as good, usable,
and reject in the first quality assessment module. The model
achieved excellent agreement for measurements generated
under similar conditions (Table 5A). For measurements
within the whole fundus, 8 (0.6%) of images failed
quality control in whole fundus measures and generated
114,809 vessel segments for analysis. The model achieved
moderate to good agreement for measurements based on all
vessels (Table 5B).

Figure 4 shows an example of the RMHAS model output.
Measures are demonstrated and plotted visually. Users can easily
evaluate the performance of each functional part throughout the
analysis.

DISCUSSION

Algorithm Development
Retinal vessel segmentation is challenging and often
compromised by interference from the central light reflex,
image quality variation and artifact, poor image contrast of
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FIGURE 3 | Examples of model prediction by Retina-based Microvascular Health Assessment System (RMHAS) versus manual segmentation. Blue pixels: false

negatives (pixels that were manually labeled but missed by the model). Red pixels: false positives (pixels identified by the model but missed by manual labeling). Green

pixels: pixels with consistent segmentation between model and manual labeling. AMD, age-related macular degeneration; PM, pathologic myopia; DR, diabetic

retinopathy.
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TABLE 4 | Agreement estimates of retinal-vessel caliber in the Standard zone for

measurements on RMHAS segmentation and manual segmentation.

ICC (95%CI)

Dataset CRAE CRVE

AVRDB (n = 54) 0.55 (0.37–0.69)* 0.30 (0.08–0.49)

HRF (n = 38) 0.59 (0.38–0.74)* 0.42 (0.18–0.62)

LES-AV (n = 20) 0.89 (0.78–0.95)** 0.90 (0.80–0.95)***

Ours (n = 238) 0.93 (0.91–0.94)*** 0.97 (0.96–0.97)***

RITE (n = 34) 0.43 (0.17–0.64) 0.55 (0.31–0.72)*

*Moderate: between 0.5 and 0.75, **Good: between 0.75 and 0.9, ***Excellent: >0.90.

ICC, intraclass correlation; CI, confidence interval; CRAE, central retinal artery equivalent;

CRVE, central retinal vein equivalent; n, the number of images.

small vessels, broken vessels at branching/crossing points, and
pathological retinal lesions.

To tackle these challenges, we first built the largest manually
labeled retinal artery and vein segmentation dataset known
to date, to train the segmentation algorithm. Secondly, we
specifically designed a deep learning architecture that harnessed
a two-stage sequential segmentation, where the intermediate
vessel segmentation was used to guide subsequent multi-branch
segmentations. The separate branches that segmented arteries,
veins, and the optic disc reduced the difficulty in distinguishing
artery and vein pixels from a single branch. Thirdly, we
carried out data augmentation specifically for artery and vein
crossing areas.

Functionality
RMHAS addresses the limitations of existing algorithms and
software, including IVAN (6), SIVA (7), and VAMPIRE (8).
which are semi-automatic and have limited regions of interest
(ROI). IVAN (6) and SIVA (7) require more than 20min to
process each image, and QUARTZ (9) takes on average 53.6 s per
analysis. The QUARTZ (9) platform can analyze whole fundus
images but has few output parameters (artery/vein width and
tortuosity). SIVA-DLS (12) is the only published deep learning
system to use fundus images and predict vessel caliber end-to-
end without vessel segmentation. It was built based on measured
CRAE, CRVE values from SIVA. This method is straightforward
but might lack interpretability. Further, SIVA-DLS is restricted to
examining the Extended zone (from 0.5 to 2.0-disc diameter) (13)
and has limited output parameters (CRAE, CRVE, AVR only).

In comparison, the RMHAS algorithm provides a far larger
number of physical and geometric parameters without sacrificing
efficiency. In addition to standard vessel caliber measurements,
RMHAS provides measurements on tortuosity, LDR, JED, AR
with additional topological information. These measurements
are unitless and are less sensitive to diametricmeasurement noise.
The Strahler order corresponds to branching complexity (47).
Vessel order describes the conventional order of division of each
branch of a vessel. These measurements facilitate flexibility in
subsequent analysis. For example, they could be stratified when
summarizing the thickness or length of a vessel; or calculated

TABLE 5A | Agreement estimates of measurements in the Standard zone on

photographs taken repeatedly under similar conditions.

Location Quality ICC (95%CI)

CRAE CRVE

Disc centered Good (n = 67) 0.89 (0.84–0.93)** 0.92 (0.88–0.95)***

Reject (n = 129) 0.78 (0.71–0.83)** 0.83 (0.78–0.87)**

Usable (n = 14) 0.98 (0.94–0.99)*** 0.94 (0.86–0.98)***

Macula centered Good (n = 264) 0.94 (0.93–0.95)*** 0.95 (0.94–0.96)***

Reject (n = 43) 0.78(0.65–0.86)** 0.81(0.70–0.88)**

Usable (n = 29) 0.93 (0.88–0.96)*** 0.91 (0.84–0.95)***

*Moderate: between 0.5 and 0.75, **Good: between 0.75 and 0.9, ***Excellent: >0.90.

ICC, intraclass correlation; CI, confidence interval; CRAE, central retinal artery equivalent;

CRVE, central retinal vein equivalent.

TABLE 5B | Agreement estimates of measurements based on the whole fundus

on photographs taken repeatedly under similar conditions.

Good Usable Reject

Artery n = 330 n = 35 n = 161

Arc 0.75 (0.70–0.79)* 0.55 (0.32–0.72)* 0.56 (0.46–0.64)*

Chord 0.76 (0.71–0.79)** 0.54 (0.31–0.71)* 0.56 (0.46–0.64)*

Length diameter ratio 0.80 (0.76–0.83)** 0.64 (0.44–0.78)* 0.59 (0.50–0.67)*

Mean diameter 0.78 (0.74–0.81)** 0.74 (0.58–0.85)* 0.65 (0.57–0.72)*

Weighted diameter 0.81 (0.78–0.84)** 0.80 (0.68-0.88)** 0.74 (0.68–0.80)*

Vein n = 330 n = 34 n = 137

Arc 0.75 (0.71–0.79)** 0.68 (0.49–0.80)* 0.58 (0.48–0.66)*

Chord 0.76 (0.72–0.79)** 0.66 (0.46–0.79)* 0.59 (0.49–0.67)*

Length diameter ratio 0.78 (0.74–0.81)** 0.76 (0.60–0.86)** 0.63 (0.53–0.70)*

Mean diameter 0.80 (0.76–0.83)** 0.61 (0.40–0.76)* 0.73(0.66–0.79)*

Weighted diameter 0.82 (0.78–0.85)** 0.69 (0.51–0.82)* 0.74 (0.66–0.79)*

*Moderate: between 0.5 and 0.75, **Good: between 0.75 and 0.9, ***Excellent: >0.90.

ICC, intraclass correlation; CI, confidence interval; CRAE, central retinal artery equivalent;

CRVE, central retinal vein equivalent; Weighted diameter: mean diameter weighted by

segment length.

as a global representation of the overall or specified retinal
vascular network.

Accuracy of Segmentation
AUC scores were high across different datasets, achieving high
pixel-level segmentation accuracy. Interestingly, the visualization
of overlaid manual-predicted segmentation suggested that model
predictions outperformed manual labeling, especially for small
vessels that human graders often missed. For challenging cases,
including images from young participants with highly reflective
retinal nerve fiber layers, elderly participants with blurred retinal
images, or retinal images with existing eye diseases, the algorithm
provided segmentations more accurate than human graders.

Validity and Repeatability of Vessel
Measurement
Internal validation demonstrated reproducibility and robustness
in vessel measurements. In general, vessel calibers measured
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FIGURE 4 | Illustration of Retina-based Microvascular Health Assessment System (RMHAS) output. From left to right: artery, vein, and optic disc segmentation;

parameters measured in the standard zone; parameters measured in the whole fundus for artery and vein, respectively. Measures are demonstrated and plotted

visually. Users can examine the performance of each functional part throughout the analysis.

TABLE 6 | Comparison of different algorithms and software for retinal vessel analysis.

IVAN SIVA VAMPIRE QUARTZ SIVA-DLS RMHAS (ours)

Processing time 20min 25min - 53.57s A few seconds <2 s

Kind Semi-automatic Semi-automatic Semi-automatic Automatic Automatic Automatic

ROI Standard Standard + Extended Whole fundus Whole fundus Standard + Extended Standard + Whole fundus

Algorism ML ML ML ML DL DL

AVR
√ √ √ √ √ √

Mean vessel diameter
√ √ √ √ √ √

Length-diameter ratio ×
√

×
√

×
√

Vessel tortuosity ×
√ √ √

×
√

Branching coefficients ×
√ √

× ×
√

Branching angle ×
√ √ √

×
√

Angular asymmetry ×
√

× × ×
√

Asymmetry ratio ×
√

× × ×
√

Junctional exponent deviation ×
√

× × ×
√

Fractal dimension ×
√ √

× ×
√

Hierarchical vessel tree × × × × ×
√

Year 2004 2010 2011 2015 2020 2021

ROI, region of interest; AVR, artery to vein ratio.

within the Standard zone in disc-centered images were most
robust. All measurements achieved good or better agreement.

For external validation, we should note that measurements
are often not directly comparable between different algorithms
or software, particularly for measurements with units. For
example, CRAE and CRVE measurements between SIVA and
other software tools have been previously reported as not
equivalent, despite these caliber measurements being associated
with the same systemic health risk factors (48). Discrepancy in
caliber measurement is often due to variation in magnification
during image acquisition. A meaningful comparison would
require Littmann’s method (49) to adjust the magnification
factor by considering refractive error, corneal curvature, and
axial length and adapting them for Gullstrand’s schematic
eye. More importantly, this adjustment method would require
fundus cameras to be constructed based on a telecentric ray

path. However, most fundus cameras currently on the market
do not strictly follow this principl (50). Further, even when
magnification is appropriately adjusted, caliber should ideally be
measured when the structure of interest is in the same position
within the photo, although this is virtually impossible. All of
these factors may result in variations in the caliber measurement
(50). Given these challenges and the need to enable measures
on images with unknown fundus camera and magnification
settings, we chose to present caliber measurements in pixel
units rather than micron values. Notably in the Bland-Altmann
plots (Supplementary Figure 3), the variance in differences
increases as retinal vessel caliber increases for both venules
and arterioles in our dataset, which we assume was resulted
from the diversity of the dataset, which is constituted of images
from different cameras. However, their ratios were more stable.
This suggests when analyzing images across different cameras,
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relevant measurements should be adjusted, for example, CRAE
be adjusted by CRAE, or use the ratio values instead.

Efficiency and Potential for Future
Adoption
Table 6 summarizes and compares existing retinal vessel
measurement algorithms and software. RMHAS achieved
sufficient reliability and efficiency in critical retinal vessel
measurements. With 558,420 parameters, the algorithm required
<2 s to complete all the segmentation and analysis when running
images in batches on a server with one GeForce GTX TITAN
GPU (Nvidia Inc., CA, USA) and an Intel Core i7-4790K CPU.
The mean time cost for each task within the algorithm, as
tested by analyzing 100 images, were as follows: image quality:
0.02 s; artery, vein, optic disc segmentation: 0.05 s; Standard zone
measure: 0.17 s; vessel graph building: 0.51 s; graph plotting: 1 s.

RMHAS has several strengths. It is fast, fully automatic,
interpretable, easily accessible, and provides a wide range of
measurement parameters with orders. It can handle challenging
images, including retinal images with DR, AMD, glaucoma,
or images collected from the very young or elderly. Finally,
the algorithm is compatible with images obtained from various
fundus cameras with different image resolutions. RMHAS
limitations include its measurement of retinal caliber value based
on pixel units rather than micron measures due to unknown
image magnification factors.

CONCLUSION

RMHAS achieved good segmentation accuracy across datasets
with diverse eye conditions and image resolutions. Compared
with manual segmentation, RMHAS performed better at
outlining small vessels than human graders, especially in
challenging cases. The agreement and repeatability analysis
supported the robustness of the algorithm. RMHAS was feasible
for application in automated high throughput retinal vessel
analysis and required minimal time. We intend to provide
RMHAS as a public tool for the research community. The
algorithm demo is publicly available (https://www.retinavessel.
com/) for testing and analysis. For batch analysis in large
quantities, please contact us.
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