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Introduction: Extensive research is directed to uncover new biomarkers capable to stratify breast cancer
patients into clinically relevant cohorts. However, the overall performance ranking of such marker can-
didates compared to other genes is virtually absent. Here, we present the ranking of all survival related
genes in chemotherapy treated basal and estrogen positive/HER2 negative breast cancer.
Methods: We searched the GEO repository to uncover transcriptomic datasets with available follow-up
and clinical data. After quality control and normalization, samples entered an integrated database.
Molecular subtypes were designated using gene expression data. Relapse-free survival analysis was per-
formed using Cox proportional hazards regression. False discovery rate was computed to combat multiple
hypothesis testing. Kaplan-Meier plots were drawn to visualize the best performing genes.
Results: The entire database includes 7,830 unique samples from 55 independent datasets. Of those with
available relapse-free survival time, 3,382 samples were estrogen receptor-positive and 696 were basal.
In chemotherapy treated ER positive/ERBB2 negative patients the significant prognostic biomarker genes
achieved hazard rates between 1.76 and 3.33 with a p value below 5.8E�04. The significant prognostic
genes in adjuvant chemotherapy treated basal breast cancer samples reached hazard rates between
1.88 and 3.61 with a p value below 7.2E�04. Our integrated platform was extended enabling the valida-
tion of future biomarker candidates.
Conclusions: A reference ranking for all genes in two chemotherapy treated breast cancer cohorts is pre-
sented. The results help to neglect those with unlikely clinical significance and to focus future research on
the most promising candidates.

� 2021 The Author. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Breast cancer is by far the most common cancer in women [1]
with two main established molecular biomarkers for systemic
therapy, estrogen receptor (ER) alpha and epidermal growth recep-
tor 2 (ERBB2/HER2). These define three distinct molecular sub-
types, the ER alpha positive/ERBB2 negative, the ERBB2 positive,
and the basal tumors (these lack ER alpha, ERBB2, and also proges-
terone receptor). Progesterone receptor (PR) is a gene regulated by
ER alpha and ER alpha positive/PR negative cancers are exceedingly
rare [2].

ER positive tumors are treated with hormone therapy and occa-
sionally with some chemotherapy, ERBB2 positive tumors are trea-
ted with anti-ERBB2 therapy and chemotherapy and basal tumors
receive chemotherapy only [3]. With the introduction of anti-
ERBB2 therapies the previously inferior prognosis of ERBB2 posi-
tive patients improved dramatically [4]. Today, basal cases have
the worst expected outcome with high risk of relapse within a
few years following diagnosis [5]. The ER positive/ERBB2 negative
patients represent 70% of all cases, the ERBB2 positive cases
account for 15–20%, and the basal cases denote 15% of all breast
cancer cases [6].

In recent years few new agents have been approved, including
CDK4/6 inhibitors for the treatment of advanced ER positive
patients [7] and PARP inhibitors for patients with germline BRCA
mutation [8]. However, despite multiple large-scale tumor
sequencing studies, germline mutations in BRCA1 and BRCA2 [9]
remain the solitary mutations capable to serve as basis for clini-
cally valuable targeted therapy. At the same time, monogenic gene
expression based predictive biomarkers have been supplemented
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by new generations of multigenic prognostic test. Some of the
multigenic tests claim to predict both early and late relapse [10].

The most important genes used today as predictive markers (ca-
pable to serve as biomarkers predicting response to a given agent)
emerged first as prognostic biomarkers (genes capable to predict
the expected survival of the patients). This was the case for both
ER [11] and ERBB2 [12]. Considering the efficiency of current sys-
temic therapies, the next level should lie in investigation of patient
cohorts further stratified based on administered treatment – which
itself is already based on the currently approved clinical markers.
To achieve this goal, one has to identify and rank all prognostic
biomarkers. Here, we aimed to perform such an analysis using
publicly available gene expression datasets in basal and in the
estrogen-positive/ERBB2 negative chemotherapy treated breast
cancer.

2. Methods

2.1. Database setup

We performed a search in the GEO (https://www.ncbi.nlm.nih.-
gov/geo/) and EGA (https://ega-archive.org/) repositories to iden-
tify transcriptome-level gene expression datasets with available
clinical information. In this, only datasets with at least 30 samples
were considered and only those which were generated using the
GEO platforms GPL96, GPL570, and GPL571. The reason for this fil-
ter is that these platforms have an overlapping set of 22,277 genes
measured using the exact same probe sequences. It is only possible
to have the same sensitivity, specificity, and dynamic range in case
the same probe sets are used.

2.2. Quality control and pre-processing

First, each array was normalized using MAS5 – we selected
MAS5 as it ranked among the best performing normalization tech-
niques in our previous comparison of available methods using RT-
PCR validated expression values [13]. In addition, MAS5 enables
the normalization of a single sample separately, thus the insertion
or removal of a sample or samples does not affect the other values
within the dataset. Then, a second scaling normalization was per-
formed to reduce batch effects by setting mean expression of the
overlapping 22,277 probes to 1000 in each array [14].

In order to remove redundant samples, the normalized gene
expression values across all samples were compared. In case of
identical expression values, only the first publication of a given
gene array was retained in the database, and all subsequent copies
were removed. Five parameters were analyzed for quality control:
the background, the raw Q, the percentage of present calls, the
presence of bioBCD spikes, and the GAPDH/ACTB 3 to 5 ratio. Sam-
ples with positive values and – for continuous variables – those
within the 95% range for all samples passed the quality control.
Those where one parameter did not pass, were designated as out-
liers, and those where two or more parameters did not pass were
marked as biased arrays. Biased arrays were excluded from the
subsequent statistical analyses.

2.3. Molecular subtype determination

Molecular subtypes were determined using the StGallen criteria
[15]. Because only the gene expression measured on the gene
arrays were available for all samples, these were used to determine
receptor status for each patient. In this, the cutoff of 500 for the
probe set 205225_at was used to determine estrogen positivity
and the probe set 216836_s_at with a cutoff of 4800 was used to
assign patients into ERBB2 positive/negative groups [16]. Proges-
4102
terone receptor was not included, because there is no reliable
probe set for this gene in the GPL96 gene arrays. Present analysis
was restricted to two systemically treated cohorts, to those who
are estrogen positive ERBB2 negative and to those who are nega-
tive for both estrogen and ERBB2 receptors.

2.4. Survival analysis

Cox proportional hazards regression analysis was made for each
gene separately. In this, each possible cutoff value was examined
between the lower and upper quartiles, and False-Discovery Rate
using the Benjamini-Hochberg method was computed to correct
for multiple hypothesis testing. The survival analysis was per-
formed for relapse-free survival (RFS). Breast cancer specific sur-
vival was not used because almost all studies published OS and/
or RFS only. In case of identical p values the strongest hazard rate
was identified. The results for the best performing cutoff were
exported for each gene in a separate database, and these were used
to generate Kaplan-Meier plots to visualize correlation between
gene expression and survival.

2.5. Gene ontology analysis

We performed gene ontology analysis for the derived lists in
each setting separately. In this, only the significant genes were
included and The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) tool was used to uncover over-
represented biological processes (BP) and molecular functions
(MF) [17]. Only hits with a Benjamini-Hochberg False Discovery
Rate below 0.05 were accepted as significant.

2.6. Updates of www.kmplot.com

Our database was initially established in 2010 with 1809
patients and at that time we also established an online survival
analysis platform to enable the investigation of the assembled
dataset by independent researchers [18]. In addition to updating
the database in the online analysis platform new analysis options
were also added to the site, including the cutoff determination
algorithm and molecular subtypes utilized in present manuscript.
3. Results

3.1. Database

The total number of breast cancer arrays was 9423 and these
represent 7830 unique samples from 55 independent datasets. Of
these, there were 1139 outliers and 77 biased arrays. All biased
arrays were excluded from further analysis. Relapse-free survival
was available for 5268 patients and overall survival time for
5165 patients. Clinical characteristics for the entire database are
presented in Table 1. Of note, the total sample number in Table 1
for some studies is lower due to the exclusion of redundant sam-
ples, as described in the Methods section. Clinical characteristics
of the entire database including receptor status, grade, lymph node
status, molecular subtype distribution, applied treatment and
length of follow-up for relapse-free survival are summarized in
Fig. 1.

In order to select the most reliable probes, multiple filtering
steps were executed. First, only probe sets mapped to a gene were
retained. Then a second filter was added to remove all genes with a
false discovery rate over 5%. Then, a third and a fourth filter were
set in which the maximal expression had to be over 1000 and
the cutoff values had to be over 100, respectively. The goal of these
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Table 1
An overview of the clinical characteristics of all datasets integrated into the complete database. NA: no data, RFS: relapse-free survival, OS: overall survival, ER: estrogen receptor, MTAB-365: E-MTAB-365 dataset, TABM-43: E-TABM-43 dataset.

Dataset Sample RFS OS ER + ERBB2 + Node
negative

Basal Luminal A Luminal B ERBB2 Grade 1 Grade 2 Grade 3

n % n months n months n % n % n % n % n % n % n % n % n % n %

GSE11121 200 2.6% 200 93.9 ± 7.1 NA NA 181 90.5% 25 12.5% 200 100.0% 15 7.5% 130 65.0% 51 25.5% 4 2.0% 29 14.5% 136 68.0% 35 17.5%
GSE12093 136 1.7% 136 92.3 ± 6.5 NA NA 136 100.0% 14 10.3% 136 100.0% 0 0.0% 104 76.5% 32 23.5% 0 0.0% 0 NA 0 NA 0 NA
GSE12276 204 2.6% 204 26.2 ± 3.0 NA NA 127 62.3% 48 23.5% 0 0.0% 57 27.9% 70 34.3% 57 27.9% 20 9.8% 0 NA 0 NA 0 NA
GSE1456 159 2.0% 159 74.4 ± 4.3 159 76.8 ± 3.6 141 88.7% 23 14.5% 0 0.0% 17 10.7% 43 27.0% 98 61.6% 1 0.6% 28 19.0% 58 39.5% 61 41.5%
GSE16391 55 0.7% 48 34.7 ± 4.3 NA NA 54 98.2% 3 5.5% 22 40.0% 1 1.8% 46 83.6% 8 14.5% 0 0.0% 2 3.6% 35 63.6% 18 32.7%
GSE16446 120 1.5% 107 35.7 ± 3.5 107 38.6 ± 3.2 9 7.5% 28 23.3% 55 45.8% 86 71.7% 5 4.2% 4 3.3% 25 20.8% 2 1.7% 20 16.7% 92 76.7%
GSE16716 47 0.6% 8 61.1 ± 25.6 7 68.4 ± 22.8 30 63.8% 32 68.1% 2 25.0% 4 8.5% 6 12.8% 24 51.1% 13 27.7% 0 0.0% 13 27.7% 34 72.3%
GSE17705 196 2.5% 196 105.6 ± 6.1 NA NA 191 97.4% 10 5.1% 111 56.6% 5 2.6% 98 50.0% 93 47.4% 0 0.0% 0 NA 0 NA 0 NA
GSE17907 54 0.7% 38 39.7 ± 9.6 NA NA 28 51.9% 48 88.9% 14 31.8% 0 0.0% 6 11.1% 22 40.7% 26 48.1% 3 6.5% 9 19.6% 34 73.9%
GSE18728 61 0.8% NA NA NA NA 45 73.8% 6 9.8% 0 NA 14 23.0% 35 57.4% 10 16.4% 2 3.3% 0 NA 0 NA 0 NA
GSE19615 115 1.5% 115 60.0 ± 4.0 NA NA 75 65.2% 26 22.6% 62 53.9% 31 27.0% 47 40.9% 28 24.3% 9 7.8% 23 20.0% 28 24.3% 64 55.7%
GSE20194 45 0.6% NA NA NA NA 29 64.4% 16 35.6% 9 25.0% 9 20.0% 10 22.2% 19 42.2% 7 15.6% 0 0.0% 8 23.5% 26 76.5%
GSE20271 96 1.2% 2 21.4 ± 13.6 2 21.4 ± 13.6 66 68.8% 15 15.6% 38 39.6% 21 21.9% 18 18.8% 48 50.0% 9 9.4% 5 6.6% 30 39.5% 41 53.9%
GSE2034 286 3.7% 286 77.5 ± 4.9 NA NA 229 80.1% 61 21.3% 286 100.0% 44 15.4% 131 45.8% 98 34.3% 13 4.5% 0 NA 0 NA 0 NA
GSE20685 327 4.2% 327 87.6 ± 4.7 327 94.7 ± 4.2 261 79.8% 89 27.2% 0 NA 37 11.3% 165 50.5% 96 29.4% 29 8.9% 0 NA 0 NA 0 NA
GSE20711 90 1.1% 88 67.4 ± 9.1 88 83.0 ± 7.6 58 64.4% 21 23.3% 29 32.2% 19 21.1% 47 52.2% 11 12.2% 13 14.4% 13 14.4% 5 5.6% 70 77.8%
GSE21653 240 3.1% 230 60.8 ± 5.5 NA NA 158 65.8% 29 12.1% 111 46.4% 77 32.1% 93 38.8% 65 27.1% 5 2.1% 44 18.3% 82 34.2% 108 45.0%
GSE22093 68 0.9% NA NA 31 58.8 ± 10.9 39 57.4% 17 25.0% 18 26.5% 21 30.9% 8 11.8% 31 45.6% 8 11.8% 2 2.9% 19 27.9% 39 57.4%
GSE23988 8 0.1% NA NA NA NA 6 75.0% 0 0.0% 1 12.5% 2 25.0% 2 25.0% 4 50.0% 0 0.0% 0 0.0% 3 37.5% 4 50.0%
GSE25066 507 6.5% 507 35.8 ± 1.7 NA NA 360 71.0% 10 2.0% 169 33.8% 142 28.0% 135 26.6% 225 44.4% 5 1.0% 32 6.5% 179 36.5% 259 52.7%
GSE2603 99 1.3% 82 62.1 ± 6.2 NA NA 66 66.7% 15 15.2% 34 34.3% 29 29.3% 18 18.2% 48 48.5% 4 4.0% 0 NA 0 NA 0 NA
GSE26971 276 3.5% 97 71.0 ± 6.9 NA NA 270 97.8% 9 3.3% 131 47.5% 5 1.8% 224 81.2% 46 16.7% 1 0.4% 12 12.9% 62 66.7% 19 20.4%
GSE29044 79 1.0% NA NA NA NA 63 79.7% 17 21.5% 0 NA 5 6.3% 53 67.1% 10 12.7% 11 13.9% 3 8.3% 18 50.0% 15 41.7%
GSE2990 102 1.3% 102 84.1 ± 10.3 NA NA 89 87.3% 17 16.7% 85 83.3% 7 6.9% 56 54.9% 33 32.4% 6 5.9% 27 32.5% 20 24.1% 36 43.4%
GSE31448 71 0.9% NA NA NA NA 39 54.9% 3 4.2% 17 65.4% 30 42.3% 19 26.8% 20 28.2% 2 2.8% 0 NA 0 NA 0 NA
GSE31519 67 0.9% 64 39.6 ± 6.5 NA NA 19 28.4% 5 7.5% 44 67.7% 45 67.2% 5 7.5% 14 20.9% 3 4.5% 18 28.6% 0 0.0% 45 71.4%
GSE32646 115 1.5% NA NA NA NA 79 68.7% 23 20.0% 32 27.8% 23 20.0% 49 42.6% 30 26.1% 13 11.3% 16 13.9% 78 67.8% 21 18.3%
GSE3494 251 3.2% 249 85.1 ± 6.4 236 98.0 ± 5.9 228 90.8% 45 17.9% 158 62.9% 17 6.8% 138 55.0% 90 35.9% 6 2.4% 67 26.9% 128 51.4% 54 21.7%
GSE36771 107 1.4% NA NA NA NA 79 73.8% 15 14.0% 45 42.1% 19 17.8% 66 61.7% 13 12.1% 9 8.4% 11 10.3% 42 39.3% 54 50.5%
GSE37946 41 0.5% 40 54.0 ± 6.0 40 54.0 ± 6.0 27 65.9% 32 78.0% 33 80.5% 5 12.2% 2 4.9% 25 61.0% 9 22.0% 0 0.0% 10 25.0% 30 75.0%
GSE41998 279 3.6% NA NA NA NA 141 50.5% 24 8.6% 0 NA 118 42.3% 126 45.2% 15 5.4% 20 7.2% 0 NA 0 NA 0 NA
GSE42568 121 1.5% 104 54.4 ± 6.3 104 63.3 ± 5.7 91 75.2% 15 12.4% 45 37.2% 23 19.0% 73 60.3% 18 14.9% 7 5.8% 11 9.1% 40 33.1% 53 43.8%
GSE42822 91 1.2% NA NA NA NA 54 59.3% 30 33.0% 29 33.0% 20 22.0% 41 45.1% 13 14.3% 17 18.7% 0 0.0% 23 30.3% 53 69.7%
GSE43358 57 0.7% NA NA NA NA 38 66.7% 9 15.8% 0 NA 16 28.1% 31 54.4% 7 12.3% 3 5.3% 16 28.1% 6 10.5% 35 61.4%
GSE43365 111 1.4% NA NA NA NA 95 85.6% 13 11.7% 85 76.6% 10 9.0% 84 75.7% 11 9.9% 6 5.4% 21 18.9% 54 48.6% 36 32.4%
GSE45255 139 1.8% 94 49.9 ± 5.0 134 54.9 ± 3.6 118 84.9% 31 22.3% 94 67.6% 13 9.4% 47 33.8% 71 51.1% 8 5.8% 17 12.2% 52 37.4% 67 48.2%
GSE4611 153 2.0% 152 43.8 ± 3.0 NA NA 133 86.9% 40 26.1% 79 52.3% 2 1.3% 81 52.9% 52 34.0% 18 11.8% 16 10.5% 89 58.6% 47 30.9%
GSE46184 74 0.9% 74 72.4 ± 7.8 NA NA 60 81.1% 32 43.2% 42 56.8% 2 2.7% 23 31.1% 37 50.0% 12 16.2% 1 1.4% 35 47.9% 37 50.7%
GSE48390 81 1.0% 81 44.8 ± 3.7 81 44.8 ± 3.7 64 79.0% 13 16.0% 0 NA 9 11.1% 52 64.2% 12 14.8% 8 9.9% 0 NA 0 NA 0 NA
GSE4922 1 0.0% 1 146.0 NA NA 1 100.0% 0 0.0% 1 100.0% 0 0.0% 1 100.0% 0 0.0% 0 0.0% 1 100.0% 0 0.0% 0 0.0%
GSE50948 156 2.0% NA NA NA NA 83 53.2% 77 49.4% 0 NA 28 17.9% 37 23.7% 46 29.5% 45 28.8% 0 0.0% 67 43.8% 86 56.2%
GSE5327 58 0.7% 58 81.3 ± 9.7 NA NA 22 37.9% 12 20.7% 0 0.0% 30 51.7% 3 5.2% 19 32.8% 6 10.3% 0 NA 0 NA 0 NA
GSE5462 116 1.5% NA NA NA NA 116 100.0% 3 2.6% 0 NA 0 0.0% 113 97.4% 3 2.6% 0 0.0% 0 NA 0 NA 0 NA
GSE58812 107 1.4% NA NA 107 73.4 ± 8.0 21 19.6% 3 2.8% 0 NA 83 77.6% 21 19.6% 0 0.0% 3 2.8% 0 NA 0 NA 0 NA
GSE61304 62 0.8% 58 30.3 ± 5.0 NA NA 40 64.5% 16 25.8% 20 35.1% 15 24.2% 30 48.4% 10 16.1% 7 11.3% 5 8.6% 16 27.6% 37 63.8%
GSE65194 164 2.1% 130 49.0 ± 3.9 130 50.7 ± 3.8 83 50.6% 64 39.0% 58 52.3% 46 28.0% 44 26.8% 39 23.8% 35 21.3% 0 NA 0 NA 0 NA
GSE6532 82 1.0% 77 72.7 ± 8.4 NA NA 80 97.6% 11 13.4% 52 63.4% 0 0.0% 63 76.8% 17 20.7% 2 2.4% 0 0.0% 54 98.2% 1 1.8%
GSE66305 88 1.1% NA NA NA NA 54 61.4% 59 67.0% 0 NA 6 6.8% 22 25.0% 32 36.4% 28 31.8% 0 NA 0 NA 0 NA
GSE69031 130 1.7% 129 68.4 ± 8.4 129 76.5 ± 7.7 98 75.4% 21 16.2% 59 45.4% 27 20.8% 76 58.5% 22 16.9% 5 3.8% 14 11.2% 46 36.8% 65 52.0%
GSE7390 198 2.5% 198 111.7 ± 9.3 198 136.4 ± 8.4 143 72.2% 29 14.6% 198 100.0% 40 20.2% 119 60.1% 24 12.1% 15 7.6% 30 15.3% 83 42.3% 83 42.3%
GSE76275 265 3.4% NA NA NA NA 140 52.8% 10 3.8% 74 49.3% 121 45.7% 101 38.1% 39 14.7% 4 1.5% 5 2.4% 80 37.7% 127 59.9%
GSE78958 424 5.4% NA NA NA NA 334 78.8% 45 10.6% 0 NA 71 16.7% 246 58.0% 88 20.8% 19 4.5% 88 20.9% 156 37.0% 178 42.2%
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filters was to include only genes which have robust expression
suitable for independent validation. Finally, only the JetSet best
probe sets [19] were retained.

Prognostic biomarkers in estrogen-positive, ERBB2 negative,
chemotherapy treated breast tumors

Fifteen out of the 55 datasets had patient samples eligible for
this analysis (these include the datasets GSE1456, GSE16391,
GSE16446, GSE16716, GSE17907, GSE19615, GSE21653,
GSE25066, GSE31519, GSE3494, GSE37946, GSE45255, GSE4611,
GSE5327, and GSE69031). The cumulative number of patients
included in these totaled at n = 712 (for some genes the n was
131 due to array platform differences). When running the Cox
regression for relapse-free survival, there were 1496 genes below
the 5% FDR threshold and 1257 of these had expression over
1000 in at least one sample. The threshold of 1000 was used as this
was the mean expression for all genes after the normalization. The
cutoff was over 100 for 1203 genes and 692 of these were JetSet
best probe sets. The complete table of all significant genes ranked
by absolute HR values is presented as Supplemental Table 1.

What is the maximal hazard rate a gene can achieve? We can
estimate the potential effect of a gene when ranking all genes
and selecting the most significant one. When investigating all
genes in all patients in the estrogen receptor positive ERBB2 recep-
tor negative cohort, Ribosomal Protein L22 (RPL22) reached the
highest significance with a HR of 0.3 (higher expression of RPL22
was associated with better survival, and thus the value of 0.3
would equal to an absolute HR of 3.33) and a p of 5.4E�10
(Fig. 2A). The first significant gene was Thyroid transcription factor
I (TGT3) with a HR of 1.76 and a p of 5.8E�04 (Fig. 2B). Genes with
inferior p value did not reached statistical significance after multi-
ple hypothesis testing (FDR over 5%).

Thirteen biological processes reached significance in the GO
analysis, cell division (GO:0051301, p = 6.02E�11), mitotic sister
chromatid segregation (GO:0000070, p = 5.21E�07), and cell pro-
liferation (GO:0008283, p = 1.16E�06) reaching the lowest p val-
ues. Only three molecular functions were significant, including
ATP binding (GO:0005524, p = 3.81E�06) and microtubule binding
(GO:0008017, p = 7.51E�05).

3.2. Estrogen-positive ERBB2 negative breast cancer with untreated
excluded

In this setting we included all estrogen positive and ERBB2 neg-
ative patients (n = 2823) and then excluded all samples with no
information about treatment and also excluded all systemically
untreated patients. Of note, the restriction was for systemic thera-
pies only (chemotherapy and endocrine therapy) as there was no
information available about radiation therapy. Twenty-three data-
sets had eligible patients (these include GSE12093, GSE12276,
GSE1456, GSE16391, GSE16446, GSE16716, GSE17705, GSE17907,
GSE19615, GSE21653, GSE25066, GSE26971, GSE2990, GSE31519,
GSE3494, GSE37946, GSE45255, GSE4611, GSE46184, GSE5327,
GSE6532, GSE69031, and GSE9195), and the final number of
patients included was 1679. Of note, some genes were only present
in the HGU133plus2 arrays, and therefore only patients who were
measured by this platform were included (n = 384). Of the 37,535
probe sets mapping to a gene, 17,088 genes reached statistical sig-
nificance at FDR < 5%. Of these, 11,029 had expression over 1000 in
at least one sample, and the cutoff was over 100 for 8607 genes.
When mapping to JetSet best probe sets, 4709 genes remained as
significant, the complete list of these ranked by absolute HR values
is provided in Supplemental Table 2.

Twenty biological processes reached significant over-
representation among these genes including cell division
(GO:0051301, p = 2.34E�11), proteasome-mediated ubiquitin-
dependent protein catabolic process (GO:0043161, p = 5.92E



Fig. 1. Descriptive characteristics of the entire database including distribution of estrogen receptor status (A), HER2 receptor status (B), grade (C), nodal involvement (D),
molecular subtypes (E), treatment (F), and follow-up for relapse-free survival (G).
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�07), and regulation of signal transduction by p53 class mediator
(GO:1901796, p = 7.63E�07). Poly(A)RNA binding (GO:0044822,
p = 1.31E�53) and ATP binding (GO:0005524, p = 3.65E�07) were
on the list of most important molecular functions. The complete
lists of all the biological processes and molecular functions signif-
icant in each cohort are presented in Supplemental Table 3.
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3.3. Genes associated with survival after chemotherapy in basal breast
cancer

All together 13 datasets included basal breast cancers with doc-
umented chemotherapy, these include GSE1456, GSE16446,
GSE16716, GSE19615, GSE21653, GSE25066, GSE31519, GSE3494,



Fig. 2. Genes related to relapse-free survival after chemotherapy. The best performing genes in chemotherapy treated ER positive HER2 negative breast cancer (A), and in all
chemotherapy treated basal breast cancer (C). The first genes reaching significance after multiple testing correction in chemotherapy treated ER positive HER2 negative breast
cancer (B) and in all chemotherapy treated basal tumors (D).
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GSE37946, GSE45255, GSE4611, GSE5327, and GSE69031. The
number of patient samples was 392. When running the survival
analysis across all genes using relapse as the endpoint, only probe
sets mapping to a gene were included (n = 37,535). Then filtering
was made to include only those results where the False Discovery
Rate was not higher than 5% (n = 652 genes remaining), and only
those where the expression of the gene reached 1000 in at least
one sample (n = 402 remaining). The cutoff designating high-
and low-expression cohorts had to be over 100 (n = 380 remaining)
to exclude probes with expression levels close to the background
noise. Finally, the significant probe sets were reduced to include
only the JetSet best probe sets (n = 246 remaining). The complete
list of all results ranked by the absolute HR values is presented
in Supplemental Table 4. In the gene ontology analysis extracellu-
lar matrix organization (GO:0030198, p = 1.33E�08) reached the
highest significance.

When ranking all genes derived using all patients in this cohort,
the most significant gene was Calmodulin-regulated spectrin-
associated protein 1 (CAMSAP1) with a HR of 3.61 and a p of
1.5E�05 (Fig. 2C). On the other end of the spectra the first gene
to reach significance was PDZ And LIM Domain 7 (PDLIM7) with
a HR of 1.88 and a p of 7.2E�04 (Fig. 2D). Thus the variety of sig-
nificant genes spanned a hazard rate ranging between 76% and
261% higher risk (when considering all HR values below one as
inverted).
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3.4. Genes associated with survival in basal breast cancer after
adjuvant chemotherapy

Ten datasets had basal breast cancer patient samples with doc-
umented adjuvant chemotherapy, including GSE1456, GSE19615,
GSE21653, GSE31519, GSE3494, GSE37946, GSE45255, GSE4611,
GSE5327, and GSE69031. In the altogether 156 samples 1553 genes
reached a FDR below 5%. When filtering for maximal expression
over 1000 (n = 862) and cutoff over 100, 542 genes reached signif-
icance. The complete list of all genes related to relapse-free sur-
vival and ranked by the absolute HR values is provided in
Supplemental Table 5. When examining the overrepresented bio-
logical processes among these genes, antigen processing and pre-
sentation (GO:0002504, p = 1.26E�06), T cell receptor signaling
(GO:0050852, p = 7.09E�05), and immune response
(GO:0006955, p = 1.62E�04) reached the highest significance.
MHC class II receptor activity (GO:0032395, p = 2.5E�05) was
the most significant molecular function. The seven biological pro-
cess and three molecular function categories reaching significance
in the GO analysis are listed in Supplemental Table 3.

3.5. Genes correlated to prognosis in untreated patients

The analysis was also executed by including only patients who
did not receive a systemic treatment. Untreated estrogen-positive
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ERBB2 negative breast cancer patients (n = 686) were available
from the GSE11121, GSE1456, GSE19615, GSE2034, GSE21653,
GSE2990, GSE31519, GSE3494, GSE45255, GSE4922, GSE69031,
and GSE7390 datasets, and the expression of all together 959 genes
reached statistical significance in correlation to relapse-free sur-
vival (Supplemental Table 6). When comparing all genes related
to survival in chemotherapy treated and untreated patients, 135
out of the combined 1515 genes were present in both lists
(8.9%). Untreated basal breast cancer patients (n = 178) were acces-
sible from the GSE11121, GSE19615, GSE2034, GSE21653,
GSE2990, GSE31519, GSE3494, GSE45255, GSE69031, and
GSE7390 datasets and 135 genes had a FDR below 0.05 in these
(Supplemental Table 7). When compared to the genes related to
chemotherapy response, 99.5% of genes were unique for one signa-
ture and only two genes (WARS and UBE2L6) were present in both
lists.
3.6. Online survival analysis platform

The updated online analysis platform with transcriptomic and
survival data of all 7830 breast cancer samples can be utilized at
https://kmplot.com/analysis/index.php?p=service&cancer=breast.
The correlation between survival and gene expression can also be
evaluated for clinical cohorts not utilized in current project.
4. Discussion

Present study is based on multiple distinct steps. First, a size-
able database comprising thousands of breast cancer samples with
clinical follow-up was assembled. The entire transcriptome was
processed for each sample and redundant samples were removed.
Then, survival analysis was made across all genes and the best per-
forming genes were ranked for two cohorts with high clinical rel-
evance: ER positive ERBB2 negative patients who received
chemotherapy and basal breast tumors with chemotherapy.

Chemotherapy can improve the survival [20] but at the same
time has significant risks due to the suppression of rapidly prolif-
erating tissues including bone marrow (anemia, immunosuppres-
sion), hair follicles (alopecia), and the gastrointestinal tract
(diarrhea) [21]. Chemotherapy can also have an effect on the cen-
tral nervous system, lead to vomiting and early cognitive impair-
ment [22]. Thus, it is crucial to select patients who get the most
benefit from chemotherapy – different features are capable to
assist in making this decision in different breast cancer subtypes.

ER positive ERBB2 negative tumors represent the largest cohort
of breast cancer patients with over two third of all patients. The
basic systemic therapy for these patients includes chemotherapy
and endocrine therapy – we evaluated biomarkers of endocrine
therapy previously [23]. The decision to administer chemotherapy
can be based on clinical features including high stage or node pos-
itivity, or designation of high risk via gene expression profiles
including Oncotype DX [24,25] or EndoPredict [26]. Here, we run
survival analysis for all genes in all chemotherapy treated ER pos-
itive ERBB2 negative patients to uncover genes correlated to sur-
vival following chemotherapy. With 692 significant genes we
exposed a surprisingly large proportion of genes related to sur-
vival. Of note, when running the analysis using a less restricted cri-
teria by including all patients who were not untreated, the number
of significant genes was even higher. The significant prognostic
biomarker genes achieved a hazard rate between 1.76 and 3.33
with a p value below 5.8e-04. When investigating common fea-
tures of these genes by analyzing biological processes and molecu-
lar functions, GO categories related to cell division and chromatid
segregation including microtubule binding were identified. These
observations are in line with the previously described paradox cor-
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relation between chemosensitivity and low proliferation rates [27].
While the in depth discussion of individual genes is not in the
scope of present study, a ranking of all significant genes in conjunc-
tion with the established threshold values help to quickly identify
and filter genes related to chemotherapy response in this cohort in
future genetic and transcriptomic studies.

Basal breast cancers that lack the expression of both steroid
hormone receptors and ERBB2 represent approximately one sixth
of all cases. Despite sensitivity to chemotherapy, these tumors
have generally a poor prognosis [28]. In these tumors, the identifi-
cation of good- and worse-prognosis cohorts has little value as
even good-prognosis patients have a 20% risk of relapse [29]. Basal
tumors are heterogenous and can be further subdivided into four
molecular subtypes based on their transcriptomic fingerprint
including the basal-like 1, basal-like 2, the mesenchymal, and the
luminal androgen receptor subtypes [30]. While these subtypes
have differences in clinical characteristics, the number of samples
with clinical follow-up available in our database was not sufficient
to perform a robust analysis across all genes within each subtype
separately. When using all chemotherapy treated basal breast can-
cers we identified 246 genes significantly correlated to survival.
The association with survival ranged between 1.88 and 3.61 for
these genes. Only few gene ontology categories related to extracel-
lular matrix organization and collagen catabolism were signifi-
cantly overrepresented. Notably, then restricting the analysis to
include only basal tumors with adjuvant chemotherapy, multiple
gene ontology categories related to immune response reached sta-
tistical significance hinting on the involvement of the immune sys-
tem. These observations correspond with the trend of advancing
immune-mediated therapies in these patients [31].

Although the discussion of each gene associated with survival
following chemotherapy is beyond the scope of present study,
some interesting observations can be made when examining the
list of significant genes. Well-known genes previously linked to
chemotherapy response including TOP2A [32], MKI67 [33], ABC
efflux pumps [34], or APOBEC3B [35] were related to survival fol-
lowing chemotherapy in ER positive tumors only, and none of
these genes reached significance in basal tumors. The best per-
forming genes associated with survival after chemotherapy in
basal breast cancer were not significant in ER positive tumors.
The reasons for these differences are most probably the different
molecular characteristics related to the molecular subtypes. A
recent study investigating clinical prognostic factors including
TP53 status, grade, size, node positivity, ER and HER2 status, and
age found that only nodal status was significantly associated with
chemotherapy outcomes [36]. Combined, these results suggest that
ultimately molecular and not clinical features will enable the pre-
diction of response for chemotherapy in breast cancer.

While the two selected chemotherapy treated cohorts discussed
above cover the largest chunk of breast tumors, there are sub-
cohorts and other combination of clinical features. Our established
online platform www.kmplot.com was extended with the entire
updated database enabling the future validation and ranking of
gene-expression based biomarkers in any sub-cohort of breast can-
cer. The analysis can help to identify biomarker candidates for sub-
sequent in vitro validation studies [37,38].

We have to mention a limitation of the presented approach. The
collected and published clinical characteristics are incomplete for
many of the available datasets. As a result, only a fraction of the
total samples could be included in the statistical analyses. In addi-
tion, some detailed information, including the exact treatment pro-
tocol given was almost newer available.

In summary, by performing survival analysis across all genes we
identified the best performing genes in chemotherapy treated
estrogen-positive/ERBB2 receptor negative breast cancer and in
basal breast cancer samples. A reference ranking for all significant

https://kmplot.com/analysis/index.php?p=service%26cancer=breast
http://www.kmplot.com
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genes is presented and the minimal hazard rates to reach clinically
robust significance were established. The ranking and the estab-
lished threshold values help to quickly identify and filter genes
related to chemotherapy response in future genetic and transcrip-
tomic studies.
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