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Can natural selection act on parasites to compromise barriers to

cancer?

Characterizing the factors that disrupt the cellular barriers to cancer (e.g., cell-cycle arrest, apo-

ptosis, repression of telomerase, cell adhesion, and asymmetric cell division) and are essential

to oncogenesis is necessary to identify targets for therapeutic interventions [1]. Exacerbating

causes can contribute to cancer by compromising host restraints on cancer rather than break-

ing barriers; examples of such exacerbating causes are factors that drive angiogenesis, or

increased proliferation during pro-inflammatory responses [1]. All viruses that are recognized

by the International Agency for Research on Cancer (IARC) as Group 1 carcinogens, namely

human papillomaviruses (HPV), Hepatitis B and C viruses (HBV and HCV), Human Herpes

Virus type 8 (HHV-8), and Human T-cell lymphotropic virus type 1 (HTLV-1) [2], break bar-

riers to cancer and therefore generate essential causes of their associated cancers [1]. These

may be the result of natural selection. For example, from an evolutionary point of view, it is

probably advantageous to a virus that its host cell resists cell death, evades the immune system,

and proliferates. Other intracellular organisms (bacteria and unicellular eukaryotes) could

similarly benefit from altering the cellular mechanisms that prevent oncogenesis. Indeed, the

ability of intracellular bacteria and protozoan parasites to block apoptosis is now broadly rec-

ognized [3,4]. Increasing evidence implicates bacteria (certain strains of Escherichia coli, Fuso-
bacterium nucleatum, Salmonella Typhi, Chlamydia trachomatis, and a range of Mycoplasma)

and protists (Cryptosporidum parvum, Trichomonas vaginalis, Trypanosoma cruzi, Toxoplasma
gondii) in cancer development [2, 5–26].

For extracellular parasites, and in particular helminths, the evolutionary path that could

lead them to break the cellular barriers to cancer is more difficult. At present, three multicellu-

lar parasites, the trematodes Schistosoma haematobium, Opisthorchis viverrini, and Clonorchis
sinensis are recognized as Group 1 carcinogens by IARC, contributing 0.4% to human cancer

[2]. However, increased risk of cancer is associated with increasing numbers of other parasites,

e.g., species of Echinococcus, Strongyloides, Fasciola, Heterakis, Platynosomum, and Trichuris
[27] and is likely broadly underestimated due to the asymptomatic/subclinical nature of some

of these infections, wide occurrence among healthcare underserved communities, and long

latency between initial infection or exposure and clinical manifestation of cancer. The latest

advances in microbiology suggest a new paradigm—multi-microbial factors could explain why
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and how some parasites breach host barriers to cancer. Herein, we review the literature indi-

cating that microbes can contribute in an essential sense to oncogenesis through their interac-

tion with the host and with parasites.

High prevalence of microbes with oncogenic potential in

asymptomatic populations

The composition of the microbiome is thought to result from complex co-evolutionary mecha-

nisms among hosts and microbes. Antagonistic pleiotropy refers to genes that are beneficial

early in life, and improve fitness, but become detrimental later in life [28]. Recent studies sug-

gest that microbes and microbial communities can have similar effects: microbiome composi-

tion induces a life-history trade-off between life span and reproduction in flies [29]. Thus,

natural selection will favor establishment of microbes that are either beneficial to the host or

present a low cost of infection early in life, even if these microbes promote oncogenesis later in

life. Indeed, the human microbiome includes known and often highly prevalent oncogenic

microbes, such as Epstein Barr Virus (EBV), that infect 90% of the human population [30],

and many members of the gut microbiota are associated with cancer [6]. Only a small fraction

of the population carrying oncogenic microbes develops cancer, suggesting that cofactors that

exacerbate the susceptibility to cancer are necessary. Other microbes that are not identified as

oncogenic may show high prevalence and present as asymptomatic infection, but may enact

essential causes of cancer. Microbial communities previously regarded as commensal may

have diverse roles in oncogenesis during the long asymptomatic/subclinical period preceding

clinical diagnosis of cancer.

Parasites can modulate the oncogenicity of host-associated

microbes

Coinfection by multiple parasites is common in the wild. If we consider that any host-associ-

ated microbe can move along the parasitism-mutualism spectrum in a context-dependent

manner, coinfection is the norm. Viruses, bacteria, archaea, and eukaryotic parasites have

coinhabited the same host lineages for hundreds of millions of years and can either directly

interact when they inhabit the same host tissue or indirectly interact via modulation of the

host immune system. These interactions can influence tumor development and progression.

A widely appreciated example is the role of Plasmodium falciparum as an indirect risk factor

for Burkitt lymphoma, a monoclonal B cells cancer for which EBV infection is generally con-

sidered essential [31]. Recent studies have clarified the mechanisms by which P. falciparum
contributes to oncogenesis. The immunosuppression associated with P. falciparum malaria

leads to an increase in EBV-infected B cells in the germinal center, which dysregulates activa-

tion-induced cytidine deaminase expression, leading to DNA damages, including c-myc trans-

location that should lead to cell apoptosis, but EBV rescues the infected cell by inhibiting

apoptosis, effectively leading to Burkitt lymphoma [32–34].

Similarly, infection with Strongyloides stercoralis, a common parasitic nematode, shortens

the delay between HTLV-1 infection and the occurrence of T-cell leukemia [35, 36]. S. stercor-
alis benefits HTLV-1 with a higher proviral load in individuals infected by the roundworm,

due to the proliferative expansion of HTLV-1–infected cells [37]. By promoting cell prolifera-

tion, S. stercolis is an exacerbating cause of cancer. Infection with HTLV-1 results in a sup-

pressed immune response against helminths and in the reduced efficacy of antiparasitic drugs,

which lead to higher prevalence of S. stercoralis infection in HTLV-1–infected individuals

[38].
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Evidence is accumulating that members of the gut, oral, and vaginal microbiomes could ini-

tiate or influence the progression of oncogenesis by different processes, including the induc-

tion of a chronic inflammatory state or immune response, altering stem cell dynamics, the

biosynthesis of toxic and genotoxic metabolites, and affecting host metabolism [6, 39, 40].

Many parasites significantly alter their host microbiome composition [41]. Outcomes would

therefore depend on the individual’s microbiome composition at the time of infection, which

would render the association between parasite infection and cancer difficult to resolve.

A positive association between the highly prevalent sexually transmitted protozoan parasite

T. vaginalis and cervical neoplasia in women and prostate cancer in men has been reported

[13–18, 42]. T. vaginalis infection significantly affects the vaginal microbiome with a shift from

a lactobacillus-dominated microbiome to a community of bacteria responsible for the widely

spread syndrome of bacterial vaginosis [43]. Metabolites released by the parasite, e.g., indole,

support the survival of intracellular sexually transmitted bacteria such as C. trachomatis, which

has been independently associated with cancer [44]. Given the positive association between

bacterial vaginosis and cervical precancerous lesions [45], studies are needed to clarify the role

of the microbiota as a cofactor, or essential factor, for T. vaginalis–associated cancer.

S. haematobium is the causative agent of urogenital schistosomiasis (UGS). This trematode

parasite is endemic in 76 countries in Africa and the Middle East, but it can also be found in

Europe [46, 47]. UGS is a major risk factor for squamous cell carcinoma of the urinary bladder

[48, 49]. Early studies have found that UGS promotes bacterial coinfection and is associated

with a high concentration of N-nitroso compounds in the urine, suggesting that infection

favors nitrate-reducing bacteria that produce the cancer-inducing nitrosamines [50–52]. More

recent studies of the microbiome of noninfected and infected patients also revealed marked

differences [53, 54]. In addition, schistosomes can directly interact with bacteria, and Salmo-
nella is known to routinely attach to a range of species of schistosomes [55]. HPV, EBV, and

BK polyomavirus (BKV) have been found in a minority of bladder cancers by some investiga-

tors, although not by others [56]. Given the potential for some of these viruses and bacteria to

cause cancer, studies are needed to test their roles as causative agents for urinary bladder can-

cer associated with UGS.

Parasites can transmit pro-inflammatory or oncogenic microbes

There are numerous compelling examples of parasites that carry microbes that participate in

the infectious process, notably the well-documented Wolbachia-filarial nematodes system [57,

58]. There is even evidence that parasites have received genes from prokaryotic symbionts via

horizontal gene transfers, including numerous Wolbachia genes in symbiont-free filarial nem-

atodes [59], the thymidine kinase of C. parvum [60], and the N-acetylneuraminate lyase of T.

vaginalis [61], further demonstrating the selective advantage that microbial symbionts confer

to their parasitic hosts. Microbial symbionts of parasites can be transmitted to the host and be

responsible for inflammatory-associated pathogenesis [62, 63]. In addition, the release of Wol-
bachia from filarial nematodes and of Trichomonavirus (TVV) from T. vaginalis upon parasite

death have significant adverse effects that impair treatment efficiency [62, 63]. Similarly,

relapse of Salmonella infection can occur in the absence of antischistosomal treatment, proba-

bly because of the antibiotic resistance of Salmonella attached to the blood fluke [64, 65].

Could the ability of parasite-associated microbes to infect host cells, and their role in inflam-

mation, be responsible for oncogenesis, in lieu of their parasitic host?

Infection with the liver fluke O. viverrini is recognized as a definitive cause of cancer, as

infection often leads to cholangiocarcinoma (bile duct cancer). The factors that lead to cancer

development have not yet been clearly identified [66]. One intriguing hypothesis is the
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potential for O. viverrini to serve as a vector of the oncogenic bacterium Helicobacter pylori and

other bacteria into the biliary tree, triggering the malignant transformation of cholangiocytes

[67]. Indeed, H. pylori was found within the gut of O. viverrini [68], and coinfection is associated

with higher expression of pro-inflammatory cytokines and more severe hepatobiliary morbid-

ity, suggesting that the bacteria contributes to opisthorchiasis-associated cholangiocarcinoma

[69, 70]. Sequencing of prokaryotic 16S genes from O. viverrini revealed the presence of diverse

bacteria, including Bordetella, Brochothrix, Burkholderia, Leminorella, Pseudomonas, Serratia,

and Sphingomonas [71]. The role of other microbes, such as viruses, in the disease cannot be

excluded given the ability of O. viverrini to convey bacteria to the biliary tract.

It is now well recognized that T. vaginalis hosts a complex core microbiome composed of

double-stranded RNA (dsRNA) endobiont viruses of the genus TVV and eubacterial Myco-
plasma species that substantially increase T. vaginalis pathogenicity by up-regulating pro-

inflammatory responses [72]. Transmission of M. hominis, a member of the T. vaginalis micro-

biome, is associated with malignant transformation and genome instability that promote pros-

tate cancer development in men and skew the adaptive immune response towards a T-helper

17 cell phenotype, thus creating a favorable environment for tumor development [19, 72–75].

TVV can trigger endosomal TLR3/TRIF-dependent pathways, which means that it can pene-

trate human cells and could also cause oncogenic damage [62]. Both TVV and Mycoplasma
can resist clearance by the host and antimicrobial therapy, which explains adverse effects of

metronidazole treatment [62, 72]. Should the bacterial or viral symbionts of T. vaginalis induce

cancer associated with trichomoniasis, novel therapy could be developed to block malignant

transformation in both men and women.

For most parasites, the presence of microbes residing in or directly associated with parasites

has not been investigated, and when microbes have been observed, their contribution to onco-

genesis has not been assessed. For example, and focusing on parasites listed above that have

been linked to cancer prevalence, virus-like particles have been observed in T. cruzi [76], a

dsRNA virus has been found in Cryptosporidium and virus load correlates with parasite fecun-

dity [8, 77], Heterakis gallinarum is a vector of the pathogenic bacterium Histomonas meleagri-
dis [78, 79], Trichuris muris hosts a complex bacterial microbiome [80], Schistosoma mansoni
might be a vector of HCV [81], and genome sequencing of Fasciola hepatica revealed the pres-

ence of the endobacterium, Neorickettsia [82]. In view of these examples, the general lack of

information highlights the value of a comprehensive characterization of the viral and bacterial

communities associated with parasites [83], and of epidemiological studies that assess the pres-

ence of parasites, the prevalence of known microbes, and the transmission to the host, to iden-

tify prospective microbial cofactors of oncogenesis.

Conclusions

Interindividual variations in microbial communities associated with the host or with the para-

site at the time of infection could explain apparently contradictory results in parasite associa-

tion with cancer among studies due to variations in microbe prevalence among populations.

Variations in microbial communities could also explain why some patients, but not others,

develop cancer. The task of identifying the contribution of parasites and microbes to cancer

can appear overwhelming, but causal inference is feasible with a combination of experimental

and epidemiological studies (Fig 1). Following the systematic characterization of microbes

associated with parasites, as proposed by the Parasite Microbiome Project [83], and by leverag-

ing the findings from other projects such as the Human Microbiome project [84, 85], epidemi-

ological and clinical studies of cancer could investigate the potential for coinfection by

different parasites and microbes, and investigate their interacting effects. Testing for the role
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of microbes in cancer attributed to parasites has the potential to propel the field forward by

revealing cofactors that contribute to the development of precancerous lesions and to the tran-

sition from benign to malignant cancer. The presence of newly identified microbes in archived

cancer tissues should also be tested to assess their potential role. The payoff for identifying

microbial factors that contribute to oncogenesis would be self-evident and compelling with

respect to new leads for clinical intervention and prevention. In particular, if a virus plays a

causal role or exacerbates cancer progression, vaccine development would be justified, as dem-

onstrated by the protection against both infection and infection-associated cancers delivered

by the acclaimed HBV and HPV vaccines [86, 87].
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