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Abstract: Retinal tissue is prone to oxidant burden and oxidative stress secondary to the 
generation of reactive oxygen species from high metabolic demand. The formation of 
reactive oxygen species occurs primarily from the mitochondrial respiratory chain as well 
as several enzymatic and oxidation reactions that occur in the neurosensory retina and retinal 
pigment epithelium. This oxidative stress has been implicated in the pathogenesis of several 
retinal diseases and the role of antioxidants as a therapeutic treatment shows promise in 
slowing the progression of certain diseases. The aim of this narrative review is to describe 
the mechanisms of retinal oxidative stress and summarize the current available evidence for 
antioxidants as a treatment for vitreoretinal disorders. 
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Introduction
Reactive oxygen species (ROS) is a collective term encompassing both oxygen free 
radicals such as superoxide (O2

·−), hydroxyl (OH·), peroxyl (RO2
·), hydroperoxyl 

(HO2
·), and nonradical oxidizing agents that can be converted into oxygen free 

radicals such as hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and ozone 
(O3).1 In the retina, ROS arise in a myriad of ways including as a product of 
oxidative phosphorylation in the mitochondria, in photochemical and enzymatic 
reactions, and exposure to ultraviolet (UV) light.2,3 During normal metabolism, 
ROS are produced at nascent moderate levels secondary to the cellular metabolism 
required in maintaining physiological functions such as proliferation, host defense, 
signal transduction, and gene expression.4 However, excessive ROS production 
resulting from mitochondrial dysfunction and impaired antioxidant defense systems 
can contribute to several pathophysiological processes in the retina including 
cellular injury, ischemia, aging, and apoptosis.5–7 In these states, the oxidative 
imbalance between formation and clearance of ROS has been implicated in disease 
progression and impairing survival signaling.

Under normal physiological conditions, there is a cellular balance between ROS 
generation and clearance as eukaryotic cells have several antioxidative defense 
mechanisms. However, when ROS cellular overproduction overwhelms intrinsic 
antioxidant capacity, a state of oxidative stress results in damage to biomolecules 
such as DNA.8,9 The cell’s inability to repair the incurred damage due to decreased 
antioxidant defense may cause genetically programmed cell death (apoptosis) or 
mutations in the DNA, which can subsequently lead to carcinogenesis or 
neurodegeneration.8
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Antioxidants may be classified based on activity as 
enzymatic and nonenzymatic antioxidants. The five major 
types of intracellular enzymatic antioxidants include cop-
per-zinc superoxide dismutase (Cu/Zn-SOD, SOD1) and 
manganese superoxide dismutase (Mn-SOD, SOD2), cata-
lase, peroxiredoxin, glutathione peroxidase (GPx), and 
glutathione reductase (GR).10 Both SOD1 and SOD2 con-
vert superoxide to oxygen and hydrogen peroxide, while 
catalase and GPx convert hydrogen peroxide into water 
and oxygen. Apart from the antioxidant enzymes, small 
molecular weight and nonenzymatic antioxidants are also 
involved in the protection of the intracellular components 
against ROS. Examples of these include natural nonenzy-
matic antioxidants such as vitamin E, A, C, flavonoids, 
carotenoids, glutathione, plant polyphenols, theaflavin, 
allyl sulfides, curcumin, melatonin, bilirubin, and polya-
mines (Table 1).11,12

Owing to the critical pathogenic determinants of oxi-
dative stress in retinal tissue, therapeutic candidates with 
antioxidant mechanisms have been central to lead candi-
date designs and development. However, the evidence for 
antioxidants in preventing retinal diseases has evolved 
significantly and here we present a narrative review of 
the evidence. The objective of this review is to highlight 
the current landscape of antioxidants as a treatment mod-
ality for retinal disease.

Methods
Our narrative review utilizes literature that describe the 
role of antioxidants in retinal diseases and were identified 
by searching the MEDLINE database using a structured 
search comprising of the following medical subject 

heading (MeSH) terms and keywords: antioxidant, retina, 
and therapeutics. Preclinical studies, case reports, case 
series, observational studies, and randomized controlled 
trials were considered for inclusion. Searches were under-
taken in December 2020 and were time constrained from 
2015–2020. Articles regarding established antioxidant 
therapies published prior to 2015 were identified from 
a manual search. Articles were also identified from 
a manual search of reference lists within included articles.

The abstracts of identified articles were screened and 
classified dichotomously for inclusion or exclusion in the 
review. To be included in our narrative review, the article 
must have described the effect of an antioxidant in 
a retinal disease process or model, published in a peer- 
reviewed journal, written in English and available in full 
text. One reviewer (PW) read the abstracts independently 
and articles requiring further clarification were included or 
excluded through consensus discussion with another 
reviewer (DA).

The full text of articles that met inclusion criteria were 
read, then extracted to provide a structured framework for 
analysis. For each of the included studies we 
extracted year of publication, disease process, antioxidant 
agent, mechanism of action, and efficacy.

Results
Our search and screening strategy resulted in 45 studies 
describing the role of 15 antioxidants being included in 
this narrative review.

Antioxidants for Age-related Macular 
Degeneration (AMD)
Age-related macular degeneration (AMD) is a complex 
chronic neurodegenerative and progressive disease char-
acterized by retinal drusenoid deposits, lipofuscin deposi-
tion, loss of retinal pigment epithelium (RPE) cells, and 
choroidal neovascularization (CNV; neovascular exudative 
form).46 Advanced age and genetic predisposition are the 
strongest risk factors.46 Excessive ROS production is 
known to play a pivotal role in AMD pathogenesis 
owing to the evidence of RPE cells as critical targets of 
oxidative stress.2 In AMD, as ROS levels increase, atte-
nuated or compromised antioxidant defense systems pro-
duce resultant oxidative stress with photoreceptor, RPE, 
and choriocapillaris cell death.46,47

The aim of the age-related eye disease studies 
(AREDS, AREDS2) was to investigate the benefit of 

Table 1 Classes of Enzymatic and Nonenzymatic Antioxidants

Intracellular Enzymatic 
Antioxidants

Nonenzymatic 
Antioxidants

Superoxide dismutase (SOD1, SOD2) Vitamins A, C, and E

Catalase Flavonoids

Glutathione peroxidase (GPx) Carotenoids
Glutathione reductase (GR) Glutathione

Peroxiredoxin Plant polyphenols

Uric acid
Theaflavin

Allyl sulfides
Curcumin

Melatonin

Bilirubin
Polyamines
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antioxidants native to healthy retinal and macular tissue 
and assess efficacy of supplementation on progression of 
dry AMD to more advanced forms. The AREDS rando-
mized trial consisted of 4757 patients who took either 
AREDS supplements (vitamin C, vitamin E, beta- 
carotene, zinc, copper) or placebo.48 The AREDS supple-
mentation group was correlated with strong prevention in 
disease progression in comparison to the placebo group 
(OR: 0.68, 95%CI: 0.53–0.87).48

The aim of the AREDS2 randomized trial was to 
improve the efficacy and safety profile of the AREDS 
supplement formulation; specifically, the original formula-
tion of beta-carotene was replaced with lutein and 
zeaxanthin.49 AREDS2 demonstrated a 10% reduction in 
the progression of intermediate dry AMD to advanced 
forms of atrophic and neovascular AMD compared to 
placebo.49 Based on the AREDS and AREDS2 trials, 
antioxidant supplementation is regarded as a bona fide 
strategy to mitigate AMD progression; however, the find-
ings of the AREDS trials were based on a relatively well- 
nourished American population and may not be general-
izable to other populations.50

Omega-3 fatty acids have exhibited the ability to renew 
RPE cells and, when deficient, can lead to photoreceptor 
degradation and accumulation of drusen in both the RPE 
and sub-RPE space.51 There have been several observa-
tional studies showing a positive effect of omega–3 fatty 
acid supplementation as a preventative measure of AMD 
progression but currently no randomized trials have con-
firmed these findings.52–54

Resveratrol is a phenolic phytochemical derived 
mainly from plant sources such as Polygonum cuspidatum 
and Vitis vinifera.29 Resveratrol has been demonstrated to 
suppress UV-induced hydrogen peroxide production in 
RPE cells. Increase in RPE cell viability was postulated 
from resveratrol’s ability to attenuate ROS production 
from altered oxidative phosphorylation outside of the 
mitochondria and specific to the outer segments of rod 
photoreceptors as well as inhibition of the mitogen- 
activated protein kinase (MAPK)/ERK1/2 cascade.55–57 

Similarly, pramipexole, a dopamine receptor agonist, may 
also protect against light-induced retinal oxidative damage 
by increasing ROS scavenging activity and decreasing 
caspase activity.58

Edaravone is a free radical scavenger and a drug used 
to treat acute ischemic stroke.23 Edaravone has shown to 
be effective against retinal degeneration both in vivo and 
in vitro models.59–61 The mechanism mediated by 

edaravone occurs via the reduction of ROS, lipid perox-
idation, and VEGF-induced endothelial cell proliferation. 
In an UV light-induced neovascular AMD mice model, 
edaravone administered intravenously reduced CNV area 
and vascular leakage.60

Antioxidants for Diabetic Retinopathy
Diabetic retinopathy (DR) is a chronic progressive com-
plication of diabetes mellitus type 1 or type 2 character-
ized by retinal neurodegeneration in the setting of chronic 
diabetes.25 Diabetic retinopathy, a microvascular diabetes 
complication resulting from capillary damage, demon-
strates pericyte and endothelial cell loss by accelerated 
apoptosis; consequently, this reduction of pericyte num-
bers produces hallmarks of degeneration including: pre-
sence of ghost cells, increased numbers of acellular- 
occluded capillaries, development of microaneurysms, 
and capillary basement membrane thickening.26,27

Hyperglycemia, the main driving force of diabetic ret-
inal disease and DR, leads to an array of metabolic and 
functional derangements in retinal vascular and neuronal 
cells including overproduction of mitochondrial ROS.26,28 

The chronic increase in local oxidative stress disrupts 
retinal metabolism and accelerates premature endothelial 
cell apoptosis via mitochondrial dysfunction typical in 
DR.28 Ultimately, endothelial cell loss results in 
a compromised blood–retinal barrier resulting in exuda-
tion, macular edema and ischemia.

Resveratrol, in addition to the possible therapeutic 
potential is AMD described above, has been implicated 
in the inhibition of many pro-oxidant pathways involved in 
the pathogenesis of diabetic retinopathy through in vitro 
models involving PI3K/AKT, AMPK, Sirt1, PGC-1α, 
miR-29b, TGF-β, PKCβ, COX-2, MEK/ERK, interleukin 
6 (IL6), interleukin 8 (IL8) and vascular endothelial 
growth factor (VEGF) markers.30–33 There has also been 
several in vivo models looking at the effects of resveratrol 
in STZ-induced mice which demonstrate reduced STZ- 
induced retinal cell apoptosis and superoxide dismutase 
activity.34,35

Metanx®, a vitamin B supplement consisting of 
a combination of the active components of vitamins B6, 
B9, and B12 has been demonstrated to reduce diabetes- 
induced retinal superoxide generation in mouce models.36 

However, in this model Metanx® was unable to inhibit 
degeneration of retinal capillaries or capillary pericytes 
which suggest that oxidative stress may not be directly 
implicated in the pathogenesis of these lesions.36 Further 
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evidence demonstrates a lower incidence of diabetic reti-
nopathy in the Japanese type 2 diabetes population.37 This 
may be attributed to the activity of vitamin B6 to scavenge 
superoxide radicals and prevent lipid peroxidation pro-
cesses that generate ROS. Retinol, also known as vitamin 
A1, was associated with a 17% lower risk of diabetic 
retinopathy in a Japanese population with a 100 µg/day 
higher dietary retinol intake.38

There is a growing interest in exploration of novel 
therapeutic targets for the management of DR such as 
the role of miRNA; specifically, miR-145 has been 
explored as a novel regulator in retinal endothelial cells 
subject to high glucose environments. In this model, over-
expression of miR-145 serves a protective role for retinal 
endothelial cells from apoptosis and oxidative stress, by 
targeting TLR4 signaling.39 Moreover, miR-126 expres-
sion has also been implicated in induced vascular restora-
tion through Niaspan® (naicin) treatment in diabetic 
retinopathy rat models.40

Crocin, the active anti-inflammatory antioxidant in saf-
fron has been attributed to neuroprotective effects and 
increases retinal blood flow. One RCT compared the ther-
apeutic effects of crocin on refractory DME in 68 
patients.41 Reported visual acuity and macular thickness 
improved in the crocin treatment groups, attributed to 
reduction of inflammatory damage caused by oxidative 
stress. This may be through activation of the PI3K/Akt 
signaling pathway which is known to provide significant 
protection of neural cells against premature cell death and 
apoptosis.42

Ubiquinone, also known as coenzyme Q10, is one of 
the first lines of defense against oxidative damage of the 
mitochondria and oxidation of low-density lipoproteins.43 

In one randomized trial with 60 patients, combination 
therapy with the addition of antioxidants (10 mg lutein, 
4 mg astaxanthin, 1 mg zeaxanthin, 180 mg vitamin C, 
30 mg vitamin E, 20 mg zinc, 1 mg copper) showed 
improvements in mitochondrial homeostasis and dimin-
ished energy catabolism produced through oxidative 
damage in collected blood samples.43

The effects of proanthocyanidin extract, one of the 
main active components of grape seed oil, showed 
a significantly greater improvement in DR severity com-
pared to placebo.44 However, no significant differences 
existed between groups in optical coherence tomography 
parameters macular thickness and total macular volume.44 

Naturally occurring carotenoids such as lutein have not 
demonstrated any positive effect in visual acuity 

nonproliferative DR as shown in a retrospective study 
providing lutein supplementation for four months.45

Antioxidants for Other Retinal Diseases
Proliferative Vitreoretinopathy (PVR)
Recent findings indicate that saffron carotenoid constitu-
ents, crocins and crocetin, significantly inhibit proliferative 
vitreoretinopathy development in rabbit models.62 

Crocetin demonstrates a neuroprotective effect by counter-
acting retinal oxidative damage, inflammation and protect-
ing retinal cells from subsequent apoptosis. There were no 
signs of retinal toxicity in these early disease models.

Retinitis Pigmentosa (RP)
Vitamin A supplementation may be considered to poten-
tially slow loss of retinal function in children.63 

A prospective observational study compared two cohorts, 
a cohort receiving vitamin A and a control cohort. The 
vitamin A cohort experienced a statistically significant 
reduction in rate of cone ERG amplitude decline during 
follow-up than the control cohort which exceeded that 
from the adult clinical trial.63,64

Central Serous Chorioretinopathy (CSCR)
A multicenter randomized controlled study investigating the 
functional and morphological changes in 100 patients with 
central serous chorioretinopathy with supplementation of 
lutein has shown patients who received lutein supplementa-
tion had significant reduction in mean subfoveal fluid thick-
ness and improvement in vision outcomes.65

Ophthalmic Antioxidants Unrelated to 
Retinal Disease: Glaucoma
Glaucoma is an optic neuropathy characterized by progres-
sive degeneration of retinal ganglion cells (RGCs). Many 
modern treatment approaches have focused on reduction 
of increased intraocular pressure (IOP). Elevated IOP in 
the pathogenesis of glaucoma has been shown to increase 
endogenous ROS within the trabecular meshwork and 
abnormal mitochondria function in RGCs through various 
intracellular pathways.13,14 This increase of ROS produc-
tion has been postulated to create an imbalance between 
pro-oxidative and antioxidant capacity and may serve as 
crucial factors in early cell injury.15,16

Oxidative stress can inflict damage by acting as 
a second messenger or modulating the protein function 
by redox modifications and may serve as an early signal 
triggering neuron injury.14,16,17 Oxidative stress-induced 
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signaling for neuroinflammation in glaucoma includes the 
stimulation of a transcriptional program for inflammatory 
mediators such as nuclear factor-kappa B (NF-κB).10 As 
such, targeting treatment to provide immunomodulation 
and degenerative neuroprotection may be promising.

Preclinical trials of neuroactive steroid hormones such 
as progesterone and estradiol have been implicated in the 
treatment of chronic neurodegenerative diseases due to 
their protective effects on the mitochondria during times 
of stress. Specifically, 17β-estradiol has been demonstrated 
to inhibit ROS production, preserve adenosine tripho-
sphate (ATP) production, and decrease mitochondrial cal-
cium loading.18 These mechanisms lead to significant 
neuroprotection in RGCs shown with in vivo models of 
glaucoma.18,19 Thus, estrogen may be a potential target for 
therapy for preventing ROS-associated neurodegeneration 
characteristic of glaucoma. Moreover, progesterone has 
also been demonstrated to decrease concentrations of mal-
ondialdehyde (a biochemical marker for oxidative stress) 
in retinal degeneration 1 (rd1) mice.20

Similarly, Eucommia ulmoides extract is a plant con-
taining low molecular weight polyphenols known as lig-
nans and has been shown to have a neuroprotective effect 
in RGCs exposed to hydrogen peroxide in rat models.21 

This is accomplished through upregulation of ROS- 
scavenging activity of enzymes including superoxide dis-
mutase (SOD), glutathione peroxidase, and catalase.21

Two endogenous antioxidants, trolox and deferoxamine 
have demonstrated ROS scavenging activity and asso-
ciated neuroprotective effects of RGCs with in vitro dis-
ease models.22 Trolox, a water-soluble analog of vitamin 
E, has been shown to reduce cell death caused by hydro-
gen peroxide. It is postulated that this is accomplished 
through a direct mechanism where hydrogen peroxide is 
converted by reverse dismutation into superoxide. 
Deferoxamine, an iron chelator, also acts on hydrogen 
peroxide by preventing its conversion into hydroxyl 
anion free radicals via inhibition of the Fenton reaction 
(catalytic process that converts hydrogen peroxide into 
hydroxyl radicals).22 Trolox and deferoxamine were also 
found to reduce RGC cell death caused by generation of 
superoxide anions.22

Intravitreous injections of edaravone was demonstrated 
to significantly protect against the NMDA-induced reduc-
tion of retinal thickness as well as decreased RGC death 
induced by oxygen-glucose deprivation (OGD) stress in an 
in vitro ischemia-reperfusion injury model.24

An Approach to Novel Antioxidant 
Therapeutics for Retinal and Macular 
Disease
Oxidative stress, secondary to the pathologic imbalance 
between oxygen metabolism and antioxidant defense sys-
tems, is common in the macula because of the retina’s high 
consumption of oxygen, high proportion of polyunsatu-
rated fatty acids, and exposure to visible light. Our review 
details the instrumental role of oxidative stress in the 
pathogenesis of various retinal macular diseases. 
Furthermore, it follows that agents with antioxidant 
mechanisms of action may serve both preventative and 
therapeutic potential.

Fundamentally, the constant oxidation reduction state 
of the macula is actively regulated by various antioxidant 
signaling pathways optimized to function in concert with 
existing oxidative burden.1,12 Notwithstanding, when these 
antioxidant defense systems are compromised, the oxida-
tive burden directly produces retinal disease that is most 
damaging to the macula resulting in the pathogenic end-
points of cell death, apoptosis and neurodegeneration.

As elucidated in this review, novel small molecule 
antioxidant treatments for macular disease like dry and 
neovascular AMD have demonstrated efficacy within 
in vitro, in vivo, and preclinical disease models but few 
have been tested in later phase clinical 
studies.2,46,49,52,59,61,66 This represents a knowledge gap 
regarding the clinical evidence needed to proceed with 
the development of new efficacious antioxidant treatments. 
Still, when we consider the evidence reviewed here, we 
can state that the most promising treatments will be those 
that prevent apoptosis induced by oxidative stress.2,46,52 It 
is our hope that novel candidates with specific targets will 
be investigated to impact critical clinical outcomes.
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