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Robot-Driven Locomotor 
perturbations Reveal Synergy-
Mediated, context-Dependent 
feedforward and feedback 
Mechanisms of Adaptation
Giacomo Severini  1,2,3, Alexander Koenig1, catherine Adans-Dester  1, iahn cajigas  1,4, 
Vincent c. K. cheung  5,7 & paolo Bonato  1,6,7*

Humans respond to mechanical perturbations that affect their gait by changing their motor control 
strategy. previous work indicates that adaptation during gait is context dependent, and perturbations 
altering long-term stability are compensated for even at the cost of higher energy expenditure. 
However, it is unclear if gait adaptation is driven by unilateral or bilateral mechanisms, and what the 
roles of feedback and feedforward control are in the generation of compensatory responses. Here, 
we used a robot-based adaptation paradigm to investigate if feedback/feedforward and unilateral/
bilateral contributions to locomotor adaptation are also context dependent in healthy adults. A robot 
was used to induce two opposite unilateral mechanical perturbations affecting the step length over 
multiple gait cycles. electromyographic signals were collected and analyzed to determine how muscle 
synergies change in response to perturbations. The results unraveled different unilateral modulation 
dynamics of the muscle-synergy activations during adaptation, characterized by the combination 
of a slow-progressive feedforward process and a fast-reactive feedback-driven process. the relative 
unilateral contributions of the two processes to motor-output adjustments, however, depended on 
which perturbation was delivered. overall, these observations provide evidence that, in humans, 
both descending and afferent drives project onto the same spinal interneuronal networks that encode 
locomotor muscle synergies.

Humans have the ability to modify their motor plan in response to changes in the walking environment, a phe-
nomenon referred to as locomotor adaptation1. The study of locomotor adaption has been pursued to improve 
our understanding of the organization of human locomotor circuits, given the inapplicability, in humans, of the 
invasive techniques employed in animal models. As a case in point, studies in the lamprey, frog, turtle and cat 
have consistently shown that locomotor control is accomplished by rhythmic activations of lower-level spinal 
circuits that regulate the activities of fixed neuromuscular modules2–6. It has been debated if such modules exist 
in humans7, and if they encode the relative levels of activation across muscles8, the temporal relations among 
the activations of muscle groups9, or involve more complex structures10,11. A study on adaptation during for-
ward/backward walking on a split-belt treadmill has provided evidence that human locomotion is controlled 
by leg-specific and forward/backward-specific independent networks12. These observations are compatible with 
a two-level organization of spinal central pattern generator (CPG) circuits where the higher level regulates the 
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timing of activation of different muscle groups, while the lower level encodes the relative contribution of the 
different muscles to the task.

Despite the insights generated by the above-mentioned studies, our understanding of the neural mechanisms 
underlying locomotor adaptation is still limited. Specifically, how behavioral, functional and physiological pro-
cesses work in concert to achieve adaptation during locomotion has remained elusive to date. In fact, there has 
long been uncertainty about which are the variables that drive adaptation during locomotion. Previous studies 
have suggested them to be related to gait stability13, energy expenditure14,15, and gait symmetry16. Recent studies 
have questioned the role of symmetry in gait adaptations, by showing asymmetric adaptive patterns that are more 
metabolically efficient17 or that better fit the kinetic requirements of the task18. Recent work by our group suggests 
a hierarchical organization of these variables with gait stability as the primary task-relevant variable19. Because of 
this hierarchy, we found that behavioral responses to perturbation are context-dependent, meaning that the pres-
ence and extent of the adaptation to a gait perturbation depends on the way in which the perturbation alters the 
biomechanical demands of the gait task within the environment. In previous work, we found that perturbations 
that alter gait stability are compensated for even at the cost of increasing energy expenditure, but perturbations 
that do not challenge gait stability are ignored if the necessary adjustments would lead to an increase in energy 
expenditure19. Gait symmetry is maintained if it is needed to preserve gait stability and/or minimize energy 
expenditure.

At the functional level, herein intended as the set of possible control strategies employed by the CNS, loco-
motor adaptation is generated by feedforward mechanisms20, although the response to the perturbation that 
causes the adaptive response may be marked also by feedback strategies16,21,22 that may depend on changes in task 
demands23,24. Feedforward, predictive, mechanisms are associated with a gradual response as the CNS generates 
a model of the effect of the perturbation. Feedback mechanisms are associated with reactive, faster responses24. 
How these mechanisms are triggered and combined during gait is yet a source of debate. At the neurophysiolog-
ical level, adaptation has been argued to be controlled via either leg-independent12 or bilaterally-linked25 mech-
anisms. It is reasonable to expect that, as observed at the behavioral level, predictive/adaptive (i.e., feedforward) 
and reactive (i.e., feedback) responses manifested at the functional and neurophysiological levels would also be 
context-dependent. Understanding how these processes contribute differently to generating responses to pertur-
bations is particularly relevant to robot-assisted gait rehabilitation, in which robot-driven forces or modifications 
in the walking environment are used to trigger responses aimed to achieve a physiological gait pattern. From this 
perspective, a dissection of how the feedforward and feedback components of automatic responses to perturba-
tions are triggered and combined could inform the best use of devices for gait rehabilitation. As feedforward and 
feedback control strategies have been observed to contribute simultaneously to locomotor adaptation21,22, their 
relative input can be ideally dissected by comparing the response processes to perturbations that are expected 
to yield different contributions from these two mechanisms. This can be done by testing perturbations that have 
different biomechanical effects but that are introduced in the same general experimental paradigm.

In line with this overall objective, the aim of this study is to shed light on the mechanisms, at the functional and 
neurophysiological levels, of locomotor adaptation to robot-induced forces altering the gait pattern of humans. 
We used a robot-based adaptation paradigm19 and the analysis of muscle synergies26 to investigate the relative 
contributions of predictive/adaptive (i.e., feedforward) vs. reactive (i.e., feedback) locomotor control strategies. 
We also investigated the modular organization of the muscle synergies and assessed if their control during loco-
motor adaptation is unilateral or bilaterally-linked25. We performed two motor adaptation experiments in healthy 
individuals by introducing a unilateral mechanical perturbation that resulted in either an increase (X experiment) 
or a decrease (Xinv experiment) in step length. We previously observed that both perturbations trigger an adaptive 
response19. However, given the opposite biomechanical effects of the perturbations, the two related adaptation 
processes are expected to be obtained through different contributions of the feedforward and feedback control 
mechanisms. The analyses performed in this study allowed us to separate the feedforward and feedback contribu-
tions to the adaptation to both perturbations, as, respectively, slow and progressive or fast and reactive modifica-
tions in the neuromuscular controls.

The results showed, conclusively, that not only feedforward and feedback contributions can be achieved 
through simultaneous access to the same muscle synergies22, but also that they contribute to adaptation together 
and differently depending on the biomechanical context. Adding to the rich literature analyzing the character-
istics of muscle synergies during locomotion27, our results provide the strongest demonstration to date that the 
neuromuscular adaptive control of human locomotion can be effectively described as a context-dependent sum 
of feedback and feedforward strategies that simultaneously shape the activation of invariant motor primitives. 
These results strongly suggest the presence, in humans, of a defined population of spinal interneurons regulating 
muscle coordination that can be accessed by both cortical and afferent drives, as observed in animal models28. The 
observations derived from this work could be used to develop new approaches to the design of robot-assisted gait 
rehabilitation procedures targeting specific descending- and/or afferent-driven responses in muscle synergies29.

Results
Subjects walked with the lower limbs strapped to the robotic legs of a system for gait rehabilitation (Lokomat 
by Hocoma AG, Fig. 1A). The system was used to implement motor adaptation experiments based on a uni-
lateral perturbation to the subjects’ right leg resulting in either an increase (X experiment) or a decrease (Xinv 
experiment) in step length19. Figure 1D shows a schematic representation of the experiments. Each experiment 
consisted of 420 gait cycles. The experiment started with a habituation phase (consisting of 180 gait cycles) fol-
lowed by the Baseline (BL), Perturbation (Pert) and After-Effect (AE) phases of the experiment, each consisting 
of 80 gait cycles. During the habituation phase, the system was programmed to be transparent to the subject 
(Back-Driven Mode - BDM) except for 9 randomly-selected gait cycles during which the subject experienced a 
perturbation (Force-Field Mode - FFM). During the BL and AE phases, the robot was also programmed in BDM. 
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During the Pert phase, the system was programmed in FFM and produced one of the two types of perturbation 
(i.e., X or Xinv) for all the gait cycles.

Lower-limb adaptation to two opposite perturbations. At the onset of the X perturbation, all sub-
jects showed an immediate step-length increase in the right, perturbed, side of 25.9 ± 6.7% (mean ± standard 
error) that was statistically significant (Friedman test followed by post-hoc Minimum Significance Test) (Figs. 2A 
and S1A). As we previously observed19, this change was followed by an adaptive response to the perturbation as 
indicated by a gradual restoration of BL step length in the perturbed side with a residual positive deviation (at the 
end of the Pert phase) of 5.5 ± 4.8%. This residual deviation from BL step length was statistically different from 
the deviation observed at the beginning of the Pert phase, but not significantly different from the BL step length, 
indicating that subjects were able to restore their baseline step length. Full adaptation to the X perturbation, 
estimated as 3 times the time constant of the exponential function fitting the average step-length time-course, 
was found to require 13.8 gait cycles (with the 95% confidence interval ranging from 10.6 to 19.9 gait cycles). 
At the beginning of the AE phase, when the perturbation was removed, a significant aftereffect, manifested as a 
29.4 ± 6.7% decrease in step length in the perturbed side, was observed. All subjects then gradually returned to 
their BL step length.

Similar results were observed during the Xinv experiments, but opposite in the direction of step-length 
change (Figs. 2B and S1B). The initial response to the Xinv perturbation was marked by a significant decrease in 
step length in the perturbed side (41.2 ± 3.8%). At the end of the Pert phase, a residual step-length decrease of 
9.7 ± 3.7% was observed in the perturbed side that was statistically different from the step length at the begin-
ning of the Pert phase, but not from the BL step length, indicating, again, a return to the baseline step length. 
Full adaptation was achieved in 9.3 gait cycles (with the 95% confidence interval ranging from 7.2 to 13.3 gait 
cycles). A significant step-length increase in the perturbed side (28.2 ± 3.8%) was observed upon removal of the 
perturbation. All subjects were then able to return to their BL step length. No significant change was observed in 
the step length of the unperturbed left leg during both experiments (Figs. 2A,B and S1A,B). The time-course of 

Figure 1. Experimental setup. (A) Robotic system (Lokomat, Hocoma, Switzerland) used in the experiments 
and graphical representation of the effects of the two perturbations on the foot trajectory. The orange, red, and 
light-yellow lines represent the baseline foot trajectory pattern, the effect of the X perturbation, and the effect 
of the Xinv perturbation, respectively. The robot is attached to the leg via two cuffs located roughly in the middle 
of the thigh and shank. (B) Schematic representation of the position of the EMG electrodes used during the 
experiments. The grey rectangles represent the positions of the cuffs linking the leg with the robotic system. (C) 
Schematic representation of the foot trajectory during the experiment (continuous line) and portion of the cycle 
during which the robot produced a perturbation (i.e., mid-to-terminal swing phase of the gait cycle marked 
by the orange bold-dashed line). (D) Phases of the experiment. During the habituation period (first 180 gait 
cycles), the system was operated in Back-Driven Mode (BDM) except for 9 Force-Field Mode (FFM) single-
step perturbations randomly distributed in time. The rest of the experiment consisted of 80 BDM gait cycles 
(baseline - BL), 80 FFM gait cycles (perturbation - Pert) and 80 BDM gait cycles (after effect - AE).
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adaptation for both experiments was in line with what we observed in previous experiments based on the same 
setup and perturbations19.

four muscle synergies reconstructed baseline electromyographic data. Muscle synergies were 
extracted both unilaterally (i.e., using data collected from one leg at the time) and bilaterally (i.e., using data 
collected from both legs). The bilateral analysis was employed to highlight the presence or absence of adaptation 
processes that are bilaterally-linked.

Four muscle synergies were sufficient to reconstruct the amplitude modulation of the electromyographic 
(EMG) data during the BL phase with a R2 > 0.75 in both the unilateral and bilateral analyses (R2 = 0.80 ± 0.02 for 
the bilateral analysis; R2 = 0.86 ± 0.06 for the unilateral left leg analysis; R2 = 0.79 ± 0.04 for the unilateral right leg 
analysis). The muscle synergies and their corresponding activation patterns identified from the EMG recordings 
collected during the BL phase of both experiments (Fig. 3) were used as the reference synergy patterns for the X 
and Xinv experiments, and are herein referred to as REFsynX and REFsynXinv, respectively. The results of the unilateral 
analyses (Fig. 3A) are consistent in their muscular compositions with those previously reported for a similar set 
of muscles8,25. The rectus femoris (RF) and vastus medialis (VM) muscles are the main contributors to synergy #1 
(S1). This synergy is primarily active during early stance and provides stability during the loading response phase 
of the gait cycle. The soleus (SOL) and gastrocnemius (medial head) (MG) muscles are the main contributors 
to synergy #2 (S2). This synergy provides propulsion during terminal stance. The tensor fasciae latae (TFL), RF, 
gluteus maximus (GM), and tibialis anterior (TA) muscles are the main contributors to synergy #3 (S3). During 
initial swing, this synergy provides ankle dorsiflexion and hip flexion. Finally, the TA and biceps femoris (BF) 
muscles are the main contributors to synergy #4 (S4), which is primarily active during terminal swing and is 
responsible for foot landing negotiation and deceleration. In the bilateral analysis (Fig. 3B), S1 of each leg com-
bined with S3 of the contralateral leg, while S2 combined with S4. This is due to the temporal association among 
the phases of the gait cycles of the two legs.

no additional muscle synergy recruited during motor adaptation. At the level of muscle synergies, 
we expect adaptation to occur through one of the following mechanisms:

Figure 2. Group analysis of adaptation in step length. Percentage changes in normalized step length during the 
BL, Pert and AE phases for the left (L) unperturbed (blue/light blue) and the right (R) perturbed (orange/yellow) 
legs. The data is shown for (A) the X and (B) the Xinv experiments. Each plot represents mean and standard 
error of the data across subjects. The bold lines shown for the right foot plots represent the exponentials (see 
Eq. 3, Materials and Methods) fitting the group data for the Pert and AE phases of the experiments. Lines were 
plotted for the BL phase of the experiments, at values equivalent to 100% step length. The horizontal plane 
corresponds to the 100% step length value, while the two vertical planes represent, respectively, the beginning 
and end of the Pert phase of the experiments. For the X perturbation (A) we observed a ~30% increase in step 
length of the perturbed leg at the beginning of the Pert phase. The corresponding plot shows an exponential 
adaptation. At the beginning of the AE phase, we observed a decrease in step length and a rapid return to BL 
step length. No significant changes were observed on the contralateral side. A mirrored behavior was observed 
in response to the Xinv perturbation (B).
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 a. Through recruitment of ≥1 additional task-specific synergies30,31.
 b. Through modification of the activation patterns of a fixed set of muscle synergies22,32.
 c. Through modification of the weights of select muscles in some or all the muscle synergies33.
 d. Through a combination of a, b and/or c30.

Herein, we systematically assess which of the above mechanisms may be at work during adaptation to the 
perturbations tested in the study (see Materials and Methods). We first analyzed if adaptation is associated with 
mechanism a by examining whether adaptation leads to a change in the number of synergies composing the EMG 
data. This was achieved by finding the dimensionality of the subspace shared between the 4 BL synergies (REFsynX 
and REFsynXinv) and sets of 4 or 5 synergies for the unilateral analyses and 4, 5 or 6 synergies for the bilateral analy-
sis that were extracted from the EMG data recorded during the last 10 gait cycles of the Pert phase (herein referred 
to as the late-Pert phase) when full adaptation had been attained. We reasoned that if a new synergy emerged 
after adaptation without altering the pre-existing four, the dimensionality of the subspace shared between the BL 
synergy set and the late-Pert set would increase as the number of synergies composing the latter increased. This 
is because the original 4 BL synergies can be clearly identified as shared subspace dimensions only when the new 
additional synergies during the late-Pert phase, if any, are properly accommodated for as extra dimensions. It is 
worth pointing out that we tested 4, 5 and 6 synergies for the bilateral analysis (but only 4 and 5 synergies for the 
unilateral analyses) to account for the possibility that two distinct unilateral synergies could emerge from the 
analysis of the late-Pert data that would not merge in a single bilateral synergy (contrary to what was observed for 
the BL phase of the experiment).

We found that for both legs, during both the X and Xinv experiments, the shared subspace dimensionality 
between BL and late-Pert synergies remained at 3, regardless of whether 4, 5, or 6 synergies were extracted from 
the late-Pert EMG data, and whether unilateral or bilateral synergy subspaces were compared (Fig. 4A). Indeed, 
if there were, say, 1 additional synergy activated at the end of the Pert phase, one would expect the 4-synergy 
BL space and the 5-synergy late-Pert space to share a 4-D, instead of a 3-D, subspace. We concluded that motor 
adaptation during both the X and Xinv experiments did not occur by recruiting a new muscle synergy while pre-
serving the BL muscle synergies. It should be emphasized that, in this type of analysis, the values of the cosine of 
the principal angles do not matter. What matters is whether the patterns shown in Fig. 4A change as we increase 
the number of synergies used to model the EMG data collected during the late-Pert phase.

Another argument that supports the exclusion of mechanism a comes from the analysis of the R2 of the EMG data 
reconstruction. If adaptation happened to be associated with the recruitment of an additional 5th muscle synergy, 
reconstructing the EMG activity during the late-Pert phase using 4 synergies would result in a decrease in the quality 
of the reconstruction as reflected by smaller R2 values. We, on the other end, showed that 4 synergies could represent 
equally well muscular activities during both the BL phase and the late-Pert phase of the experiment (Fig. S2).

Figure 3. Reference synergies extracted during BL. Four unilateral synergies were extracted for both the left 
and right legs (A). Weights for each synergy are represented as average and standard deviation across the two 
experiments of all the subjects. The activation patterns are represented both individually (thin lines) and as an 
average across the two experiments of all subjects (bold line). Shaded areas represent the swing phase of the 
left (green) and right (grey) gait cycles, respectively. Four muscle synergies were also extracted in the bilateral 
analysis (B) that appeared to result from the combination of the unilateral synergies.
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Figure 4. Analysis of the dimensionality of the synergy subspaces. (A) Bar plots of the average - across subjects - 
cosines of the matched principal angles between the reference synergies (extracted from the gait cycles of the  
BL phase) and the synergies extracted unilaterally for both legs during the late-Pert phase (extracted from the 
last 5 segments, i.e., 10 gait cycles). Results obtained by comparing 4 and 5 unilateral (top plots) and 4, 5 and 6 
bilateral synergies (bottom plots). The dotted line represents the threshold value obtained through surrogate 
data analysis (see Materials and Methods). For all the analyses, we observed a consistent shared subspace size. 
(B) Average and standard error - across subjects - of the R2 derived for the last 10 epochs of the BL phase and 
the first and last 10 epochs of Pert phase using the NMFFixedW and NMFFixedC algorithms. Results are shown 
for the unilaterally (top plots) and the bilaterally (bottom plots) extracted synergies. The p-values of Friedman’s 
ANOVA tests (significance level α = 0.1) are presented in each plot. Minimum Significance Difference tests 
showed significant differences across pairs (see Materials and Methods) as highlighted by the * symbol and the 
horizontal lines.
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No modification of the weights of baseline muscle synergies during motor adaptation. We 
then tested if adaptation is achieved via modification of the activation patterns of a fixed set of muscle synergies 
(mechanism b) or via modification of the weights of select muscles in one of the 4 BL synergies (mechanism c). 
To test these hypotheses we determined how well the EMG data of the BL and Pert phases could be reconstructed 
by the reference BL muscle synergies while fixing either the BL muscle-synergy vectors (i.e., the W matrix of the 
Non-negative Matrix Factorization -NMF) (NMFFixedW), or the BL activation patterns of the synergies (i.e., the 
C matrix of the NMF algorithm) (NMFFixedC), (see Materials and Methods). A significant decrease in recon-
struction quality in one of these analyses would indicate that either the same reference W (for NMFFixedW), or 
the same reference C (for NMFFixedC), was not sufficient to capture EMG changes associated with adaptation, 
thus implicating mechanism c in the former, or mechanism b in the latter, assuming that either W or C would be 
primarily modified for adaptation.

The bilateral analysis was primarily employed to highlight if mechanisms b and c, if present, are employed 
independently by the two legs or in a bilaterally-linked way. In the bilateral analysis (Fig. 4B), we observed that 
fixing either the muscle synergies or the activation patterns to their reference values led to a decrease in the recon-
struction quality from the BL to the Pert EMG data irrespective of whether we considered the beginning (Early 
Pert) or the end (Late Pert) portions of the Pert phase. Thus, if the muscles from both sides are analyzed together, 
it is not possible to differentiate whether mechanisms b or c may better characterize adaptation drives. Indeed, for 
bilateral synergies, changes in the EMG characteristics from the BL phase to the Pert phase could only be captured 
if both W and C were left free to be updated in the NMF algorithm (Fig. S2).

In the unilateral analysis, implementing NMFFixedC, but not NMFFixedW, led to a drop in the reconstruction 
quality from the BL to Pert EMG data in both legs of both perturbation experiments (Fig. 4B). Thus, in both the 
X and Xinv experiments, the Pert data could not be modeled by just modulating the weights of the BL muscle syn-
ergies while keeping the temporal activations constant. However, adaptation could be modelled by modulating 
the muscle synergy activation patterns while leaving the composition of the muscle synergies unchanged. These 
results are consistent with mechanism b (fixed muscle synergies) and not with mechanism c (altered synergies 
post-adaptation). Furthermore, the concurrent observation that mechanism b was independently present in the 
muscle synergies of both legs in our unilateral, but not bilateral, analysis suggests that adaptation to the two 
perturbations is driven by unilateral mechanisms. It is worth pointing out that both legs could display changes 
in the temporal activations of the muscle synergies that would however be leg-specific. This latter point explains 
the inconsistency between the bilateral and unilateral results, and, more specifically, why mechanism b is not 
observed in the bilateral analysis. In fact, our results in the unilateral analysis suggest that left and right synergies 
that are linked in the bilateral analysis adapt their activation patterns independently, with different behaviors 
and time constants (as better explained later). Thus, when the synergies are bilaterally linked in the analysis, the 
changes in the resulting activation pattern cannot capture the different dynamics of the unilateral synergies.

the X and Xinv perturbations elicited two distinct behaviors in the synergy activations. The 
above-summarized analyses indicate that step-length adaptation during the X and Xinv experiments can be mod-
elled by modulating the temporal activations of the muscle synergies that mark unperturbed walking. We next 
focused on assessing how the activation of each synergy changed during the adaptation experiments. The dynam-
ics of this change was evaluated by measuring the similarity between the temporal activation of 2-step epochs, 
during the BL, Pert and AE phases, and that of the corresponding reference synergy extracted from the whole 
BL data. This analysis resulted in similarity value time series (Fig. 5) charting the extent to which the synergy 
activations deviated from the reference patterns during the experiment. To determine if the activation of each 
muscle synergy displayed an adaptive behavior, we fit an exponential function (Eq. 3, Materials and Methods) to 
the corresponding similarity value time series derived for the Pert and AE phases, respectively. The behavior was 
defined to be adaptive if the cumulative R2 of this fit was >0.75.

Over the Pert phase of the X experiments, we observed both a modest step-wise (i.e., feedback) behavior and 
an adaptive (feedforward) behavior marked by a gradual change in the temporal activation similarity value time 
series. The adaptive behavior was detected in 3 out of 4 synergies on the left (unperturbed) side, and in all 4 syn-
ergies on the right (perturbed) side (Fig. 5A). The adaptive behavior was characterized by a decay in the similarity 
value time series until a stable value was reached after a few gait cycles. The time constants of this decay ranged 
from 9.6 (S3L) to 64.4 (S1L) gait cycles (Table S1). After removal of the perturbation, the similarity was gradually 
restored to its BL level. This AE phase presented time constants ranging from 2.3 (S3L) to 37.4 (S1L) gait cycles. 
When we examined the temporal activations of the synergies during late Pert (Figs. 5A and S3), we noticed that 
adaptation was largely driven by an increase in the activation amplitudes of S1L and S4R. Both were active during 
the portion of the gait cycle when the perturbation was produced by the robot (Fig. 5A, black bold line). Also, 
adaptation was associated with increased activations of S3L and S1R. It is worth noticing that the adaptation 
time constants of this bilaterally-linked synergy pair (S3L + S1R) were different, despite the similar modulation 
observed in late-Pert (Table S1 shows all the time constants and associated 95% confidence intervals), further 
suggesting that full adaptation is achieved via unilateral mechanisms.

In the Xinv experiment, we also observed both a step-wise (i.e., feedback) behavior and an adaptive (feedfor-
ward) behavior marked by a gradual change in the temporal activation similarity value time series. However, 
unlike the X experiment, the time series of the temporal activation similarity values for the muscle synergies of 
the right (perturbed) leg showed a dramatic change at the onset of Pert for several synergies. After this step-wise 
(i.e., feedback) behavior, the temporal activation similarity value time series showed a gradual return to a level 
close to the BL value. On the left (unperturbed) leg, even though S1L, S3L and S4L showed an initial step-like 
deviation from the BL value, the similarity value time series did not satisfy the set criterion of adaptation. On 
the perturbed right side, adaptation was visible in S1R, S2R and S4R. While all 3 synergies presented an abrupt 
degradation in similarity at the beginning of the Pert phase, S4R and S1R converged to levels more deviated from 
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the average BL similarities at the end of Pert while S2R returned to its BL value. The time constants of adaptation 
ranged from 7.6 (S1R) to 15.8 (S2R) gait cycles in the Pert phase, and from 9.0 (S1R) to 21.2 gait cycles (S2R) 
in the AE phase (Table S1). Full adaptation to Xinv at the end of the Pert phase was characterized mainly by an 
increase in the activation of the synergies of the right leg (Fig. 5B). Changes in the temporal activations are shown 
in Fig. S3.

Finally, we analyzed if the two perturbations led to similar patterns of adaptation. We observed that, although 
the reference modules and activation patterns extracted during the BL phases of the two experiments were con-
sistent, the activation patterns at the end of the Pert phase for the two perturbations were different (Fig. S4).

Discussion
Our results show that the activity of lower-limb muscles during locomotor adaptation to the perturbations tested 
in the study can be modelled by modulating the muscle synergy activation patterns observed during the BL 
phase of the experiment (i.e., in the absence of any perturbation) while leaving the composition of the muscle 
synergies unchanged. Furthermore, the study provided evidence that the response to perturbations that cause 
locomotor adaptation is not associated with a single response strategy, but instead, by dynamically mixing multi-
ple response mechanisms in a context-dependent manner. Specifically, our study unravels concurrent actions of 
unilateral feedforward- and feedback-driven mechanisms that affect the muscle synergies of the two legs and that 
are a function of the biomechanical effect of the perturbation. These results provide a clear demonstration of the 
invariance to mechanical perturbations of the human locomotor muscle synergies and show that their temporal 
activations are under both feedforward and feedback control in a context-dependent fashion.

Separating feedforward- and feedback-driven eMG changes during locomotor adapta-
tion. Motor behaviors associated with feedback (i.e., reactive) and feedforward (i.e., adaptive) mechanisms 

Figure 5. Adaptation in the unilateral activation patterns of the synergies. Results obtained using the 
NMFFixedW algorithm on all the EMG epochs in the two experiments, (A) for X and (B) for Xinv. For each 
panel, each row shows the data for a different synergy (S#L for left side synergies, S#R for right side synergies). 
For each synergy, the plots (from left to right) show: (1) the average - across subjects - synergy reference 
modules; (2) the average - across epochs - temporal activation pattern during the last 10 gait cycles of Pert phase 
(thin colored lines), and the average - across segments and subjects - reference temporal activation pattern 
(bold black line), with a black bold line at the bottom of each set of plots representing the time interval when the 
force-field was active; and (3) the similarity (i.e., Pearson’s linear correlation coefficient) between the activation 
pattern of each epoch of the experiment and the reference activation pattern (that is the average of the epochs 
extracted during BL); the vertical grey lines represent the beginning and the end of the Pert phase. Black lines 
represent the exponential best fitting of the Pert and AE data. For the BL phase, the black lines represent the 
average similarity during BL. Exponential fitting was added only for the synergies for which it was possible to fit 
two exponential functions for the Pert and AE phases with a cumulative R2 > 0.75.
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were previously observed during adaptation experiments relying on applying unilateral resistive perturbations 
to the hip and knee21, moving platforms acting on the stance leg22, split-belt treadmill16,20,24 and asymmetric 
cycling23. Feedforward-controlled behaviors are marked by error-driven, progressive modifications of motor 
commands - based on an internal model of the perturbation - that converge toward an adapted state. They are 
associated with an aftereffect once the perturbation is removed14,16. This type of control has been attributed to the 
cerebellum, whose role in updating the internal representation of the dynamics of the limb through sensory pre-
diction error has been observed in both the upper34,35 and lower limbs24,36. On the other hand, motor behaviors 
that are the result of purely feedback mechanisms are marked by abrupt changes in response to the perturbation 
and are not associated with an aftereffect when the perturbation is removed. Feedback mechanisms are primarily 
driven by spinal circuits37.

The presence of feedforward and feedback adaptations in the EMGs has been investigated in the past by 
examining, in a setup similar to ours, the presence or absence of changes in the muscular activations during catch 
trials interspersed in the perturbed conditions21 or, more recently in the split-belt treadmill experiment, by com-
paring the aftereffect of a long exposure to the perturbation with the initial response to a perturbation of opposite 
direction20. Here, we show that these components of adaptation can also be characterized at the muscle-synergy 
level, and that this analysis provides valuable information on how groups of muscles adapt and/or react in con-
cert during prolonged perturbations. The synergy activation changes that we observed during both the X and 
Xinv experiments can, in fact, be explained as the summation of feedback- and feedforward-driven responses 
(Figs. 6A, S9 and S10). The feedback-driven component observed at the onset of the Pert phase of the experiments 
is triggered by the initial deviation from the gait plan that marks the BL phase. This component accounts for the 
abrupt changes observed at the beginning of the Pert phase. Such step-like responses were observed in the X 
experiment (e.g., S1L and S2R, Figs. 5A and S10) but were particularly prominent in the Xinv perturbation (S1R, 
S2R and S4R, Figs. 5B and S10). The feedforward response, on the other hand, drives the adaptation from the 
initial feedback-mediated response towards the final adapted state and is marked by an exponential time-course.

By analyzing the muscle synergies during the adaptation process, we successfully disentangled the 
feedback-driven EMG changes from those mediated by feedforward descending drives. Importantly, this sep-
aration allowed us to determine the role of the different feedback and feedforward mechanisms, operating on 
distinct muscle synergies with different time-courses, in response to different perturbations. The results also show 
how feedback and feedforward mechanisms affect simultaneously the activation patterns of multiple lower-limb 
muscles. The results we found on the presence of feedback and feedforward components of adaptation for the Xinv 
are consistent with those found by Lam and colleagues on a similar setup21.

Figure 6. Theoretical and physiological model of the neuromuscular adaptation process as a sum of feedback 
and feedforward components. The adaptation behaviors that we observed in the similarity plots of Fig. 6 can be 
explained as the weighted sum of an exponential feedforward (FF) adaptation and a step-like feedback response 
(FB) (A). By modifying the relative weights of these two components, it is possible to explain all the behaviors 
we observed in the muscle synergies (a characterization of this model and its fitting on our data are presented 
in Figs. S9 and S10). At the physiological level (B) our results suggest a direct or indirect (through the rhythm 
generation parts of the CPGs) activity of both descending corticospinal drive and muscular afferents on the 
networks of interneurons encoding the muscle synergies in the spinal cord.
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context-dependent locomotor adaptation. Previous studies have provided conflicting results in regard 
to whether locomotor adaptation is driven by unilateral or bilateral control. For instance, Choi and Bastian12 
provided evidence of independent high-level neural control of the two legs, whereas Houldin et al.38 showed 
inter-limb transfer of learning during force-field adaptation, and Maclellan et al.25 suggested that bilaterally-linked 
unilateral modulations of CPG activities of the two legs takes place during split-belt adaptation.

The results of our study show that the response to perturbations that cause locomotor adaptation is 
context-dependent. Analysis of the results of the X experiment showed a modest feedback response and a dom-
inant feedforward response in both legs, though the response observed in the data recorded from the right (per-
turbed) leg followed a different time-course of neuromuscular adjustment from the left (unperturbed) leg. In 
contrast, the results of the Xinv experiment showed a predominantly unilateral response affecting the right (per-
turbed) leg. The data collected from the left (unperturbed) leg showed only modest changes consistent with small 
feedback adjustments. The data from the right (perturbed) leg showed large feedback adjustments and a clear 
adaptation response in three out of four muscle synergies. Taken together, these results show that the relative 
contributions to locomotor adaptation of the two legs are context-dependent.

But why did we observe different contributions of feedback- and feedforward-mediated responses to the two 
perturbations? In previous work19, we showed that the primary task-relevant factor driving the response to the 
X and Xinv perturbations is the need for preserving long-term gait stability. As both perturbations triggered a 
response to preserve the same long-term gait stability plan, one would think that the discrepancy in strategy that 
we observed at the neuromuscular level in response to the two perturbations is due to the different effects the 
perturbations have on the subject’s dynamic stability.

Specifically, we argue that the larger feedback component observed during the Xinv vs. the X experiment is 
likely due to the more immediate balance threat induced by the Xinv perturbation compared to the X perturbation. 
The Xinv perturbation causes a mechanical effect that is similar to hitting an obstacle during the swing phase of 
the gait cycle. This is expected to bring the projection of the center of mass close to its stability boundaries in the 
antero-posterior direction. Hence, it is not surprising that we observed a change in the activations of the knee 
extensors during swing (S1R) and of the ankle plantar-flexor muscles during stance (S2R) - a response that is 
modulated over time to achieve an increase in the activation of the synergies (Fig. S3). In fact, previous studies 
have shown short- and medium-latency reflex responses in multiple muscles that appeared to be mediated by 
Ia and II afferents, respectively, likely caused by the overall jar that the stumbling causes on the perturbed leg39.

Unlike the Xinv perturbation, the X perturbation has an effect that is similar to delaying foot landing. A study 
by van der Linden et al.40 showed that unexpected delayed foot landing triggers a reflex response on multiple 
muscles after heel-strike, consistent with the activation adjustment we found in synergy S2R. Nevertheless, in our 
experiment the sensory feedback provided by the X perturbation acting on the leg likely prompted the subject 
to anticipate the forthcoming missteps, thus making the effects of the feedforward control to be dominant over 
those of the feedback response. We argue that, at the biomechanical level, the effects of the X perturbation are less 
immediately threatening the control of balance, but may lead, over time, to an unstable gait pattern, thus trigger-
ing a feedforward adjustment of the motor plan19.

All in all, our results demonstrate that the neural strategy underlying the response to perturbations that cause 
locomotor adaptation is context-dependent12. Interestingly, the complexity of the mechanisms underlying the 
response to these perturbations is not apparent when one examines simple aspects of the biomechanics of gait19, 
but it is clearly shown by examining the characteristics of the muscle synergies derived from the EMG data col-
lected during the experiments23.

the same muscle synergies modulated by feedback- and feedforward-based mechanisms. In 
contrast to the changes in the activation of muscle synergies, changes in the EMG data of individual muscles in 
response to the perturbations were more subtle (Fig. S5). In fact, similarity plots derived from data recorded from 
individual muscles showed adaptation (though not as clearly as the muscle synergies) only in a few cases (Figs. S6 
and S7).

Our results provide strong evidence that in humans, both descending (feedforward) and afferent (feedback) 
drives project, either directly or indirectly, onto the same spinal interneuronal networks that encode locomo-
tor muscle synergies (Fig. 6B). While a modular organization of the control of muscles has been demonstrated 
for descending motor signals in both animal models41,42 and humans9,25,26,30, the mechanisms controlling syn-
ergistic reflexes are still poorly understood. It is known that several reflex pathways project to second and third 
order interneurons and are able to modulate the activation of the CPGs43. Recent studies on animal models have 
hypothesized a two-level organization of the CPGs44,45, with the upper-level neural oscillators commanding the 
lower-level pattern formation interneuronal networks.

In a previous rodent optogenetic study, Levine and colleagues28 identified a molecularly defined population of 
spinal interneurons that encode the coordination of multiple muscles and are simultaneously activated by both 
cortical and afferent drives. These networks appear to be the building blocks enabling complex feedforward- and 
feedback-driven behaviors and could correspond to the hypothesized pattern-formation networks at the lower 
level of the CPG. In humans, the possibility that sensory afferents could directly act on muscle synergies has been 
suggested26,30,31,46 but shown only by Chvatal and Ting22, who observed anticipatory and reactive modulations of 
muscle synergies in response to single-step platform perturbations of the stance leg. The results herein presented 
extend such observations to motor adaptation and provide further evidence that sensory afferents have a direct 
effect on muscle synergies by altering their recruitment together with efferent commands during continuous 
exposure to forces.

As a final remark, the results of the study show that the neuromuscular response of a user to the forces exerted 
by an exoskeleton during gait does not necessarily lead to a modification of the descending drive to the mus-
cles, which is a primary goal of robot-assisted gait training. Being able to discern whether the neuromuscular 

https://doi.org/10.1038/s41598-020-61231-8


1 1Scientific RepoRtS |         (2020) 10:5104  | https://doi.org/10.1038/s41598-020-61231-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

responses to the robot-induced forces are reactive or proactive could provide the foundations for new approaches 
to the design of robot-assisted gait rehabilitation procedures29,47. This could be done, for example, by designing 
assistive or perturbing forces that trigger descending responses in the activation of selected synergies. Another, 
similar, approach could be based on analyzing in quasi-real time the neuromuscular adaptation to the forces that 
the robot is administering during the therapy and use this information for tuning the robotic assistance so as to 
promote proactive responses or curb reactive ones.

Materials and Methods
Study design. Nine healthy adults (3 women; age = 27.8 ± 3.5; height = 177.7 ± 6.9 cm; mass = 
72.4 ± 10.6 kg) participated in the study. This was a sample of convenience. Exclusion criteria for the study were 
the presence of orthopedic or neurological conditions with a potential effect on the performance or outcome of 
the experiments. Three of the subjects had experienced the motor perturbations used in the study in a previous 
experiment. All data collections were performed at Spaulding Rehabilitation Hospital, Boston MA. Subjects com-
pleted all the experimental procedures in a single day. The experimental protocol was approved by the Spaulding 
Rehabilitation Hospital Institutional Review Board. Subjects signed an informed consent form prior to participat-
ing in the study. All study procedures were carried out in accordance with all relevant guidelines and regulations.

Generating perturbations using a robotic system. Device settings. Subjects walked with the lower 
limbs strapped to the robotic legs of a system designed for use in robot-assisted gait therapy (Lokomat by Hocoma 
AG, Switzerland)48. The robotic system (Fig. 1A) allows for both flexion and extension control of the hip and 
knee joints via linear actuators. Potentiometers are used to track the joint angles at the hip and knee. Force trans-
ducers are used to monitor the torques generated at the joints. The Path Control49 was used in the study. This 
control modality allowed subjects to naturally control the timing of their gait. The controller estimated, at every 
instant, the position in the gait cycle via comparison of the actual hip and knee joint angular displacement and 
angular velocity with template patterns. The comparison used a norm-distance minimization algorithm50. The 
Generalized Elasticities method51 was implemented to make the system as transparent as possible to the subjects 
during walking. The Body Weight Support capability of the system was not utilized in the study.

Perturbations. During the experiments, the robot was used in one of two modes of operations: Back-Driven 
Mode (BDM) and Force Field Mode (FFM) (Fig. 1D). In the BDM, the robot’s apparent impedance was set to zero 
to minimize the effect of the robot on the walking patterns (i.e., the system was as “transparent” as possible to the 
subjects). In the FFM, a perturbation was applied to the right leg during the swing phase of the gait cycle. The 
perturbation force was generated by the robot according to the following equation:
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where Fx and Fy represent the antero-posterior (x) and vertical (y) components of the perturbing force acting on 
the foot, and Vx and Vy represent the x- and y-components of the foot velocity as reconstructed using the follow-
ing Jacobian:
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where lFemur is the length of the femur, lTibia is the length of the tibia, and θ is the vector of the joint angles θh at the 
hip and θk at the knee.

Subjects experienced two different perturbations produced by different values of the gains A and B shown in 
Eq. 1. The first perturbation, denoted by X, was achieved by setting = . ⋅⋅

⋅( )A SubjMass0 115 N s
Kg m

 and B = 0, 
where SubjMass is the subject’s body mass in Kg. The second perturbation, denoted by Xinv, was achieved by set-
ting = . ⋅⋅

⋅( )A SubjMass0 092 N s
Kg m

 and = − . ⋅⋅
⋅( )B SubjMass0 058 N s

Kg m
. These values of A and B were previ-

ously determined as suitable to induce modifications in step length (~30% of baseline length) in the forward (X 
perturbation) and backward (Xinv perturbation) directions, respectively, without concurrently affecting step 
height19.

Study procedures. Footswitches were attached to the soles of the subject’s shoes in positions corresponding 
to the calcaneous bone and the first metatarsophalangeal joint, respectively. Subjects were strapped to the system 
using the cuffs of the robotic legs. Then surface electromyographic (EMG) electrodes were placed on the follow-
ing 16 muscles (8 per leg): tensor fascia latae (TFL), vastus medialis (VM), rectus femoris (RF), biceps femoris 
(BF), medial head of the gastroecnemius (MG), tibialis anterior (TA), soleus (SOL) and gluteus maximus (GM). 
Electrodes were positioned as close as possible to the cusp of the muscle belly following the SENIAM guidelines52 
but avoiding contact with the cuffs of the robotic legs, which would have caused artifacts in the EMG recordings 
(Fig. 1B). The EMG and footswitch signals were digitized using 12 bits with a sampling rate of 3 kHz. Data col-
lected from the robotic system was synchronously recorded at 1 kHz.

Six of the nine subjects who participated in the study had no previous experience with walking using the 
robotic system. In these subjects, we performed a 5-minute habituation trial using the system in BDM.

Motor adaptation paradigm. During all the experimental trials, the treadmill speed was set at 3 km/h. Subjects’ 
cadence was paced using a metronome set at 84 beats per minute. Subjects were instructed to pace their heel 
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strikes with the beats of the metronome. No further instructions were given to the subjects. The metronome was 
used, as in our previous work19, to stabilize the pace, and consequently the speed of the foot. This was done to 
make sure that subjects experienced consistent perturbation magnitudes across different steps. We have shown in 
our previous work that the metronome does affect the adaptation process19.

A total of 4 trials were performed as follows: (1) a 90-s trial, for estimating the parameters of the Generalized 
Elasticities method; (2) a 120-s trial performed with the optimized controller, for estimating the subject’s baseline 
walking pattern that was used as a reference during the experiment; (3) a 10-min trial to test the effects of the X 
(or Xinv) perturbation; and (4) a 10-min trial to test the effects of the Xinv (or X) perturbation experiment. The 
order in which the X and Xinv perturbations were tested was randomized across subjects. A 5-minute break was 
allowed between the X and Xinv experiments. In each of the X or Xinv trials, subjects performed 420 gait cycles. The 
trials consisted of four phases.

 (i) The habituation phase consisting of 180 gait cycles during which the system was set in BDM. 9 gait cycles 
during which the system was set in FFM were randomly selected after the first 40 cycles, so that there 
were at least 8 and no more than 18 BDM gait cycles between any two FFM gait cycles. The FFM gait 
cycles, named single step perturbations, were used to estimate each subject’s response to a single-cycle 
perturbation.

 (ii) The baseline phase (BL) consisting of 80 consecutive BDM gait cycles.
 (iii) The perturbation phase (Pert) consisting of 80 consecutive FFM gait cycles.
 (iv) The aftereffect phase (AE) consisting of 80 consecutive BDM gait cycles.

Biomechanical analysis of adaptation. Step length was defined, consistently with our previous work19, 
as the foremost position of the foot during swing. It is important to notice that, in our set up, the reference coor-
dinate system used to determine step length is aligned with the center of rotation of the hip. Hence, if foot contact 
had occurred with the ankle aligned with the hip, the estimated step length would have been equal to zero. For 
each subject, the step length values were normalized to the average step length recorded during the BL phase. 
After normalization, for each of the X and Xinv experiments, the data was averaged across subjects to determine 
the aggregate adaptation behavior. The time series of the step length estimates derived from the data collected 
during the Pert and AE phases of the experiment were modelled using exponential functions:

α γ= ⋅ +β⋅f step exp( ) (3)step

where α represents the response to the perturbation (for the Pert phase) or removal of the perturbation (for the 
AE phase) observed at the beginning of the Pert or AE phases, β is the time constant of the adaptation, and γ the 
asymptotic step length value observed when full adaptation has been achieved. In this analysis, similarly to what 
we did in previous work19, α was estimated by averaging - across all subjects - the step length values observed 
during the 9 single step perturbations during the habituation phase of the experiment, and β and γ were estimated 
using a least-squares algorithm.

eMG pre-processing and segmentation. The EMG data was visually inspected to ensure that 
high-quality data was then processed. The trials and channels showing significant movement artifacts were 
excluded from the analysis. This process led to selecting data from 7 out of 9 subjects who participated in the 
study. The EMG data was first band-pass filtered (50 to 450 Hz) using a 7th-order elliptic filter. The filtered signals 
were then full-wave rectified and low-pass filtered (cut-off of 5 Hz) using a 7th-order elliptic filter, thus deriving 
the EMG envelopes. The heel-strike and toe-off times were extracted from the footswitch data of each foot. These 
events were used to segment the EMG data so that each segment corresponded to 2 steps. The length of each 
segment was normalized, and the data was re-sampled so that each segment consisted of 200 data points. The 
amplitude of the EMG data collected during all experimental phases was normalized to the median, across all BL 
segments, of the maximum values derived for each segment.

eMG analysis. Extraction of the muscle synergies. The non-negative matrix factorization (NMF) algorithm 
was used to estimate the muscle synergies from the normalized EMG envelopes. This algorithm models the mus-
cular activity MA as a linear combination of muscle synergies, W, whose activity is modulated over time by a set 
of activation patterns, C:

∑=
=

MA t C t W( ) ( )
(4)i

N

i i
1

To derive W and C, we used the NMF algorithm, which is based on the assumption that the EMG envelopes 
are corrupted by an uncorrelated Gaussian noise53. Muscle synergies were extracted unilaterally (i.e., the EMG 
data collected from the left leg and the right leg was analyzed separately) as well as bilaterally (i.e., the data col-
lected using all 16 channels was analyzed together). For the BL, Pert and AE phases of each experiment and each 
subject, we extracted synergies from each 2-step epoch so that a total of (420 − 180)/2 = 120 synergy sets were 
obtained. A validation of this approach to extracting muscle synergies is shown in Fig. S8. In addition, reference 
muscle synergies (REFsynX for the X experiment, and REFsynXinv for the Xinv experiment) were extracted, unilater-
ally as well as bilaterally, from the whole BL data (80 gait cycles) of both experiments without data segmentation. 
Subsequently, an average activation pattern for the reference synergies was calculated by averaging - across step 
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cycles - the reference C, segmented in time before averaging using the same method utilized to segment the EMG 
envelopes.

Number of muscle synergies. The R2 derived using the reconstructed EMG data (based on the muscle syner-
gies) and the original EMG data was utilized to select the number of synergies suitable to model the EMG data. 
Specifically, we selected the number of muscle synergies that would yield a R2 > 0.75 both in the unilateral and 
bilateral analyses for all subjects. This criterion was met by selecting 4 synergies (R2 = 0.80 ± 0.02 for the bilateral 
analysis; R2 = 0.86 ± 0.06 for the unilateral analysis of the left leg EMG data; R2 = 0.79 ± 0.04 for the unilateral 
analysis of the right leg EMG data). This result is consistent with previous studies8.

Changes in muscle synergies in response to the perturbation. To investigate the possible recruitment of addi-
tional synergies during motor adaptation, we also extracted 5 unilateral synergies and 5 and 6 bilateral synergies 
(Figs. 4A,B and S2). We then quantified the similarity between the subspaces spanned by the reference W and 
the epochal W across the experimental phases. The reference W was obtained by using all the segments of data 
collected during the BL phase. The epochal W was derived for each segment of the data collected during all 
experimental phases. The cosine of the principal angles54 between the subspaces spanned by the muscle-synergy 
sets was then derived to quantify the similarity between the above-defined subspaces. High values of the cosines 
of the principal angles (i.e., close to 1) indicate that the subspaces spanned by the two synergy sets intersect over 
a shared subspace of n dimensions, where n is the number of cosine values above threshold. The threshold value 
was derived - as previously proposed by Cheung et al.55 – via the following surrogate analysis. We calculated, for 
each subject, the cosines of the principal angles between the reference synergy set (REFsynX or REFsynXinv) and 1,000 
Gaussian noise-corrupted (μ = 0; σ = 0.1) versions of each of the 40 BL (two-step) segments. For each of these 
segments, we estimated the 95th percentile value of the distribution of the cosines of the principal angles obtained 
for each of the 1,000 Gaussian noise-corrupted versions of the BL segments. Finally, the median of this percentile 
value across the 40 BL epochs was computed and selected to be the threshold for determining the dimensionality 
of the shared subspace n for each subject. This procedure allowed us to account for the variability of the epochal 
muscle synergies expected from chance when determining the threshold.

We also extracted C or W from every epoch by either fitting fixed BL synergies, W (NMFFixedW), or fixed BL 
activation patterns, C (NMFFixedC), to the epoch data. Through all iterations of the NMF algorithm, the W (for 
NMFFixedW) or C (for NMFFixedC) matrix was fixed at its reference value, thus allowing for updating only the C 
(for NMFFixedW) or W (for NMFFixedC) matrix. Using this approach, the variability of the original data set was 
described only by the updated parameter (i.e., C if W was fixed or W if C was fixed).

How the muscle-synergy activation coefficients C evolved over the course of adaptation was characterized 
by evaluating the similarity between C of each epoch and the reference C obtained from the BL data, quantified 
using the Pearson’s linear correlation coefficient. For each epoch, a similarity value was obtained, thus resulting 
in a time series of similarity values across the BL, Pert and AE phases. To facilitate subsequent modeling of the 
adaptation dynamics, this time series of similarity values was smoothed using an 8-point moving average filter, 
that was applied separately to the values from the three phases of the experiments. We fitted the exponential 
function in Eq. 3 to the similarity value time-series derived for the Pert and AE phases. All three parameters α, β 
and γ were estimated using a least-squares algorithm. The behavior was defined to be adaptive if the cumulative 
R2 was >0.75.

We analyzed the data to identify changes in muscle synergies between the two experiments. In this analysis we 
calculated the similarity between the average weights for the EMG data collected during the BL phase of the X and 
Xinv experiments. We also calculated the similarity between the temporal activation patterns during the BL and 
the late-Pert phases across the two experiments. The similarity between the weights was calculated using the nor-
malized dot product. The similarity between the temporal activations was calculated using Pearson coefficients.

Statistical analysis. Several statistical analyses were performed on the data recorded during the experi-
ments. A statistical analysis was performed to test for significant differences in step length on the perturbed side 
during the different phases of the experiment (Fig. S1). We compared the average normalized step length during 
the BL phase and the step length for the first and last gait cycles of Pert and AE phases. The analysis was based 
on Friedman’s ANOVA test (p-values are presented in Fig. S1). The Minimum Significance Difference (MSD)56 
test was used for pairwise comparisons of the values of step length between specific phases of the experiments. 
Similarly to what we did in19, we compared: (1) average step-length during late (last 5 cycles) BL versus first step 
of Pert, to test if the perturbation induced a significant change; (2) step-length values for the first step versus the 
last step of Pert, to test if subjects showed an adaptation to the perturbation force vector; (3) step-length values for 
late BL versus last step of Pert, to test if subjects fully compensated for the robot-induced changes in step-length, 
(4) step-length values for late BL versus first step of AE, to test for the presence of a significant aftereffect; (5) 
step-length values for the first step of Pert versus the first step of AE, to test if the aftereffect mirrored, in magni-
tude, the robot-induced change in step length; (6) step-length values for the first step versus the last step of AE, to 
test if subjects demonstrated changes in step length during this phase; and (7) step-length values for late BL versus 
the last step of AE, to test if subjects returned to baseline values of step length at the end of the aftereffect phase. 
The z-value for the MSD test was set to obtain an overall α of 0.05 for the seven comparisons considered, for an 
effective error rate per comparison equal to 0.001256.

We extracted synergies (unilaterally and bilaterally) by either using the standard NMF algorithm, or by fixing 
W or C (Eq. 3) to their baseline values. The R2 values extracted in the different phases of both experiments were 
statistically compared for all these analyses using a Friedman ANOVA test (α = 0.1). Specifically, we compared 
values of R2 obtained unilaterally and bilaterally using the unconstrained and constrained NMFs between the 
BL, early Pert and late-Pert phases. The resultant p-values for these analyses are presented in Figs. S2 and 4B. The 
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Minimum Significance Difference test was used to perform pairwise comparisons. The z-value for the MSD test 
was set to obtain an overall α of 0.05 for the three comparisons considered (baseline vs. early adaptation, base-
line vs. late adaptation and early adaptation vs. late adaptation), for an effective error rate per comparison equal 
to 0.008356. Finally, a statistical analysis based on the Wilcoxon’s signed rank test (α = 0.05) was used to test for 
statistically significant changes in the similarity of the activation patterns observed during the BL and late-Pert 
phases (Fig. S04).

Data availability
The data collected in the study is available on PhysioNet https://physionet.org/.

code availability
The code developed for the analysis of data collected during the study is available upon request to be sent to the 
corresponding author.
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