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Abstract
The recruitment of RNA-Pol-II to the transcription start site (TSS) is an important step in

gene regulation in all organisms. Core promoter elements (CPE) are conserved sequence

motifs that guide Pol-II to the TSS by interacting with specific transcription factors (TFs).

However, only a minority of animal promoters contains CPEs. It is still unknown how Pol-II

selects the TSS in their absence. Here we present a comparative analysis of promoters’

sequence composition and chromatin architecture in five eukaryotic model organisms,

which shows the presence of common and unique DNA-encoded features used to organize

chromatin. Analysis of Pol-II initiation patterns uncovers that, in the absence of certain

CPEs, there is a strong correlation between the spread of initiation and the intensity of the

10 bp periodic signal in the nearest downstream nucleosome. Moreover, promoters’ pri-

mary and secondary initiation sites show a characteristic 10 bp periodicity in the absence of

CPEs. We also show that DNA natural variants in the region immediately downstream the

TSS are able to affect both the nucleosome-DNA affinity and Pol-II initiation pattern. These

findings support the notion that, in addition to CPEs mediated selection, sequence–induced

nucleosome positioning could be a common and conserved mechanism of TSS selection in

animals.

Author Summary

Gene transcription is a complex process that starts with the recruitment and positioning of
Pol-II enzyme at the transcription start site (TSS). Specific promoter sequences, known as
core promoter elements (CPEs) facilitate this process. Surprisingly, only a fraction of pro-
moters contain them. It is still unknown how Pol-II choses the start site in their absence. A
recently proposed alternative mechanism implicates positioned nucleosomes in the TSS
selection. Here, we provide new evidence of the existence of such mechanism with a com-
parative analysis of promoter’s features across the animal kingdom. We analysed the pro-
moter’s DNA sequence composition in 5 organisms and found conserved and unique
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consensus sequences used to organize chromatin in the region of the first nucleosome
downstream the TSS (N+1). Moreover, we found that all organisms show a strong correla-
tion between the spread of Pol-II initiation and the strength of the DNA-encoded signal in
the N+1 region. A detailed analysis of Pol-II initiation sites reveals also the presence of a
10 bp periodicity that is correlated with the intensity of the DNA signal in the N+1 region.
Importantly, we report that genetic variants that alter the DNA-nucleosome affinity in
that region alter Pol-II initiation spread as well.

Introduction

An essential step in gene regulation is the recruitment of RNA-Pol-II (Pol-II) to the transcrip-
tion start sites (TSS) at gene promoters [1–3]. This is often facilitated by the presence of con-
served sequence motifs known as core promoter elements (CPEs), which are found at a fixed
or nearly fixed distance from the TSS [4,5]. Among them, the TATA-box, located 25–30 base-
pairs (bp) upstream of the TSS, and the Initiator (Inr), located at the TSS, are the best known
and most widely conserved CPEs among species [6,7]. The TATA-box is bound by general
transcription factors (TFs) that guide and anchor Pol-II to the TSS [8]. As a consequence, pro-
moters with a TATA-box are generally characterized by a focused, almost to the single base,
start site [9,10].

In spite of the CPE’s demonstrated capability to select a TSS with high precision, only a
minority of promoters have a CPE (in human 10% a TATA-box, 30% an Inr motif) [11]. A
central question in gene expression is how Pol-II selects the TSS in their absence [12,13]. It has
been shown that nucleosomes in promoter regions can regulate gene expression via TF binding
site occlusion [14] but their role in TSS selection by Pol-II remains unclear. Promoters have a
remarkably conserved chromatin architecture consisting of a nucleosome free region that
spans 100–150 bp upstream the TSS followed by a well-positioned nucleosome (+1 nucleo-
some) [15,16]. This general conformation can be altered by diverse factors. Contrary to intui-
tion, so called broad promoters with dispersed initiation sites have the most focused and
regular nucleosome architecture whereas narrow promoters (also referred as peak promoters)
have less organized nucleosomes [17] and an atypical chromatin architecture [18]. In zebra
fish, the chromatin architecture of the same promoter has been shown to change from one
developmental stage to another [19] but there again, the conformation with the more struc-
tured nucleosome architecture shows a broader initiation site pattern. In mammals, promoters
have traditionally been classified according to the presence or absence of CpG islands (CGI),
500–1000 bp long regions enriched in C+G [20–22]. CGI-promoters are often TATA-
box depleted [23], have broad TSS [9], exhibit characteristic histone marks [24] and have a pre-
cisely positioned +1 nucleosome which is present even when the promoter is not transcribed
[25]. In essence, CGI-promoters resemble the broad promoters described in other species and
thus may not be considered a separate class.

An open question in gene regulation is whether the chromatin at promoters is organized by
sequence-intrinsic features or indirectly by the transcription machinery occupying the nucleo-
some-free region and thereby forcing the nucleosome to bind to the nearest free space down-
stream the TSS. On a genome level, two types of sequence features have been reported to
participate in nucleosome positioning: dinucleotide periodicity and base composition [26]. A
theoretical model suggests that the same dinucleotide repeated at 10 bp intervals leads to
intrinsic curvature that favors the wrapping of the DNA around the histone octamer [26,27].
This model theorizes that the periodic dinucleotide always occurs with the same orientation
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relative to the histone-octamer surface, for instance having the major groove facing outwards,
and implies a rotational positioning of the nucleosome. Some authors have identified WW (W
for A or T) and SS (S for C or G) dinucleotides in counter-phase as major contributors of rota-
tional positioning [28,29], others emphasized the importance of RR (R for A or G) and YY (Y
for C or T) motifs [27]. DNA base composition can also affect nucleosome positioning. Highly
AT-rich sequences, in particular poly(dA:dT) tracts, strongly disfavor nucleosome formation
[30,31], whereas G+C rich sequence tend to have high nucleosome occupancy [32,33]. Unlike
dinucleotide periodicity, sequence composition can position nucleosomes in a narrow DNA
region without specific preference for rotational setting, a condition termed translational
positioning.

As said before, the role of sequence-intrinsic features in chromatin organization around
promoters remains a matter of debate [34]. Zhang and colleagues concluded that its position-
ing is the result of Pol-II binding to the DNA [35]. Recent studies done in yeast have shown
that chromatin remodelers play an important role in organizing chromatin both at a genome
[36] and promoter level [37] and that they act synergistically with DNA sequences [38]. Others
have reported the presence of nucleosome-favoring and disfavoring sequences in yeast promot-
ers [27,39–41], with a high correlation between in-vitro and in-vivo nucleosome organization
in these regions [42,43]. Recently, a 10 bp periodic signal has been observed in cumulative
WW frequency plots of promoters sequences aligned with respect to the major TSS as defined
by CAGE [44]. A similar WW periodicity can be seen in WW heat map plots published in
[19]. The phasing of WW periodicity with the TSS is the first indication that the rotational set-
ting of the DNA in the +1 nucleosome is guiding the TSS selection process.

In this paper, we investigate the molecular mechanisms of TSS selection by jointly analyzing
experimentally determined chromatin architectures, DNA-encoded nucleosome signals, Pol-II
initiation site patterns and natural genetic variation in promoters stratified by the presence or
absence of specific CPEs and/or the breadth of the initiation patterns. The analysis on five
model organisms (Homo sapiens, Mus musculus, Danio rerio, Drosophila melanogaster and
Caenorhabditis elegans) confirms that different species have an overall similar chromatin orga-
nization with nevertheless some noteworthy species-specific differences. All five organisms
have sequence-intrinsic nucleosome-positioning signals that are predictive of in-vivo nucleo-
some organization, but only in promoters that lack TATA-boxes. Additionally, we show that
broad promoters associated with strong sequence-encoded nucleosome +1 have 10 bp periodic
initiation patterns. By analyzing the effects of genetic variants on promoter initiation site pat-
terns and dinucleotide periodicity, we provide genetic evidence that rotational nucleosome
positioning is mechanistically involved in TSS selection.

Results

Promoters have DNA rotational properties that influence in-vivo

nucleosome organisation and are affected by species-specific biases in

DNA composition

To verify that DNA sequences around animal promoters had rotational nucleosome-position-
ing properties and that the 10–11 bp was the prevailing frequency, 1 kb regions on each side of
H. sapiens, M. musculus, D. rerio, D. melanogaster and C. elegans TSSs were scanned for the
presence of periodic signals of any length for each individual WW, SS, YY, or RR dinucleotide
(S1 Fig). Confirming our expectations, all organisms showed a peak in signal intensity for peri-
ods of 10–11 bp (S2 Fig) that are typical of nucleosomal DNA with a minimum in correspon-
dence of the nucleosome free region and a maximum in the N+1 region (S3 Fig). To further
study the rotational properties of single promoters sequences and their effect on chromatin
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conformation, the strength of 10.3 bp periodic signals for each dinucleotide was evaluated in
each promoter and compared to their in-vivo nucleosome maps. As expected, the WW dinucle-
otide (or SS for D. melanogaster) showed the highest correlation with in-vivo nucleosome sig-
nals (Fig 1A and S4 Fig). In H. sapiens, about one third of promoters (top promoters of Fig 1A)
had low WW periodicity upstream the TSS and a peak in periodicity immediately downstream.
This was reflected in the chromatin organisation with a clear nucleosome free region (NFR)
and a focused N+1. As expected, this group of promoters was also depleted of TATA-box and
enriched in CpG islands. Approximately 25% of promoters showed an opposite signal, with a
peak upstream the TSS and a valley downstream (promoters at the bottom of Fig 1A). They
were characterized with a less pronounced NFR, a broader N+1, an enrichment in TATA-
box and depletion in CpG islands, in agreement with earlier studies. CpG-enriched promoters
were previously reported to have an open chromatin conformation and to be enriched in active
histone marks. On the other end, CpG-depleted promoters were reported to have a close chro-
matin conformation and low levels of histone modifications [45,46].

Dinucleotide periodicities have an additive effect on chromatin

organisation

Fig 1A shows that a large fraction of human promoters had a WW signal that, although
depleted in the NFR, did not show a clear enrichment in the N+1 region. These promoters
might have had other dinucleotide signals that peaked in this region allowing for a correct
nucleosome positioning. To test this hypothesis, we identified promoters with periodic signal
intensity (for each dinucleotide) in the proximal promoter region that could favour the average
in-vivo nucleosome distribution. To do so, we compared the average 10 bp periodic signal in
the NFR with that of the N+1 region and identified promoters with a higher signal downstream
of the TSS (named hereafter as concordant signal). The organisms had heterogeneous number
of promoters with concordant signals (Fig 1B). H. sapiens and M. musculus promoters were
characterised for having the YY and RR dinucleotides as the most common and, at the same
time, the WW signal was less frequent. This could have been the consequence of the presence
of CpG islands that, with their high GC content, could affect the dinucleotide frequencies and
the possibility to generate a periodic signal. WW signal was more frequent in all other organ-
isms but only in D. rerio it was the most frequent. In fact, D. melanogaster showed that more
then 40% of promoters had a concordant SS signal, whereas C. elegans promoters were
enriched in YY signal but strongly depleted of SS signal. Nonetheless, in all organisms 80% of
promoters had at least 1 concordant signal (Fig 1C) and 20% 3 or more. The presence of multi-
ple concordant signals in the proximal promoter region was clearly reflected in chromatin
organisation (Fig 1D) with more focused nucleosomes even outside the proximal-promoter
area used in this analysis.

Consensus sequences for promoters’ nucleosomes are not always

similar to genomic nucleosomes

Our analyses showed that more then one dinucleotide periodic signal was often present in the
N+1 region of a promoter (Fig 1). However, it was not clear how the dinucleotides were posi-
tioned compared to each other within the same sequence. The mutually exclusive WW and SS
are expected to be found in counter-phases [28] as YY and RR [27]. Trifonov [47] concluded
that the general DNA consensus sequence for genomic nucleosomes could be summarized
with the following 2 motifs, SSRRNWWNYY or SSYYNWWNRR (note the relative position of
the YY and RR in the two motifs), but little is known about the relative position of the 4 dinu-
cleotides in the N+1 region. We addressed this using aggregate plots as in [44] where patterns
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of WW frequency were revealed in the N+1 region of H. sapiens promoters that were remark-
ably similar to the dinucleotide periodicities seen in MNase-seq data [28]. Using this observa-
tion, we evaluated and compared the periodic frequencies of DNA consensus sequences of the
N+1 and genomic nucleosomes. To do so, promoters of the 5 organisms under study were
aligned to the TSS and, using aggregated plots, the strength of a 10 bp periodic signal was eval-
uated in the N+1 region of all possible motifs of length 10 bp generated permuting the 4 dinu-
cleotides and two N bases (240 motifs). A similar analysis was performed on genomic
nucleosomes defined by high-resolution MNase data and aligned to the inferred center posi-
tion. In H. sapiens (Fig 2A) there was a very high correlation between the 10 bp frequency
strengths measured in DNA sequences coming from genomic nucleosomes and signal from
the DNA sequences of the N+1 region with a clear separation between motifs with high signal
and all the rest. Confirming the expectations from [47], motifs with strong periodicity were all
characterized for having the WW dinucleotide in counter phase to the SS as well as the YY and
RR and to share the same dinucleotide order: the SS dinucleotide was always followed by YY,
then by WW and RR. The average intensities of this motif class around H. sapiens promoters
showed a pattern that closely resembled in-vivo nucleosome maps (S5 Fig) with signal deple-
tion in correspondence of the NFR and a peak at the N+1. Moreover, the class of motifs belong-
ing to the first motif in Trifonov model (SS-RR-WW-YY) [47], showed very week signal in
both regions. These findings indicated that in H. sapiens, the DNA wrapped around the his-
tones in the N+1 region had almost identical dinucleotide periodicity patterns of the DNA
found in genomic nucleosomes. M. musculus, D. melanogaster and D. rerio showed a prefer-
ence for motifs belonging to the same class as H. sapiens (Fig 2B and S6 Fig) with a strong cor-
relation between signals coming from genomic and promoter nucleosomes (S5 Fig). C. elegans
was the only organism analyzed that shows a clear difference between the DNA code used on
genomic nucleosome and the one used at promoters. On a genome level C. elegans showed no
difference with the other organisms (Fig 2B left panel) with a clear preference for the motifs
class SS-YY-WW-RR. C. elegans promoters, instead, showed strong signals also for the class
SS-RR-WW-YY (Fig 2B and 2C, S5 and S7 Figs). Analysis of the average distribution of the
two motif classes around C. elegans promoters showed signal for both (S8 Fig), suggesting the
presence of two promoter groups characterized by the presence of one motif and not the other
(S8 Fig). To identify them, promoters were grouped on the bases of the signal intensity for one
consensus as twice as strong compared to the other. 1344 promoters had strong signal from the
SS-RR-WW-YY class and 806 from the SS-YY-WW-RR. These two promoter groups did not
have very different chromatin architectures with the SS-YY-WW-RR class showing only a
slightly more focused N+1 and more pronounced NFR (S8 Fig) but not a difference in
H3K4me3 distribution (S8 Fig).

Fig 1. Effects of dinucleotides periodicity on chromatin. (A) Intensity of 10 bp WW periodicity calculated using a Fourier transform in a

sliding window of 150 bp (10 bp shift) on a 2 kb region around all human promoters (left-hand side) compared to the in-vivo nucleosome

occupancy profiles derived from MNase-seq reads counts in the same regions (right-hand side); Boolean TATA-box and CpG islands

classifications are based on: TATA-box has to be found at position -30 to -25 bp from the TSS whereas CpG islands have to cover the TSS.

Promoters were ordered according to their correlation between the intensity of the 10 bp WW periodicity and the average in-vivo nucleosome

distribution in the region -1000 bp to 1000 bp from the TSS. Each line corresponds to the average values of 10 promoters. (B) Fraction of

promoters showing low intensity of 10 bp dinucleotide frequencies in the NFR and high intensity in the N+1 region for the 4 dinucleotides tested

(concordant signal). (C) Cumulative fraction of promoters (indicated with the numbers on the right) with concordant signals for the four

dinucleotides. (D) Average distribution of nucleosomes around human promoters stratified by the number of their concordant signals.

doi:10.1371/journal.pcbi.1005144.g001
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Dinucleotide periodicities in promoters correlate with Pol-II initiation

patterns

The finding that promoters with a broad initiation pattern have phased dinucleotide periodici-
ties in the N+1 region compared to focused promoters [44] that, on the other end, are enriched
in TATA-box motifs [9,17] suggests that TATA-box and chromatin conformation could have
different effects on transcription initiation [12,13]. The TATA-box can direct Pol-II to the TSS
with high precision [1] whereas in its absence, chromatin organization could guide the Pol-II
complex but less precisely. To analyze the quantitative effect of rotational properties of DNA
on Pol-II positioning, the correlation between the strength of the dinucleotide signals in the N
+1 region and the spread of Pol-II initiation were studied in grater detail. To do so, promoters
were first grouped according to their TATA-box state (with and without the motif) and, for the
TATA-less promoters, according to their average dispersion of Pol-II initiation around the TSS
(from very focused to very broad promoters) evaluated using CAGE data and summarized
with a Dispersion Index (DI, it could be considered as the standard deviation around the most
likely initiation site). Then, for each group, the average strength of the four dinucleotide signals
in the N+1 region was evaluated. In all organisms tested there was a strong inverse correlation
between promoters DI and the average dinucleotide strength (for example for H. sapiens: R2 =
0.76 and p-value = 0.0002) (Fig 3A and S9 Fig). Focused promoters without a TATA-box were
characterized for the presence of a strong periodic signal, whereas broad promoters showed a
weak periodicity. TATA-box promoters were outliers: they showed low DI values and weak
periodic signals. In D. melanogaster another large group of promoters (5628 promoters, 1/3 of
the total) was characterized for having focused initiation and weak periodicity. All these pro-
moters had a DPE [48] and an Inr element, both of which are found at conserved distance
from the TSS. Moreover in all organisms, only promoters without TATA-box (or Inr-DPE)
had the signal in phase with the TSS suggesting that there was a fixed distance between the TSS

Fig 2. Identification of the N+1 consensus sequence. (A) Correlation between 10 bp long dinucleotide patterns composed of one copy of each SS, WW,

YY and RR dinucleotides and 2 Ns evaluated on human genomic nucleosomes and the N+1 nucleosome; each dot represents the strength of the 10 bp

frequency of a consensus sequence in the N+1 region or in genomic nucleosome regions (defined by MNase-seq data); green and red dots mark two

classes of patterns (circular permutations of SS-RR-WW-YY and SS-YY-WW-RR, respectively) that are known to have high nucleosomes affinities [47]. (B)

Comparative analysis of representative consensus sequence strength in 5 organisms on genomic nucleosomes (left panel, Genomic) and promoter

nucleosomes (right panel, N+1). Each square represents the strength of a 10 bp periodic signal for a consensus sequence (rows) for an organism (columns).

Hs: H. sapiens, Mm: M. musculus, Dr: D. rerio, Dm: D. melanogaster and Ce: C. elegans. A comparative analysis of all motifs tested can be found in S6 and

S7 Figs (C) Correlation analysis as performed in A for C. elegans promoters and genomic nucleosomes.

doi:10.1371/journal.pcbi.1005144.g002
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and the N+1 (S10 Fig). To test if the periodic signal in the N+1 affects also the level of activity
of Pol-II, the average expression of promoters was correlated with the average dinucleotide
strength in the N+1 region. In this case, no correlation between the two was found (R2 = 0.18,
p-value = 0.21) (S11 Fig).

CPE-less promoters show 10 bp periodic initiation patterns

To further elucidate the relationship between periodic DNA signals and Pol-II, we studied the
primary and secondary transcription initiation patterns in promoters. In fact, rotational nucle-
osome positioning due to a 10 bp periodic signal does not require the occurrence of the nucleo-
some center at exactly the same base: it tolerates shifting by multiples of 10 bp [26,27]. To
validate our model that the rotational setting of the +1 nucleosome influences TSS selection by
Pol-II, CAGE tags were used to analyze the distribution of transcription starts at promoters. In
order to detect these secondary Pol-II initiation sites, a “micro-peak” method was applied to
the data that consisted in extracting positions that corresponded to a local maximum in CAGE
tag coverage within a window of 5 bp. This method emphasized the stronger initiation sites
compared to a simple cut-off value and also reduced the background noise given by spurious
signals (S12 Fig). Subsequently, the average distributions of secondary TSS around promoters
grouped by their TATA and DI statuses were evaluated.

In H. sapiens, each promoter subclass showed a similar level of primary TSS activity with
comparable frequencies of micro-peaks at the TSS (Fig 3B). Away from the primary TSS, two
opposite Pol-II behaviors were detected. The first had a strong 10 bp periodic pattern in sec-
ondary initiation sites distribution around promoters and corresponded to TATA-less promot-
ers regardless of their DI values with both focused and broad promoters showing strong
secondary initiation patterns. The second had no clear periodic signal near the central peak
and corresponded to TATA-box promoters. This subclass had also poor affinity values (Fig
3A) with the absence of a phase signal downstream the TSS (S10 Fig). The other organisms
showed similar patterns of Pol-II initiation (S13 Fig) with TATA-box containing promoters
the only group that did not show any periodicity in secondary initiation. In D. melanogaster,
Inr-DPE promoters had a micro-peak distribution similar to TATA-box containing
promoters.

The 10-bp periodic distribution of secondary initiation sites could be due to local curving of
the DNA at the major initiation site or one-sided protection by components of the pre-initia-
tion complex. To rule out this possibility and to establish a direct link between TSS phasing
and the +1 nucleosome signal, we selected promoters with the strongest pattern in secondary
initiation sites and studied their DNA properties in the N+1 region. Results showed that pro-
moters with a strong periodic TSS initiation pattern (Fig 3C) also showed high phasing with

Fig 3. Effects of dinucleotide periodicity on Pol-II initiation. (A) Correlation between Pol-II level of

dispersion of TSS initiation and strength of periodic signal in the N+1 region. Each dot corresponds to the

average value of the intensity of the WW, SS, RR and YY dinucleotide of 2000 promoters ordered by

increasing DI (a number similar to the TATA-box containing promoters). Solid line represents the predicted

values (evaluated by a linear model) whereas dotted line the 99% confidence intervals as evaluated by the

linear model. Arrows mark promoters groups with low DI (focused) and high DI (broad) used in B. (B) CAGE

micro-peaks distribution around human promoters stratified for the presence or absence of TATA-box and

focused or broad promoters (defined as promoter groups marked with an arrow in A). A strong 10 bp

periodicity is visible only in TATA-less promoters, reflecting the presence in the N+1 region of a DNA-

encoded nucleosome signal. (C) CAGE micro-peaks distribution for promoters with strong (positive) and

weak (negative) periodicity in secondary initiation sites. (D) Average YY distribution for the promoter classes

defined in (C).

doi:10.1371/journal.pcbi.1005144.g003
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the +1 nucleosome periodic signal (Fig 3D), further suggesting the presence of a direct relation
between the two.

Natural variants that map in the N+1 region alter Pol-II initiation

The strong correlation observed between DNA-encoded nucleosome positioning signals near
the TSS and transcription initiation patterns (Fig 3) was an indication that the DNA sequence
of promoters had a crucial role in guiding Pol-II to the initiation site via a possible N+1 interac-
tion. To gain further evidence that there was a causative link between DNA sequence and Pol-
II initiation and to identify the region that had the greatest influence, we studied the effect of
natural variation on promoters’ DI. To do so, we used CAGE data from the ENCODE tier 1
cell line GM12878 (a lymphoblastoid cell line) for which the genome had been sequenced by
the 1000Genome consortium [49]. Using data from this cell line, it was possible to study the
effect of natural variation, such as SNPs and Indels (deletion or insertion of few bases), on Pol-
II initiation expressed as variation in DI. To address this we compiled promoters’ variants for
which the GM12878 was homozygous for the minor allele. In total there were 15548 SNPs
mapping near promoters (2kb window around TSS) and 1849 indels. The two distributions
were similar (S14 Fig), both showed low frequencies near the TSS, but were not exactly the
same. SNPs minimum was centered slightly upstream the TSS whereas indels minimum down-
stream, in a region that coincided with the N+1.

GM12878 CAGE tags were then used to evaluate DI values for all promoters. As a reference,
we used CAGE data from blood-derived cells from a different origin that should not contain
the same mutations [44] and assigned them to a reference genome containing always the major
allele (most likely genome). To identify the promoter region that had the greatest impact on
TSS dispersion, we first selected promoters that had natural variants in the GM12878 cell line

Fig 4. Effects of promoter natural variants on Pol-II initiation. (A) Analysis of the effect of SNPs or Indels to Pol-II initiation precision as a function of their

distance from the TSS. Values on the x axis represent mid point of a sliding window of 150 bp (shift 10 bp) whereas y axis represent the variation in DI

between GM12878 cell line and other blood derived cell lines for promoters that have natural variants in the GM12878 cell line mapping in that region. (B) 2

Kb region around human promoters were scanned for the presence of natural variants with a sliding window of 150 bp (shift 10) and analyzed for their impact

on WW 10 bp frequency intensity in that region. The variation in signal intensity was then correlated to variation in DI for the corresponding promoters using

a linear model. The dots represent the slope (angular coefficient) of the linear model for the region centered in that position. Negative slope values

correspond to negative correlation between the variation in WW dinucleotide frequency and variation in DI (C) Effects of mutations in the N+1 region on

nucleosome affinity and DI. The plot shows the effect of mutation on nucleosome affinity in the N+1 region (measured as the difference in 10 bp frequency

intensity for WW dinucleotide between GM12878 and ML sequences) and its correlation with variation in DI for the same promoter (measured as difference

between GM12878 and other blood related cell lines). Each dot represents a different promoter. The p-value of 0.022 corresponds to the F statistic

evaluated on the linear regression model.

doi:10.1371/journal.pcbi.1005144.g004

Influence of Nucleosome Positioning on Promoters Transcription Start Site Selection

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005144 October 7, 2016 10 / 21



and grouped them according to the distance of the variants from the TSS (in windows of 150
bp and 10 bp shift). Then the average variation in DI between the two cell lines was evaluated
for each group of promoters and plotted as a function of the distance of the window from the
TSS (Fig 4A). It was possible to evaluate the impact on initiation patterns made by natural vari-
ants at any given distance from the TSS. Both SNPs and indels had a measurable effect on TSS
dispersion if located in the proximal promoter region. Overall, SNPs had a weaker effect on
TSS dispersion, with a maximum for SNPs mapping 120 bp downstream the TSS, in the central
region of the N+1 (Fig 4A). Conversely, Indels had a much stronger impact in a region that
extended from the TSS until the end of the N+1 and peaked within the first half of the N+1.
Interestingly, SNPs and indels mapping in the NFR did not coincide with a strong variation in
DI.

Variants disrupting dinucleotide periodicity in the N+1 region tend to

increase TSS dispersion

We then investigated the relationship between alterations of the nucleosomes-DNA affinity
(measured as variation in dinucleotide 10 bp frequency) produced by natural variants and their
effects on Pol-II initiation. To assess this, we scanned the promoter region with a sliding win-
dow of 150 bp (10 bp shift) and investigated the linear relationship between the variation in 10
bp frequency for the WW dinucleotide (produced by GM12878 natural variants that mapped
in that region) and the variation in the observed DI for the corresponding promoters. The N+1
region was the only one showing a negative correlation between the variation measured in the
nucleosome-DNA affinity and the variation in promoters’ DI, with a minimum centered at
base +110 (p-value = 0.022, Pearson’s r = -0.184) (Fig 4B). On a single promoter level, natural
variants that mapped in this region with disruptive effect on the nucleosome binding corre-
sponded to promoters with increased DI compared to WT (Fig 4C). On the other end, natural
variants that increased the nucleosome affinity had an effect on lowering the DI.

Discussion

Two pathways for TSS selection by POL-II have been described in the literature. According to
the conventional model the TSS position is defined by the presence of CPE [5]. However, the
majority of eukaryotic promoters lack CPEs, including a TATA-box and an Inr [11]. Jiang and
Pugh proposed that TSS selection in yeast might be linked to the position of the N+1 in the
absence of CPEs [12]. Here, through a comparative analysis of DNA-encoded nucleosome sig-
nals in animal promoters and Pol-II initiation patterns, we report that the DNA signals under-
lying both mechanisms are conserved across species and, through the study of DNA natural
variants, we show that the level of affinity between N+1 and DNA affects TSS selection in the
absence of CPEs.

The function of sequence-intrinsic features in chromatin organization around promoters is
still a matter of discussion [34]. Although studies done in yeast have shown an important role
of chromatin remodeler in organizing chromatin at a genome [36] and promoter level [37], a
growing body of evidence favors the functional role of sequence-intrinsic features at promoters
[27,39–41]. Moreover, in a recent study Drillon et colleagues have shown that around 1/3 of
nucleosomes in the human genome are positioned based on DNA sequence determinants [50].
Here, through comparative analysis of promoters DNA sequence composition, we show that in
5 model organisms (H. sapiens, M. musculus, D. rerio, D. melanogaster and C. elegans) the posi-
tion of nucleosomes at the majority of promoters is at least partly determined by DNA encoded
signals, with some remarkably species-specific differences. Promoters of all organisms show a
10 bp periodic signal for the four dinucleotides tested (WW, SS, YY and RR). H. sapiens is the
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only organism showing also a strong signal for YY and RR dinucleotides for a periodicity of 8
bp, that is probably the consequence of the presence of specific CT rich microsatellite
sequences in human promoters [51] (S1 Fig). As expected, the dinucleotide that shows the
highest correlation with in-vivo nucleosome maps is WW (Fig 1A). Regardless of this, multiple
periodic signals reinforce each other in organizing chromatin around promoters (Fig 1D), sug-
gesting an additive effect of the affinity of the four dinucleotides to histones. When we study
the spatial relationships between the four dinucleotides within a promoter sequence we find
the same consensus as in genomic nucleosomes (SS-YY-WW-RR) for all organisms tested with
the exception of C. elegans. Interestingly, on a genome level the DNA that is wrapped around
C. elegans nucleosomes has the same consensus sequence as all other organisms but at pro-
moter level we find that there are two distinct group of promoters characterized for having the
SS-YY-WW-RR or SS-RR-WW-YY consensus. This finding is intriguing since the difference
in the two sequences is not purely semantic, but has been predicted to alter the affinities to his-
tones [47]. Although SS-RR-WW-YY has been predicted to have the higher affinity to nucleo-
somes allowing for perfect bendability of the DNA around the histone octamer [52], our
analysis show that C. elegans promoters with this sequence in the N+1 region do not have any
difference in chromatin conformation compared to promoters with the other consensus. The
reason for this unexpected observation is unknown and need further investigation.

The identification of promoters by the transcription machinery is a process that is guided
by the general transcription factor TFIID [53], a multi-subunit protein that is not only able to
interact with the TATA-box or the DPE element [5] but also with chromatin [54–56] via the
TAF3 subunit, suggesting the presence of a motif-independent TFIID recruitment at promot-
ers that rely on the N+1 [57]. In agreement with this hypothesis, TATA-box mutation studies
have shown a direct effect on Pol-II initiation both in term of TSS position and level of pro-
moter activity [19,58]. On the other end, no study, to our knowledge, has investigated the effect
that nucleosome-DNA affinity in the N+1 region has on TSS selection. Correlation analysis
shows that in all organisms promoters without CPEs have the predicted level of nucleosome-
DNA affinity anti-correlated with TSS initiation patterns (Fig 3A and S9 Fig). Broad promoters
generally have lower DNA-encoded nucleosome affinity. Conversely, narrow promoters, often
presented as a homogeneous class in the literature, vary greatly in this respect, with only the
CPE-less subset (TATA-less and Inr-DPE-less in D. melanogaster) showing strong affinity in
the N+1 region. Moreover, the 10 bp periodicity seen in Pol-II initiation in all promoters,
focused and broad, that lack CPEs (Fig 3B and S13 Fig) is another indication of a direct interac-
tion between Pol-II and the N+1 in the absence of other DNA signals. In fact, a model of Pol-II
initiation that relies on the interaction with the N+1, which in turn is rotationally positioned
and able to tolerate shifting by multiples of 10 bp [26,27], would allow Pol-II to start transcrip-
tion at 10 bp intervals. Furthermore, the study of DNA natural variants in H. sapiens have
shown that the region with grater influence on TSS selection is the N+1 (Fig 4A) and that there
is a negative correlation between variation in nucleosome affinity and Pol-II initiation (Fig 4B
and 4C). That is, the presence of a variant in the N+1 region that decreases the nucleosome-
DNA affinity results in an increase in TSS dispersion and vice-versa. These results strongly
support the model of a motif-independent TFIID recruitment mediated by N+1—TAF2 inter-
action [57]. We can speculate that, in the absence of the TATA-box or Inr-DPE, the relative
stability of the histones-DNA complex in the N+1 region could be transferred to the PIC via
interaction with TFIID leading to a more or less focused transcription initiation by Pol-II. An
alternative mechanism of PIC recruitment at promoters in the absence of CPE has been
proposed by recent work by Afek and Lukatsky done in yeast in which they used a non-consen-
sus based free-energy function to predict PIC affinity instead of nucleosome affinity [59]. Inter-
estingly, they found that the free-energy distribution around promoters (Fig 1 and Fig 2 in
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[59]) is very similar to our nucleotide periodicity profile we see in human (S5A Fig) with a min-
imum located in the nucleosome-free region upstream of the TSS followed by spikes in free-
energy in correspondence of the nucleosome occupied regions. On the other end, in all organ-
isms studied, CPEs containing promoters are outliers compared to non-CPE promoters: they
are focused but have weak nucleosome affinity and do not show any TSS periodicity. In this
class of promoters the initiation site appears to be specified solely by the presence of the CPE
[8,10].

Methods

The study is based on experimental evidence present in public datasets. All arithmetic compu-
tations were done in R and the corresponding code is presented in the Data Reproduction
Guide provided as supplementary material (S1 Text). This document follows high standards of
reproducible research; it is a step-by-step guide to precisely reproduce all results presented in
this paper and to generate all the figures.

Data sets

The promoter sets and the corresponding dominant TSS positions were taken from EPDnew [11]:
version 2 for H. sapiens and D. melanogaster, version 1 for all other species. Pol-II initiation pat-
terns were based on CAGE or GRO-Cap data from the following sources: H. sapiens: ENCODE
data, GEO ID GSE34448 [60], FANTOM5 [44]; M. musculus: FANTOM5 [44]; D. rerio SRA ID
SRA055273 [61]; D. melanogaster SRA ID SRP001602; C. elegans GRO-cap data GSE43087 [62].

Nucleosome maps are from paired-end MNase-seq data or alternatively from single-end
MNase–seq data. H. sapiens: paired-end MNase-seq data for the lymoblastoid cell line
GM18507, SRA ID SRP012024, GEO ID GSM907783 [28], M. musculus: single-end MNase
data from HAFTL cell line, GEO-ID GSM1293995 [63]; D. rerio: single-end MNase-seq data
from embryos in dome stage, GEO ID GSM1081554 [64]; D. melanogaster: paired-end MNase-
seq data, GEO ID GSM1293957 [65]; C. elegans: paired-end MNase data from adults, SRA ID
SRP000191 [66].

Position weight matrices for CPEs and CpG island annotation

Promoter lists were stratified based on the presence or absence of core promoter elements
using the TATA-box and Inr position weight matrices (PWMs) from [6]. Promoter sequences
were scanned with these PWMs using the cut-off values suggested in the original paper. Pro-
moters were classified as TATA+ if a TATA-box was present at position -29±3 relative to the
TSS, while as Inr+ if this motif occurred exactly at the TSS. The D. melanogaster Inr-DPE
matrix is posted at http://epd.vital-it.ch/promoter_elements/init-dpe.php, including the rec-
ommended cut-off values.

CGI coordinates for human and mouse were downloaded from the UCSC genome browser
[67]. Promoters with a CGI that spans the TSS (starting before and ending after the TSS) were
attributed to the CGI+ class.

Evaluation of periodicity score around promoters

Promoter sequences from position -1074 to position 1075 relative to the TSS were extracted
from the corresponding genome assembly (H. sapiens: hg19; M. musculus: mm9; D. rerio:
danRer7; D. melanogaster: dm3; C. elegans: ce6) and scanned for the presence of four dinucleo-
tide types (identified by IUPAC codes): WW (W = A or T), SS (S = C or G), RR (R = A or G)
and YY (Y = C or T). The resulting binary sequences were individually scanned in a sliding
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window of 150 bp, shifted by 10 bp at a time. A Fourier transform was applied to each window
in order to extract the power spectrum. From the resulting spectrum, the value corresponding
to a frequency of 0.097 (corresponding to a period of 10.3 bp) was extracted. This value was
directly used as a periodicity score.

Identification of genomic nucleosomes

For paired-end samples, nucleosome positions were restricted to paired-reads that formed frag-
ments of exactly 147 bp as previously reported in [28]. In a similar way, to reproduce analogous
results on single-end samples, reads were selected if they had another read mapped on the
opposite strand 147 bp downstream. For both single- and paired-end samples, multiple frag-
ments that mapped to the same location were considered only once. For both paired- and sin-
gle-end samples, the midpoints of the fragments were used as the inferred nucleosome
position.

Evaluation of consensus motifs scores for nucleosome +1 and genomic

nucleosomes

Consensus motifs were generated by permuting the 4 dinucleotide (WW, SS, YY, RR) and two
Ns. Sequences starting with an N were discarded resulting in a total of 240 sequences. These
consensus motifs were then mapped to promoters and MNase-seq enriched regions.

For the analysis of nucleosome +1, the region from position -99 to 300 relative to the TSS of
the corresponding genome assembly was used for mapping each consensus motif allowing a
maximum of 3 mis-matches. Then, the average occurrence frequency for each motif was evalu-
ated from base +50 to +200 relative to the TSS and a Fourier transform was applied in order to
identify the intensity of the frequency of 0.097 (corresponding to a period of 10.3 bp). This
value was then stored as the motifs’ score for the nucleosome +1 and the procedure was
repeated for all consensus motifs. For the genomic nucleosomes a similar analysis was per-
formed. In order to speed-up the analysis, 80.000 inferred positions were randomly selected
from each sample. Subsequently, each consensus motif was mapped around the inferred nucle-
osome position and the average occurrence frequency was calculated from position -75 to +75
relative to it. A Fourier transform was then applied as before and the value for a period of 10.3
bp was used as the motif score in genomic nucleosomes.

Periodicity analysis of Pol-II initiation patterns

CAGE data from different samples belonging to the same species were first merged into one
file. TSS profiles were then extracted for promoter regions extending from -103 to +104 relative
to the dominant TSS using the ChIP-Extract tool from the ChIP-Seq web server [68]. The
resulting integer arrays were then converted into binary “micro-peak” arrays. Briefly, a micro-
peak corresponds to a 5bp window with a minimal number of 100 tags. The position of the
micro-peak is then assigned to the position with the highest number of tags within the corre-
sponding window. Each micro-peak was then given a maximum value of 1 tag. The cumulative
frequency of micro-peaks was then determined at single-base resolution within a 200bp region
around the TSS.

To identify promoters with a strong 10 bp periodicity in micro-peaks signals, promoters
were ranked according to the covariance between their micro-peaks distribution and a cosine
function of period 10 bp. Promoters with weak micro-peak signal (with low covariance values)
were selected for having a cumulative covariance equal to 0.
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Nucleosome distribution around promoters

Nucleosome distributions for promoter subsets were computed from nucleosome mapping
data using the ChIP-Cor program from the ChIP-Seq web server [68]. MNase- or ChIP-seq
tags were centered by 70 bp to account for the estimated fragment size of about 140 bp (center-
ing parameter of the ChIP-Seq server). Multiple tags mapping to the same genomic location
were removed from the analysis (parameter “Count cut-off”set to 1) and tag frequencies were
calculated in a 10 bp sliding window.

Evaluation of Dispersion Index (DI)

The spread of CAGE tags in a window of 100 bp around the TSS was expressed as a Dispersion
Index (DI) using the following formula:

DIK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðxi � �xÞ2

N

s

Where N is the total number of tag starts in the window around promoter k, and xi is the
mapped position of the 5’ end of tag i. For each species, DI values were calculated for each pro-
moter using CAGE data from individual samples. A DI was calculated only if more then 5 tags
mapped in the selected region. The sample–specific DI were then averaged to obtain a final
unique and robust DI value for each promoter.

Analysis of genomic variants in GM12878 cell line and generation of a

Most Likely (ML) genome

VCF files of Indels (version 2010_07) and SNPs (version 2010_03) for the GM12878 cell line
were downloaded from the 1000Genomes ftp web server. All homozygous variants were
extracted from these files and used to generate a GM12878 genome. On the other end the fre-
quencies of these variants were evaluated using the allele frequency calculated by the final ver-
sion of the 1000Genome project (phase 3, 20130502). For each variant, the most frequent allele
was stored and used to generate the Most Likely genome that was then used as reference. The
final list of SNPs and Indels for GM12878 cell line was restricted to the variants that differ com-
pared to the ML genome.

Supporting Information

S1 Text. Data ReproductionGuide. File containing a detailed description of the input data
and the R code, properly commented, that has been used to make all the calculations and to
generate all the figures. The file contains the R code for the figures and the functions used.
(PDF)

S1 Fig. Periodic signal intensity around animal promoters. 2 kb region around promoters
were scanned with a sliding window of 150 bp and 10 bp shift for the intensity of dinucleotide
frequencies of period 2 to 20 bp. For each region, the average frequency intensities across all
promoters were plotted against the distance of the region to the TSS. All organisms have a peak
of signal intensity in correspondence to a period of 10–11 bp in agreement with the notion that
this frequency helps the DNA wrapping around the histone octamer.
(PNG)

S2 Fig. Spectrum intensities in the N+1 region. Average spectrum intensities for selected
dinucleotides evaluated at position +120 bp from the TSS. Each organism shows a peak in cor-
respondence of 10–11 bp frequency. Dinucleotide selected: H. sapiens and M. musculus: RR; D.
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rerio, D. melanogaster and C. elegans: WW
(PNG)

S3 Fig. Dinucleotide 10 bp frequencyaround promoters. The average intensity of 10 bp fre-
quency for selected dinucleotides in a 2 Kb region around animal promoters. All organisms
show signal depletion immediately upstream the TSS followed by a peak downstream.
(PNG)

S4 Fig. Effects of dinucleotidesperiodicity on chromatin. Intensity of a 10 bp dinucleotide
periodicity calculated using a Fourier transform in a sliding window of 150 bp on a 2 kb region
around animal promoters compared to the in-vivo nucleosome occupancy profiles derived
from MNase-seq reads counts in the same region. Promoters were ordered according to their
correlation between the intensity of the 10 bp dinucleotide signal and the average in-vitro
nucleosome distribution in the same region.
(PNG)

S5 Fig. Identification of the N+1 consensus sequence. (A) Average 10 bp frequency intensity
of the consensus sequence YYWWNNRRSS (3 mismatches allowed) around H. sapiens pro-
moters. (B) Correlation between 10 bp long dinucleotide patterns composed of one copy of
each SS, WW, YY and RR dinucleotides and 2 Ns evaluated on M. musculus genomic nucleo-
somes and the N+1 nucleosome; each dot represents the strength of the 10 bp frequency of a
consensus sequence in the N+1 region or in genomic nucleosome regions (defined by MNase-
seq data); green and red dots mark two classes of patterns (circular permutations of
SS-RR-WW-YY and SS-YY-WW-RR, respectively) that are known to have high nucleosomes
affinities. (C) As B) but for D. rerio promoters and genomic nucleosomes. (D) As for (B) but
for D. melanogaster promoters and genomic nucleosomes.
(PNG)

S6 Fig. Intensity of consensus sequences in genomic nucleosomes.10 bp frequency intensity
for the 240 randomly generated sequences in MNase-seq defined genomic nucleosomes for the
5 organisms under study.
(PNG)

S7 Fig. Intensity of consensus sequences in promoter nucleosomes.10 bp frequency inten-
sity for the 240 randomly generated sequences in the region +50 to +200 from the TSS of the
organisms tested.
(PNG)

S8 Fig. Analysis of the two consensus sequences in C. elegans promoters. (A) Average 10 bp
frequency intensities of two consensus classes (represented by the RRWWNNYYSS and
YYWWNNRRSS consensuses for the SS-RR-WW-YY and SS-YY-WW-RR classes) around C.
elegans promoters. Different shades of blue represent the total number of mismatches allowed
in the mapping. (B) Intensity of the 10 bp frequency of the two consensuses on the N+1 region
for each C. elegans promoters. Red and green dots highlight promoters characterized for a
strong signal of the YYWWNNRRSS consensus (double the signal) compared to the
RRWWNNYYSS consensus respectively. (C) Nucleosome distribution around promoters char-
acterized for a strong signal in one consensus as defined by (B). Each dot represents the average
tag count in a widow of 10 bp. Continuous lines are the local polynomial regression fit. (D)
Same as (C) but with H3K4me3 and window of 1 bp.
(PNG)

Influence of Nucleosome Positioning on Promoters Transcription Start Site Selection

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005144 October 7, 2016 16 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005144.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005144.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005144.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005144.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005144.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005144.s009


S9 Fig. Correlation between Pol-II level of dispersion and the strength of periodic signal in
the N+1 region. For each organism promoters were grouped according to their CPE status
(TATA-box and Inr-DPE presence in the expected position). CPE-less promoters were also
grouped according to their DI value in groups of 2000 promotes (a similar number as the pro-
moters with the TATA-box). Each dot represents the average value of the intensity of the WW,
SS, RR and YY dinucleotide for groups with similar DI and CPE status. Solid line represents
the predicted values (evaluated by a linear model) whereas dotted line the 99% confidence
intervals as evaluated by the linear model.
(PNG)

S10 Fig. Phase-relationshipof TSS and dinucleotide frequencies in the nucleosome+1
region stratified for promoters CPE statuses. (A) YY dinucleotide frequencies for H. sapiens
promoters with TATA-box (TATA-box) and without (TATA-less) (left panel); WW dinucleo-
tide frequencies for the same promoters groups (central panel); and spectrum decomposition
in the region +50 to +200 (right panel) for the 4 signals. (B) Same as A but for D. rerio promot-
ers. (C) Similar to A but with D. melanogaster promoters stratified for the presence of the
TATA-box (TATA-box), the absence of the TATA-box but the presence of Inr-DPE motif
(Inr-DPE) and for the absence of both (CPE-less). (D) Same as (A) but with C. elegans promot-
ers.
(PNG)

S11 Fig. Correlation analysis between average promoter expression and strength of peri-
odic signal in the N+1 region. H. sapiens promoters were grouped following the same rules as
in S9 Fig but using the average promoter expression instead of Dispersion Index. In this case,
no correlation is seen between expression and average dinucleotide 10 bp frequency strength in
the N+1 region.
(JPG)

S12 Fig. Effect of different normalizationmethods on CAGE distribution aroundH. sapi-
ens promoters. Vertical grey lines are separated by 10 bp from position -30 to 30 relative to the
dominant TSS. Left panel: raw global CAGE distribution, periodic initiation is not clearly visi-
ble. Middle panel: CAGE distribution after a 10 tags count cut-off was applied to each position
around each promoter, a 10 bp periodicity is starting to emerge from the data. Right panel:
micro peak distribution, 10 bp periodic distribution is evident.
(PNG)

S13 Fig. CAGEmicro-peaksdistribution around promoters stratified by their CPE status
and Pol-II initiation pattern. A strong 10 bp periodicity in Pol-II initiation is visible only in
CPE-less promoters, reflecting the presence in the N+1 region of a DNA-encoded nucleosome
signal.
(PNG)

S14 Fig. Density distribution of SNPs and Indels in promoters of the human cell line
GM12878.
(PNG)
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