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Abstract

In this study Illumina MiSeq was performed to investigate microbial diversity in soil, leaves,

grape, grape juice and wine. A total of 1,043,102 fungal Internal Transcribed Spacer (ITS)

reads and 2,422,188 high quality bacterial 16S rDNA sequences were used for taxonomic

classification, revealed five fungal and eight bacterial phyla. At the genus level, the dominant

fungi were Ascomycota, Sordariales, Tetracladium and Geomyces in soil, Aureobasidium

and Pleosporaceae in grapes leaves, Aureobasidium in grape and grape juice. The domi-

nant bacteria were Kaistobacter, Arthrobacter, Skermanella and Sphingomonas in soil,

Pseudomonas, Acinetobacter and Kaistobacter in grape and grapes leaves, and Oenococ-

cus in grape juice and wine. Principal coordinate analysis showed structural separation

between the composition of fungi and bacteria in all samples. This is the first study to under-

stand microbiome population in soil, grape, grapes leaves, grape juice and wine in Xinjiang

through High-throughput Sequencing and identify microorganisms like Saccharomyces cer-

evisiae and Oenococcus spp. that may contribute to the quality and flavor of wine.

Introduction

Microbial biodiversity is highly essential for harboring a healthy environment with sustainable

economy, especially at agricultural field. In recent years, several studies on biodiversity tried to

characterize the microbiome in different agricultural ecosystems, as to understand the dynam-

ics of plant and microbe interaction. It is discovered that plant-associated bacteria and fungi

colonize on both exterior (epiphytes) and interior surfaces (endophytes) of plants, while the

surrounding soil around the plant acts as the major resource for these microbes [1]. As plant

species and soil type play a predominant role in soil microbial community, the interaction

between plant and soil microbes are highly complex. Vitis vinifera (wine grape) is an economi-

cally important agricultural crop. V. vinifera phyllosphere is easy to be colonized by both
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bacteria and fungi, which in-turn modulates grapevine health, development, and grape quali-

ties [2]. In this case, microbial activity plays a critical role on grape production and quality [2–

3].

Due to its nutritive contents like organic acids, amino acids, and trace elements, wine does

have beneficial effects on human health. Studies have shown that long term in-take of wine in

diet could prevent chronic diseases and cardiovascular diseases [4–7]. The winemaking is a

composite process where numerous microorganisms were involved, especially yeast and bacte-

ria [8–11]. Understanding the composition and population dynamics of the microbial popula-

tion throughout brewing is highly essential for controlling the process, thereby improving the

quality and safety of the wine [12–13]. Microbes in wine brewing is mainly from wine grapes,

vineyards, brewing equipment, and surrounding environment, impacts the quality of the wine

at a larger level [14–15]. In recent years, studies have shown that the unique flavor in wine is

mainly generated from the microbial metabolic process during wine making process [16–17].

Therefore, selecting specific microbes for wine fermentation can help to crease the flavor,

thereby enhancing the taste and quality of wine.

Current methods for microbial diversity analysis mainly include traditional culture method

and non-culture methods. Traditional culture methods such as restriction fragment length

polymorphism (RFLP) and random amplified polymorphic analysis (RAPD) are based on

polymerase chain reaction (PCR) techniques. Compare to non-culture methods, they are labo-

rious and time consuming, also poor in reliability. Non-culture methods mainly involve dena-

turing gradient gel electrophoresis (DGGE), real-time fluorescence PCR, and fluorescence in

situ hybridization (FISH). They have the capability to detect the dynamic changes of microor-

ganisms in the fermentation process, but they can only detect a certain group of microorgan-

isms, thus in-turn restricts the complete understanding of the microbial community [18–20].

Compare to these methods, metagenomics approach has the ability to reveal the previously

hidden diversity of microorganisms. After the extraction of total genetic material from a

selected habitat, subsequent sequencing and bioinformatics analysis, metagenomics approach

offers a powerful lens to investigate microbial communities in the specific habitat [12]. High-

throughput sequencing technology has completely changed the past research model by provid-

ing large amount of data with high accuracy and low cost, and making it feasible to understand

the microbial diversity at a much greater scale.

Due to the unique climate conditions and high microbial richness in natural environment,

Xinjiang is widely known for wine grapes cultivation. Grapes in Xinjiang were mainly culti-

vated in Fukang, Manasi and Changji. These areas have gravel sandy loam, long sunshine

duration, large temperature difference between day and night, small amount of precipitation

and pest diseases, both are premium vintage area. Xinjiang region is very wide, so there are dif-

ferences in geography and climate conditions in these three places. Fukang and Manasi areas

have extremely low temperature in winter and extremely high temperature in summer.

Affected by strong wind in early spring and early summer, frequent hail in late summer and

sudden drop of temperature in fall, Manasi area may have different microbial diversity from

Fukang area. Changji area has relatively milder climate. Besides temperature, microbes in

Changji may also affected by the strong wind, sand and dust weather in spring and early sum-

mer. Because of the specific climate and soil conditions, Manasi area is one of the best grape

production areas in China. However, Xinjiang is relatively un-development compare to other

cities in China. Currently, we did not find reports about microbial resources and their biodi-

versity in the vineyard from Xinjiang region, interaction between microbial community and

grape plants in Xinjiang region was also poorly understood.

In this study, Illumina MiSeq was used to study microbial community diversity of soil,

grape, grapes leaves, grape juice and wine. The results will enhance our understanding of the

High-throughput sequencing of microbial community diversity
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microbiome in the vineyard from in Xinjiang region, and help to establish correlation between

wine quality and regional microbiome.

Materials and methods

Sampling

Samples were collected from three different winery regions in Xinjiang province, China, named

Fukang (A), Manasi (B) and Changji (C) area, both are cabernet sauvignon samples. A total of

20 samples were taken up in July and October, 2015, categorized as vineyard soils (T), grape (P),

grape leaves (Y), grape juice (Z) and wine (J) (Table 1). Soil samples were collected in randomly-

chosen plots around each vine root, collected at 5-10cm depth using a shovel and sieved to

remove plant residues, macrofaunal, and stones. Undamaged grape samples were collected from

several bunches with their pedicels attached. Grape leaves were collected from the vines to pre-

vent cross contamination. Grape juices were sampled during grape crushing period. Wine sam-

ples from winery were collected from the final wine product. After collection in triplicates, each

sample was stored immediately at -20˚C for further study. The samples were collected from the

private properties, permissions from the owners were received before sample collection.

Sample preparation for grape and grape leaves

4g of grape skin or grape leaves (no flesh and fruit stalk), was taken into 50mL sterilized centri-

fuge tube (L1), and 6mL of TENP buffer was added and mixed vigorously in vortex for 10min.

The mixture was then centrifuged at 3000×g for 5min, supernatant was transferred to another

50mL centrifuge tube (L2). This step was repeated thrice, and a total of around 18ml superna-

tant was transferred to L2. L2 was then centrifuged at 9000×g for 10min. The supernatant was

discarded and pellet was stored at -20˚C for DNA extraction [21].

Sample preparation for grape juice and wine

About 4mL of grape juice or wine were taken into 50mL sterilized centrifuge tube (L1), vigor-

ously shake to mix, then vortex for 1min. The mixture was then centrifuged at 3000×g for

5min, and supernatant was discarded. For the pellet, 4mL of sterile water was added and vor-

texed for 1min. Mixture was centrifuged at 3000×g for 5min and supernatant was discarded.

This wash step was repeater thrice, and the pellet was finally stored at -20˚C for DNA

extraction.

DNA extraction and amplification

DNA from soil samples were extracted using Mag-Bind Soil DNA Kit (OMEGA) following

manufacturer’s instructions. DNA from grape, grape leaves, grape juice and wine were

Table 1. Sample list.

Sample types Region and name Time

Soil A(T1, T3), B(T6), C(T8) July

A(T4, T5), B(T7), C(T9) October

Grape leaves A(Y1, Y5), B(Y11), C(Y15) July

A(Y9, Y10), B(Y13), C(Y17) October

Grape A(P1), B(P2) October

Grape juice A(Z1) October

Wine A(J1) October

https://doi.org/10.1371/journal.pone.0193097.t001
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extracted using Fast DNA SPIN Kit for Soil (MP) based on the manufacturer’s instructions.

The quantity and quality of extracted DNA were assessed by spectrophotometry (Eppendorf,

Germany) and agarose gel (1%) electrophoresis, respectively.

For fungal ITS regions, PCR amplification was performed using ITS 1F (50-
CTTGGTCATTTAGAGGAGTAA-30) and ITS 1R (50-GCTGCGTTCTTCATCGATGC-30) as

primers and genome DNA as template. PCR was performed at a final volume of 50μL mixture

containing 4μL dNTPs mixture, 5μL of 10×PCR buffer (Mg2+ plus), 5μL of template DNA, 1μL

of each primer, 0.25μL Ex Taq, and added to final volume of 50μL using ddH2O. PCR condi-

tions were 3min at 98˚C for initial, followed by 35 cycles at 98˚C for 45s, annealing at 53˚C for

30s, and extension at 72˚C for 45s, and final extension at 72˚C for 8 min. PCR products were

stored at -20˚C.

For bacterial 16s rRNA gene region, PCR amplification was performed using 16S 515F(50-
GTGCCAGCMGCCGCGGTAA-30) and 16S 806R(50-GGACTACHVGGGTWTCTAAT-30) as

primers and genome DNA as template. PCR was performed at a final volume of 50μL mixture

containing 4μL dNTPs mixture, 5μL 10×PCR buffer (Mg2+ plus), 5μL template DNA, 1μL of

each primer, 0.25μL Ex Taq, and added to final volume using ddH2O. PCR conditions were

3min at 98˚C for initial, followed by at 95˚C for 45s, annealing at 50˚C for 30s, and extension

at 72˚C for 45s, and final extension at 72˚C for 5 min. PCR products were stored at -20˚C.

Both fungal and bacterial PCR products were analyzed with 1% gel using DL2000 marker for

quality examination.

High-throughput sequencing and statistical analysis

High-throughput sequencing was performed using an Illumina Miseq platform at the Interna-

tional Joint Research Center of National Liquor Quality and Safety in Chinese Food Fermenta-

tion Industry Research Institute, Beijing, China. After obtaining the sequencing result and

calculation of operational taxonomic units (OTUs) matrix, statistical analysis was applied

using alpha indices (Shannon, Simpson, Chao 1 and ACE), heatmap of genera, principal coor-

dinate analysis (PCoA) and UPGMA. The alpha diversity index (Shannon Index), and the spe-

cies richness estimator (Chao1) were calculated by using the R package phyloseq from the

OTU matrix. Principal coordinate analysis (PCoA) was performed using statistical software

based on the Bray-Curtis dissimilarities calculated for the composition of the bacterial or fun-

gal communities at the genus level.

Results and discussion

Abundance and diversity of members of the bacterial and fungal

microbiota

Illumina Miseq sequencing generated 1,043,102 high quality fungal sequences with an average

of 52,155 sequences per sample, and a total of 2,422,188 high quality bacterial sequences with

an average of 121,109 sequences per sample. However, the fungal population in T1, T5, and J1

was not detected. The sequencing results were shown in Supporting Information(S1 and S2

Figs, S1 and S2 Tables). Though the rarefaction curve was not parallel with the x-axis, the

Good’s coverage of fungal and bacterial reached 99.9% and 97.7% respectively, with majority

of microbial diversity being captured. As we applied the Chao1 index and ACE index, it

reflected the species richness of sample communities, while the Shannon and Simpson index

reflected the species diversity. The Chao1 and ACE scores from 139.565 to 2941.088 and from

150.4 to 3354.01, respectively. The Shannon and Simpson scores ranged from 1.538 to 8.939,

and 0.241 to 0.994, respectively.

High-throughput sequencing of microbial community diversity
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Sequences were grouped into 4597 OTUs for fungi and 23,458 OTUs for bacteria (both at

the 97% similarity level). As shown in Fig 1a and 1b, after removing singletons, OTUs number

was 91 for fungi and 227 for bacteria, which were similar in the T, Y, P and Z samples. Fungal

OTUs were 787, 568, 299 and 158. Bacterial OTUs were 3932, 1766, 850 and 370 in T, Y, P and

Z respectively.

Earlier works suggested that soil provides essential nutrition for microbial growth, such as

carbon sources (including amino acids, organic acids, and carbohydrates), nitrogen sources,

and growth factors [22]. The physical and chemical properties of the soil, such as soil texture,

mineral composition and organic matter, affect the growth and distribution of microbes [23–

24]. Suitable growth environment favors the growth of most microbes, which in-turn alters the

microbial community composition to larger extent in the soil and the plant [25]. And in con-

trast, external factors like pollution by heavy metals, organic pollutants, pesticide fertilizers,

domestic sewage, and factory waste will directly alter the soil quality, causing major changes in

the microbial communities [26–28]. It is described that microbes in vineyard soil are the

source of primary inoculum to affect the structure of the microbial community on vine’s aerial

parts [29], and this pattern is observed in our study. Diversity indices indicated that the diver-

sity of fungal and bacterial community in T were significantly higher than Y, P, Z, J in October.

The inoculation effect can be extended to wine brewing, as microbial community in P, Y and J

were very similar with some minor differences according to Fig 1. Besides brewing microbes

added in wine production process, these minor differences are possibly come from picking,

transportation, crushing and other factors in grape crushing process, or fermenters and oak

barrels in fermentation process [30–33].

The comparison of microbial communities in soil and vine plants suggests an inoculation

effect between soil microbes and vine plants. But with the growth of vine plants and climate

change, interaction between soil microbe and plants should be more complex. Comparison of

soil samples collected from July and October indicate that fungal microbes in soil have higher

diversity in July, while bacterial populations changed little in our study. As the weather turns

gradually colder, temperature and humidity can inhibit fungal species that are not tolerant to

these environmental challenges, while bacterial species showed higher adaptation in this envi-

ronment. Besides, vine plants were found to limit the growth of bacteria by limiting nutrients

in the early stage of growth [2, 5, 34–36]. And in response to biotic stress, stilbenes are pro-

duced in vine plants to effectively inhibit microbial activity [37–38]. To better understand

such interaction and impact of soil microbes on vine plants, more samples should be taken

gradually to provide systematic and detail results on microbial communities.

Comparison of fungal communities in soil, grape, grapes leaves, grape juice

and wine

Five fungal phyla identified were Ascomycota, Basidiomycot, Chytridiomycota, Un—s-fungal sp
CC 06_28 and Zygomycota. Heatmap revealed that Ascomycota and Basidiomycot were found

as predominant phyla in T, P, Y, Z and J (Fig 2). This finding was consistent with previous

reports [39–40]. Majority of OTUs in T and Y were Ascomycota, and similar pattern was dis-

covered across the samples in T and Y. Basidiomycot remained less abundant in T and Y, but

its abundance was found to be higher in P and Z samples. Chytridiomycota, Un—s-fungal sp
CC 06_28, and Zygomycota has less abundance in T samples, but rarely detected in Y, P and Z

samples. The results suggested that Ascomycota adapted to the T and Y environment, and Basi-
diomycot adapted to the P and Z environment.

At the genus level, 271 fungal genera were detected in T, P, Y, Z and J, in which 14 fungal

genera which had their relative abundance greater than 1% were selected for further analysis

High-throughput sequencing of microbial community diversity
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(Fig 3). Ascomycota, Sordariales, Tetracladium and Geomyces were the predominant genera in

T samples, Aureobasidium, Pleosporaceae, Cryptococcus and Dothideales were the predominant

genera in Y, P and Z samples. Other major genera were Aspergillus, Pleosporales, Penicillium,

Erysisphe, Alternaria and Scleroderma. Our finding is consistent with previous reports [41].

The Ascomycota was sharply increased from July to October in A and B, however this was not

obvious in C. In contrast, the Sordariales, Tetracladium and Geomyces of A, B and C were

decreased in October, and Sordariales in C was found increased. Such difference might be due

to interspecies competition. For Y samples, Aureobasidium, Cryptococcus and Dothideales in A,

B and C have higher abundances in Octoberexcept Dothideales in A. In contrast, Pleosporaceae
was found to have lower abundance in October. It is worth noticing that Erysisphe declined

sharply in B, from 93% (Y11) in July to 1% (Y13) in October. This finding was consistent with

an earlier report, which indicated that grapevine powdery mildew is one of the most damaging

fungal diseases and it often occurs during July [42], suggesting that grapevine powdery mildew

in B is quite serious and needs proper preventive measures [43–44]. Meanwhile, Erysisphe was

found in Z. Interestingly, the Penicillium increased from 2% (Y11) to 44% (Y13), had become a

dominant genus in B of Y samples in October. Consistent with other reports, Aspergillus, Peni-
cillium, and Alternaria are other discovered major genera and might play an important role in

T, P and J [45–46]. Studies have pointed out that ochratoxin A (OTA) produced by Aspergillus
is a predominant global wine contaminant causing health hazards, the safe limit of OTA in

wine is established at 2ug/L [47–49].

Our results indicated that fungal community changes in the grape leaves and grapes are

more complex than changes in soil. This may be due to the competition between species, or

natural conditions such as light intensity, light time, wind, rain, etc. or insects, human activi-

ties that causing microbial migration [29, 36]. In this metagenomics analysis, Brettanomyces
bruxellensis has not been detected. It is able to convert hydroxycinnamic acids into volatile

phenols, create ‘spicy’, ‘barnyard’, ‘animal’, ‘horse sweat’ and ‘medicinal’ odors in final wine

product. Though a large number of culture-dependent techniques are available to assess the

presence of this undesired yeast during the vinification processes, in several cases Brettano-
myces is undetectable. It is been reveal that while keep alive and maintain the metabolic activi-

ties, Brettanomyces cells were tend to enter in a Viable But Not Culturable (VBNC) state. This

could be the reason for not been detected in our wine samples.

Fig 1. Venn of fungal (a) and bacterial (b) of T, P, Y, and Z.

https://doi.org/10.1371/journal.pone.0193097.g001
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PCoA and cluster analyses were performed to evaluate similarities in fungal communities

of T, Y, P, Z and J. One weighted (PC1 variance = 63.28%, PC2 variance = 20.92%) and

another weighted (PC1 variance = 31.71%, PC2 variance = 11.01%) PCoA were performed

(Fig 4). UPGMA clustering obtained a phylogenetic tree by using unweighted group averaging

Fig 2. Heatmap and dendrogram of abundant fungi phyla in the microbial community of samples (excepted T1, T5 and J1).

https://doi.org/10.1371/journal.pone.0193097.g002
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Fig 3. Relative abundance of fungi at genus levels of T, P, Y, and Z.

https://doi.org/10.1371/journal.pone.0193097.g003

Fig 4. Principal coordinate analysis of fungi microbial communities of samples.

https://doi.org/10.1371/journal.pone.0193097.g004
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method (Fig 5). The branch of the sample intuitively reflected the similarity between the sam-

ples. Result indicates that same type of samples showed high similarity of fungal communities,

as the soil samples and leave samples formed two big clusters. Soil samples from the same

region each formed a small cluster, while similarity of leave samples from the same vineyard is

relatively weaker. Compare to soil, grape leaves are highly exposed in environment. Microbes

on leave are easier to be affected by natural conditions like insects, pathogens and human

activities. For soil from vineyards, it is reported that fertilizing the soil, applying pesticides, no-

tillage, continuous cropping and rotation, etc., affects the structure and physicochemical prop-

erties of the soil caused by human measures which in-turn change the composition and distri-

bution of microbial communities [50–53]. The management of the vineyard may also be a

factor in the composition of the microbial community.

Fig 5. Cluster analysis of the fungal microbiota.

https://doi.org/10.1371/journal.pone.0193097.g005
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Comparison of bacterial communities in soil, grape, grapes leaves, grape

juice and wine

Compared to fungal population variation, the overall diversity of the bacterial microbiota in

T, P, Y, Z and J samples were higher, especially in P samples. Grapes tend to mature quickly

by sunlight, rain, and other conditions, as these factors can easily cause them to rot. And in

juice samples, the high sugar and nutrients can increase bacterial growth [29,36]. Detected

major bacteria phyla include Actinobacteria, Bacteroidetes, Crenarchaeota, Firmicutes,
Nitrospirae, Planctomycetes, Proteobacteria and Verrucomicrobia (Fig 6). Heatmap revealed

that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the predominant

phyla in T, P, Y, Z and J (Fig 6). Proteobacteria and Firmicutes were found in all the samples

especially in T1, T5 and J1, and Bacteroidetes and Actinobacteria were mainly found in T

samples. Crenarchaeota, Nitrospirae, Planctomycetes and Verrucomicrobia were rarely

detected except in T samples. The results suggested that Proteobacteria and Firmicutes adapt

better to all environment, and Bacteroidetes and Actinobacteria adapted well in soil

environment.

At the genus level, 317 bacterial genera were detected in T, P, Y, Z and J samples. The 14

bacterial genera with their relative abundance greater than 1% were selected (Fig 7). Kaisto-
bacter, Arthrobacter, Skermanella and Sphingomonas were the predominant genera in T,

Pseudomonas, Acinetobacter and Kaistobacter were the predominant genera in Y and P, and

Oenococcus was the predominant genera in Z and J. Other major genera in samples include

Steroidobacter, Rubrobacter, Flavisolibacter, Pontibacter, Nitrospira, Rhodoplanes and Adhaer-
ibacter. These findings were consistent with previous reports [54–55]. The Kaistobacter
abundance in October T samples was found increased compare with July sasmples, and

Arthrobacter abundance was found declined. In contrast, no significant changes of Skerma-
nella and Sphingomonas abundances in T samples were found. For Y and P samples collected

in July and October, Kaistobacter abundance was not consistent, Pseudomonas and Acineto-
bacter in Y of A and B decreased in October. C sample was an exception that Pseudomonas
and Acinetobacter have higher abundance in October samples, which might be due to inter-

specific completion that Oenococcus decreased from 35%(Y15) to 0%(Y17). Oenococcus was

the dominant genus in Z and J samples, increased sharply to 95% in Z1 and 98% in J1. Oeno-
coccus sp is a slow growing lactic acid bacterium. It is a necessary bacterium in winemaking

process with the function of malolactic fermentation. It’s accumulation in wine is a natural

process, and similar phenomenon was also observed in other reported studies [56]. Lactoba-
cillus plantarum is another well studied bacterium with some strains been commercially used

as malolactic fermentation (MLF) starter cultures. It is able to conduct MLF under high pH

condition and in co-inoculation with yeasts. It has not been detected in this metagenomics

analysis, possibly because of the special climate conditions in Xinjiang region is more suit-

able for Oenococcus sp.

It is discussed that the geographical location, natural climatic conditions [57], host plant

phenology [58], physical and chemical properties of the soil [59–60], economic characteris-

tics of the phyllosphere or soil [61], artificial vineyard management model, external pollution

and other factors both can affected the T, Y and P microbial community composition to a

certain extent, which in-turn determines the community species composition, quantity and

distribution. The metagenomics analysis in this study indicates a strong correlation between

grape and leave samples, differences of microbial communities in various regions were also

discovered.

PCoA of bacterial communities in T, Y, P, Z and J samples was performed using one

weighted (PC1 variance = 70.61%, PC2 variance = 15.50%) and another weighted (PC1

High-throughput sequencing of microbial community diversity
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variance = 41.87%, PC2 variance = 10.35%) (Fig 8). UPGMA cluster map (Fig 9) reflected the

bacterial microbial community structure, indicate that the similarity of bacteria in all soils

were higher except T4. P, Y, Z and J had some similarity in the bacterial microbial community,

though differences were existed between vineyard management in the A, B, C region.

Fig 6. Heatmap and dendrogram of abundant bacteria phyla in the microbial community of samples.

https://doi.org/10.1371/journal.pone.0193097.g006
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Conclusions

The specific microbes in Xinjiang region served as autochthonous starter cultures, which play

a major role in local winery production. In this study, microbial diversity of soil, grape, grape

Fig 7. Relative abundance of bacteria at genus levels of T, P, Y, Z and J.

https://doi.org/10.1371/journal.pone.0193097.g007

Fig 8. Principal coordinate analysis of bacteria microbial communities of samples.

https://doi.org/10.1371/journal.pone.0193097.g008
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leaves, grape juice and wine were studied by high-throughput sequencing and identified the

dominant genera and phyla. It is the first study to apply this technology on the winery research

in Xinjiang region of China, aimed to understand the microbial diversity in Xinjiang region,

and identify microorganisms that could improve the quality and flavor of wine product. The

extensive revealing of microbial diversity in Xinjiang region is helpful in building wine micro-

bial germplasm repository. In addition, this study identified various microbes which are bene-

ficial for the wine production. Further identification and research on these microbes can help

to figure out their indigenous beneficial nature, which will in-turn help the winery to improve

quality and local characteristics of their wine product.

Fig 9. Cluster analysis of the bacterial microbiota.

https://doi.org/10.1371/journal.pone.0193097.g009
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5. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovas-

cular disease with a Mediterranean Diet. N Engl J Med. 2013, 368(14):1279–1290. https://doi.org/10.

1056/NEJMoa1200303 PMID: 23432189

6. Cueva C, Gil-Sánchez I, Ayuda-Durán B, González-Manzano S, González-Paramás AM, Santos-
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