
Computational and Structural Biotechnology Journal 18 (2020) 942–952
journal homepage: www.elsevier .com/locate /csbj
Epigenetic regulation of neuronal cell specification inferred with single
cell ‘‘Omics” data
https://doi.org/10.1016/j.csbj.2020.04.007
2001-0370/� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors at: State Key Laboratory of Genetic Resources and
Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming
650223, China (X. Lu). Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA
24061, USA (H. Xie).

E-mail addresses: xuemeilu@mail.kiz.ac.cn (X. Lu), davidxie@vt.edu (H. Xie).
1 These authors contributed equally to this work.
Liduo Yin a,b,c,1, Sharmi Banerjee d,e,1, Jiayi Fan e, Jianlin He e, Xuemei Lu a,c,f,⇑, Hehuang Xie e,g,h,⇑
a State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
bKunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
cCenter for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
dBradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
e Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
f School of Future Technology, University of Chinese Academy of Sciences, Beijing 100101, China
gDepartment of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
h School of Neuroscience, Blacksburg, VA, 24061, USA

a r t i c l e i n f o
Article history:
Received 12 December 2019
Received in revised form 4 April 2020
Accepted 5 April 2020
Available online 10 April 2020

Keywords:
Transcription factor
Epigenetics
Single cell RNA-seq
Single cell methylome
a b s t r a c t

The brain is a highly complex organ consisting of numerous types of cells with ample diversity at the epi-
genetic level to achieve distinct gene expression profiles. During neuronal cell specification, transcription
factors (TFs) form regulatory modules with chromatin remodeling proteins to initiate the cascade of epi-
genetic changes. Currently, little is known about brain epigenetic regulatory modules and how they reg-
ulate gene expression in a cell-type specific manner. To infer TFs involved in neuronal specification, we
applied a recursive motif search approach on the differentially methylated regions identified from single-
cell methylomes. The epigenetic transcription regulatory modules (ETRM), including EGR1 and MEF2C,
were predicted and the co-expression of TFs in ETRMs were examined with RNA-seq data from single
or sorted brain cells using a conditional probability matrix. Lastly, computational predications were val-
idated with EGR1 ChIP-seq data. In addition, methylome and RNA-seq data generated from Egr1 knockout
mice supported the essential role of EGR1 in brain epigenome programming, in particular for excitatory
neurons. In summary, we demonstrated that brain single cell methylome and RNA-seq data can be inte-
grated to gain a better understanding of how ETRMs control cell specification. The analytical pipeline
implemented in this study is freely accessible in the Github repository (https://github.com/Gavin-
Yinld/brain_TF).

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The importance of DNA methylation in neuronal differentiation
[1], neural plasticity [2–6], and neural functioning [7–9] has been
firmly established. During brain development, de novo DNAmethy-
lation occurs at the promoters of germ line-specific genes to
repress pluripotency in progenitor cells, while methylation loss
at the promoters activates neuron-specific genes [1]. Disorders in
epigenetic machinery have been linked to many neurological dis-
eases [10–12]. For instance, mutations in the DNA methyltrans-
ferase DNMT3B leads to defective brain development [13], and
mutations in the methyl-cytosine binding protein MECP2 have
been linked to Rett syndrome [14]. In addition, aberrant DNA
methylation may lead to the premature activation of neuronal pro-
genitor cells and, potentially, the development of brain tumors
[15]. Despite our growing realization of neuroepigenetics, the epi-
genetic mechanism underlying brain cell specification remains lar-
gely unknown.

Transcription factors are known to be the master regulators of
gene expression and play essential roles in cell-fate decision mak-
ing. A number of databases, including TRANSFAC [16] and JASPAR
[17], attempt to gather information on transcription factors
together with their binding preferences in multiple species. On
top of these databases, the Catalog of Inferred Sequence Binding
Preferences (CIS-BP) [18] and HOCOMOCO [19] provide a large col-
lection of TF binding motifs via the analyses of DNA binding
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domains in TFs and the consensus sequences predicted with large-
scale ChIP-seq data. Recently, CIS-BP was expanded using the sim-
ilarity regression method to quantify motif evolution with
improved precision [20], and a comprehensive list of 1513 mouse
transcription factors were documented in v2.0 of the CIS-BP data-
base. Many of these transcription factors may interact with each
other to form transcriptional regulatory modules essential for neu-
ronal specification and diversity [21–24]. For instance, our recent
study demonstrated that EGR1, a transcription factor important
for memory formation, can participate in brain methylome pro-
gramming [25]. More specifically, EGR1 recruits a DNA demethy-
lase, called TET1, to remove the methylation marks and activate
downstream genes. However, it remains elusive how transcription
factors in regulatory modules work together in a cell-type-specific
manner.

Growing single cell ‘‘omics” data provide an opportunity to
explore brain epigenetic regulatory modules with unprecedented
resolution. Many different types of neurons have been determined
with single cell RNA-seq [26–29] and methylome sequencing [30–
33]. Each subtype of neurons has a distinct DNA methylation pro-
file and, thus, some genomic loci may demonstrate a bipolar DNA
methylation pattern, i.e., hypermethylated in one cell subset but
hypomethylated in others [34]. The number of these bipolar
methylated loci increased dramatically during the early stages of
brain development in both human and mouse frontal cortices
[24]. In addition, the development-related epigenetic changes tend
to co-localize together in functional genomic regions critical for
regulating gene expression [21]. It would be interesting to learn
what transcription factors participate in the epigenetic control of
these functional genomic regions and how they interplay with
each other in the establishment of cell-type specific DNA methyla-
tion patterns.

In this study, we symmetrically determined transcription fac-
tors participating in the process of brain neuron specification. To
predict neuronal cell-type specific epigenetic transcription regula-
tory modules, we started with over 3000 single-cell methylomes of
sixteen neuronal subtypes and determined a set of transcription
factors having motifs enriched in differentially methylated regions
of neuronal subtypes. Epigenetic transcription regulatory modules
were then inferred with a recursive motif search algorithm. The co-
expression patterns of transcription factors in a module were fur-
ther demonstrated together with cell-subtype specific markers
using brain single-cell RNA-seq data. Finally, we focused on the
Egr1 gene and validated the computational predictions with
ChIP-seq, RNA-seq, and methylome sequencing data.
2. Results

2.1. Single-cell methylome analyses identified key TFs associated with
brain cell specification

To determine what transcription factors are involved in the epi-
genetic regulation of neuronal cell specification, we started with
brain single cell methylomes generated for 3377 neurons derived
from the mouse frontal cortex [31] (Supplementary Table 1). In this
publicly available dataset, an average of 1.4 million reads, covering
around 4.7% of the genome, were obtained for each single neuron.
3377 neurons were clustered into 16 subpopulations according to
their methylation profiles, including 10 excitatory neuron subtypes
and 6 inhibitory neuron subtypes (Supplementary Table 2). For a
given neuronal subtype, genomic regions with significantly lower
methylation levels were defined as CG-DMRs (Differentially
Methylated Regions) in the previous report [31]. Altogether, for
the 16-neuron subtypes, a total of 575,524 genomic loci, covering
5.8% of the genome, were determined as CG-DMRs. 73.2% of these
CG-DMRs were located more than 10 kb from the transcription
start sites, suggesting that epigenetic regulation on distal enhan-
cers is critical for neuronal cell specification.

For each neuronal subtype, we performed a recursive motif
search to determine transcription factors with motifs enriched in
CG-DMR genomic sequences. We used neuronal subtype mL2/3,
which has the most CG-DMRs as an example to illustrate this pro-
cedure (Fig. 1A). The first iteration of the motif search identified
the Egr1 gene as the ‘‘key” TF; this motif was the most significantly
enriched in the 279,775 DMRs in the mL2/3 neurons that we
started with. We then removed 40,171 CG-DMRs containing the
motif for EGR1 and performed the second iteration of the motif
search on the remaining (239,604) CG-DMRs. Following this proce-
dure recursively,Mef2b, Fra1, Rfx2, and Oct genes were identified as
‘‘key” TFs in the second to the fifth iterations, respectively. The
recursive search was terminated at the sixth iteration, where no
TF motifs were found to have an enrichment p-value less than
1e-10 in the genomic sequences of the remaining 120,509 CG-
DMRs (Fig. 1B). This recursive motif algorithm was expanded to
the CG-DMRs of all 16 neuronal subtypes. A total of seventeen dis-
tinct ‘‘key” TFs were determined. Interestingly, these TFs can be
classified into three groups according to motif enrichment in the
DMRs of neuronal subtypes (Fig. 1C). Transcription factors involved
in neurogenesis and early brain development, such as the Mef2,
Atoh1, and Nf1 genes, have motifs that are enriched in both excita-
tory and inhibitory neuronal subtypes. Several neuronal-activity-
induced transcription factors including Egr1, Atf3, and Junb (a sub-
unit of Ap1) have motifs enriched in CG-DMRs in excitatory neu-
ronal subtypes. The motifs of the Lhx3, Ap4, and Mafa genes are
enriched in CG-DMRs for inhibitory neuronal subtypes. We
selected the Egr, Mef2 and Maf genes as the representatives of
the three groups of key TFs to further explore the characteristics
of key TFs. Since multiple EGR, MEF2, and MAF family members
are motif enriched, we used the ‘universalmotif’ R library
(https://github.com/bjmt/universalmotif) to merge similar TF
motifs belonging to the same family. From 2512 to 93,911 genomic
loci hosting the motifs for the desired TFs were identified from the
aforementioned 575,524 CG-DMRs. We determined the methyla-
tion profiles of these genomic loci across neuronal cell types, and
observed an association between cell-subtype motif enrichment
and the methylation patterns of genomic regions surrounding the
binding motifs predicted for these key TFs. For instance, genomic
loci hosting the motifs for EGR family members showed lower
methylation levels in excitatory neurons than those for MAF family
members, but higher methylation in inhibitory neurons (Fig. 1D).
Compared to EGR and MAF families, MEF2 family members with
motifs enriched in both excitatory and inhibitory neuronal sub-
types showed a median methylation level between those of EGR
and MAF in excitatory neurons but similar to that of MAF in inhi-
bitory neurons (Fig. 1E). TF motif enrichment and the methylation
profiles of their corresponding genomic loci suggest that the key
TFs identified may perform their regulatory roles in a cell-type
specific manner. Worthy of mention, we found that mIn1 subtype
tends to be clustered with inhibitory instead of excitatory neurons
(Fig. 1C). This is likely due to the clustering of single neurons in the
previous study, which was based on mCH level instead of CG-DMRs
[31].

2.2. Single-cell RNA-seq analyses revealed the co-expression of key TFs
and marker genes in various cell types

To explore the cell-type specificity of key TFs, we made use of
11,886 single cell RNA-seq data from P60 mouse prefrontal cortex,
which were assigned into eight major cell clusters according to the
expression of cell type-specific markers [35] (see Methods). Among
the 11,886 cells, 56.5% were assigned as excitatory neurons, 4.7%

https://github.com/bjmt/universalmotif


Fig. 1. Recursive motif analysis identified 17 key TFs. A) Recursive motif identification procedure. B) Results of recursive motif analysis on DMRs of mL23 neurons. C)
Enrichment of key TFs identified from DMRs determined for 16 neuron types. D) Methylation level of genomic loci containing motif of EGR, MEF2, andMAF family members in
excitatory and inhibitory neurons. E) Methylation level of genomic loci containing motif of EGR, MEF2, and MAF family members in sixteen neuronal subtypes.
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were assigned as inhibitory neurons, and the remaining cells were
assigned as astrocytes (Astro), oligodendrocyte (Oligo), newly
formed oligodendrocytes (NF_oligo), oligodendrocyte precursors
(OPC), microglia, or endothelial cells (Endo), with the proportions
ranging from 1.3% to 15.6% (Supplementary Table 3).
First, we followed the ‘‘Seurat” pipeline [36] to identify highly
variable genes and demonstrated that the eight cell types were
as shown in the previous report [35] (Fig. 2A). Next, we examined
the expression profiles of key TFs in each cell type. While Mef2c
expressed in both excitatory and inhibitory neurons (Fig. 2B), the



Fig. 2. Expression of selective key TFs across brain cell types. A) Demonstration of eight cell clusters using t-SNE map. B) Expression of Mef2c in each cell cluster color-
highlighted on t-SNE plots (left panel) and violin plot shows the expression level of Mef2c in each cell cluster (right panel). Gene expression profile of each single cell was
normalized to counts per-million (CPM) and natural log transformed. C) Expression of Egr1 in each cell cluster color-highlighted on t-SNE plots (left panel) and violin plot
shows the expression level of Egr1 in each cell cluster (right panel). D) Expression ofMaf in each cell cluster color-highlighted on t-SNE plots (left panel) and violin plot shows
the expression level of Maf in each cell cluster (right panel).
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Egr1 gene was expressed in excitatory neurons but was low in inhi-
bitory neurons (Fig. 2C). In contrast, the Maf gene was expressed in
inhibitory neurons but was depleted in excitatory neurons
(Fig. 2D). We determined the expression level and the number of
cells with key TF expression across single cells (Fig. 3A&B and
Fig. S1). Approximately 99.6% excitatory and 91.3% inhibitory neu-
rons have Mef2c expression. 72.9% of excitatory neurons have Egr1
expression and 61.4% of inhibitory neurons have Maf expression.
Using the conditional probability matrix (see Methods section),
we further investigated the association of gene expression among
TFs and cell-type-specific markers reported previously [35]
(Fig. 3C&D and Fig. S2). In excitatory neurons, Mef2c, Tcf4, and
Egr1 showed co-expression patterns with Neurod6, which is a mar-
ker for excitatory neurons and is involved in the development and
differentiation of the nervous system. More specifically, 99.7% of
the excitatory neurons with expressed Neurod6 haveMef2c expres-
sion (Fig. 3C). On the other hand, 92.0% of the excitatory neurons
with Mef2c expression also expressed Neurod6. In inhibitory neu-
rons, highly expressed key TFs, such as Mef2c and Maf, showed
co-expression patterns with inhibitory neuronal markers, includ-
ing Gad2. Gad2 expression is present in 97.4% of the inhibitory neu-
rons where Maf is expressed, and 59.9% of Gad2-expressing
inhibitory neurons have Maf expression (Fig. 3D). These scRNA-
seq results provide evidence for cell-type-specific expression of
transcription factors. Thus, Mef2c may serve as a pan-neuron regu-
lator and play roles in both excitatory and inhibitory neurons,
while Egr1 and Maf may function in a neuron-subtype specific
manner.

Recently, we implemented a pipeline to infer epigenetic tran-
scriptional regulatory modules (ETRMs) associated with differen-
tially methylated regions (DMRs) [22]. Using this pipeline, a
recursive search algorithm was applied to identify co-enriched
transcription factor motifs within specific DMRs for each of 16 neu-
ronal clusters. Thus, an ETRM refers to a set of TFs with binding
sites adjacent to a ‘key’ TF whose motif is the most significantly
enriched within a subset of DMR. ETRM inferred from motif co-
enrichment analysis is analogous to a protein–protein interaction
network where the hub genes would be the key TFs in ETRMs.
Using such an idea, motif co-enrichment networks for Egr1, Mef2c,
and Maf were constructed for neuron subtypes including mL2/3
with the largest DMRs identified in excitatory neurons and mPv,
which is the largest inhibitory neuronal subtype. In mL2/3 neurons,
Egr2, Klf9, Klf14, and Zfp281 genes have motifs co-enriched in geno-
mic loci containing the Egr1 motif (Fig. 4A). MEF2 members tended
to have motifs co-enriched with the same TF family members
(Fig. 4B). Similarly, in mPv neurons, MAF family members, includ-
ing Bach1 and Bach2, had motifs co-enriched with Maf (Fig. 4C). In
addition, most of these co-enriched TFs are documented in STRING
database [37] to tightly interact with each other at protein level
(Fig. 4B&C). Despite the low expression of some TFs in single neu-
rons, we observed that transcription factors identified in an ETRM
tended to co-express in single cells. For instance, Egr1, Klf9, and
Zfp28 are co-expressed in excitatory neurons, while Maf, Mafb,
and Bach1 are co-expressed in inhibitory neurons (Fig. S3A–C).

2.3. RNA-seq analyses from sorted cells support the cell-subtype
specific functions of key TFs

The current single cell RNA-seq technique has a limitation in its
detection of transcripts with low expression. We expanded the co-
expression analyses to include RNA-seq data generated for three
types of sorted neuronal cells, including excitatory (EXC) neurons,
parvalbumin (PV) expressing fast-spiking interneurons, and
vasoactive intestinal peptide (VIP) expressing interneurons [38].
The TFs in Egr1 ETRM and Maf ETRM are primarily expressed in
excitatory (Fig. 4D) and inhibitory neurons (Fig. 4F), respectively.
On the other hand, the TFs in Mef2c ETRM are expressed in both
excitatory and inhibitory neurons (Fig. 4E). Not surprisingly, strong
expression correlations were observed between Egr1 ETRM and
excitatory markers (Fig. 4G), Maf ETRM and inhibitory markers



Fig. 3. Key TFs co-expressed with marker genes in excitatory and inhibitory neurons. A and B) Summary of the expression of key TFs in excitatory (A) and inhibitory neurons
(B). The expression count value obtained from Aritra et al. [35] were shown. C and D) Dependent expression relationship between key TFs and cell type specific expression
markers in excitatory neurons (C) and inhibitory neurons (D). Each square in the heatmap represents the probability of TFA (y-axis) expressing under the condition of TFB (x-
axis) expressing. The relationship between TF pairs with a p value over 0.05 in the hypergeometric test were set to 0.
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(Fig. 4I). Although most TFs in Mef2c ETRM are highly expressed in
both excitatory and inhibitory neurons, some MEF2 family mem-
bers show a higher correlation with excitatory markers (Fig. 4H).
This indicates that MEF2 family members may have distinct func-
tions in excitatory and inhibitory neurons.

An important question to be addressed is whether the TFs in
one ETRM would share a similar expression profile during brain
development. To get an overview of developmental expression
profiles, we collected mouse RNA-seq data from the forebrain, dur-
ing embryonic stages (E10.5 to d0), and from postnatal frontal cor-
tices in adult mice up to 22 months old (Supplementary Table 1).
We first explored the expression of all the TFs in the mouse gen-
ome obtained from the CIS-BP database [20] during development
and 1476 TFs were mapped to the RNA-seq data. We noticed that
these TFs can be separated into three clusters: one being highly
expressed in embryonic stages (Fig. S4A), one being highly
expressed in postnatal stages (Fig. S4B), and the third showing a
mixed pattern during development (Fig. S4C). These results reveal



Fig. 4. ETRMs of Egr1 in mL23, Mef2c in mL23, and Maf in mPv. A) ETRM predicted from Egr1 motif in DMRs of mL23 neurons. The green edge means that there is evidence in
the STRING database to support interaction between the proteins coding from the connected two genes. B) ETRM predicted from theMef2cmotif in DMRs of mL23 neurons. C)
ETRM predicted from the Maf motif in DMRs of mPv neurons. D-F) Expression of Egr1 ETRM (D), Mef2c ETRM (E), and Maf ETRM (F) in EXC, PV, and VIP neurons. G-I)
Correlation between the expression of Egr1 ETRM (G), Mef2c ETRM (H),Maf ETRM (I) and excitatory/inhibitory markers in EXC, PV, and VIP neurons. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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that many brain TFs have dynamic expression profiles and may
function in specific stages during development. TFs highly
expressed in embryonic stages may be key factors controlling neu-
ronal stem cell proliferation and differentiation, while TFs highly
expressed in postnatal stages may function in maturing or matured
neurons. We showed that the top three TFs at each time point dur-
ing development had the highest expression, for examples: Ybx1
from E10.5 to 2 week which is known for embryonic development
[39,40] and Mef2c from d0 to 22 month (Fig. S4D). Considering the
exponential growing of glial cells after birth, some TFs with
increased expression in postnatal stages could be glia-cell specific
as well. In addition, most markers for excitatory and inhibitory
neurons showed an increasing expression pattern during develop-
ment (Fig. S5A&B). This trend was also observed for many cell-type
specific ETRMs, such as Egr1, Egr2, and Klf9 in mL2/3 (Fig. S5C),
MEF2 family members except for Mef2b in mL2/3 (Fig. S5E), and
Maf andMafb in mPv neurons (Fig. S5D). We also noticed that some
TFs, such as Bach1, Bach2, and Mafk, showed a decreased expres-
sion pattern during development (Fig. S5D). This result suggests
transient interactions among ETRM members and some family
members may replace the others during development.

2.4. Experimental validation using EGR1 ChIP-seq, gene expression,
and methylation profiles derived from Egr1KO mice

To validate the computational prediction of epigenetic regula-
tion of brain cell specification, we made use of EGR1 ChIP-seq data
generated from mouse frontal cortex, RNA-seq, and methylome
data derived from Egr1 knockout (Egr1KO) mice [25]. We first pre-
dicted the ETRMs from EGR1 peaks identified in ChIP-seq data and
overlapped EGR1 binding sites with the DMRs identified for mL2/3
neurons. Out of 12,015 EGR1 peaks obtained from ChIP-seq data,
3099 sites were located in the DMRs of mL2/3 neurons. Using
CLARANS [41], these loci were first grouped into two clusters
showing gradual hypo-methylation from embryonic to postnatal
development (Fig. S6A), and hypo-methylation during embryonic
development (Fig. S6B). Next, we predicted the co-enriched motifs
in each cluster. The first cluster showed motif enrichment for EGR
family members and KLF family members along with several TFs
including Sp1, Oligo2, NeuroD1, etc. The second cluster showed
motif enrichment for EGR and KLF family members only
(Fig. S6C). This result is consistent with EGR1 ETRM predicted
using DMRs alone (Fig. 4A) and the additional TFs identified in
the first cluster are likely due to EGR1 peaks corresponding to
the genomic loci bounded by the interacting proteins cross-
linked together with EGR1 during the ChIP-seq procedure.

Next, to explore the influence of Egr1 loss on various neuronal
cell types, we reanalyzed the methylome of Egr1KO cortex and
focused on the methylation profiles of hyper-DMRs across 16 types
of neurons. Comparing the methylomes derived from neuronal
subtypes with controls, Egr1KO hyper-DMRs were found to be
heavily methylated. According to their methylation profiles, these
loci may be clustered into four groups (Fig. 5A). The first three
groups have intermediate (group I), high (group II), and low (group
III) methylation levels in the majority of methylomes examined,
and have relatively constant methylation levels across sixteen neu-
ronal subtypes (Fig. 5B). Interestingly, we found that 28.6% of
Egr1KO hyper-DMRs (group IV) have lower methylation levels in
excitatory neurons compared to those in inhibitory neurons
(Fig. 5A&B). These results indicate that Egr1 could have significant
functional differences between excitatory and inhibitory neurons.

Finally, to further explore the influence that Egr1 knockout may
have on brain cell specification, we made use of the expression
profile of the Egr1 knockout (Egr1KO) mouse cortex [25], and esti-
mated its cell-type composition from a single-cell RNA-seq-
derived cell-type signature using the dampened weighted least
squares algorithm [42]. This analysis was also performed on the
expression profile of 6-week old mouse cortex [43] for comparison.
As shown in Fig. 6A, compared to normal control, Egr1KO cortices
were predicted to have a 9.1% reduction in excitatory neurons.
Besides, Egr1 loss leads to the differential expression of gene mark-
ers for excitatory neurons including Nnat, Nrn1, and Snap25
(Fig. 6B). These genes are enriched in a pivotal biological process
associated with brain functions, such as the ‘‘gamma-
aminobutyric acid signaling pathway,” ‘‘nervous system develop-
ment,” and ‘‘long-term memory” (Fig. 6C). In summary, these
results confirmed the functional importance of EGR1 during brain
development, particularly for the specification of excitatory
neurons.
3. Discussion

To our knowledge, this study is the first attempt to explore
brain ETRMs via multi ‘‘omics” integration with single cell methy-
lome and RNA-seq data from single cells, sorted neurons, and brain
tissues at various developmental stages. To predict ETRMs, we
exploited the recursive motif search approach [22] and imple-
mented a novel expression-dependent single-cell analysis using a
conditional probability matrix to demonstrate the cell type speci-
ficity of ETRMs. Additionally, EGR1 was selected as an example
to demonstrate the functional importance of key TFs in a cell-
type specific manner. Such validation may be extended to other
key TFs if ‘‘omics” datasets available. The power of data integration
is frequently limited by input quality. Single-cell methylomes often
have low read depth leading to inaccuracy in cell classification and
incomplete lists of cell type specific DMRs. A similar limitation also
exists in detecting co-expressed TF pairs using single-cell RNA
datasets, particularly for transcripts with low expression. In addi-
tion, the number of cell types and even the types of cells predicted
with single-cell methylomes and single-cell RNA-seq data may not
match each other. Despite these limitations, we have identified a
number of ETRMs, which may serve as functional links between
epigenetic regulatory loci to a specific type of neuron. We antici-
pate that the analytical procedure described in this study will facil-
itate ‘‘omics” data integration and that the predicted ETRMs will
nurture hypotheses for future experimental design.
4. Methods

4.1. Datasets

The publicly available brain ‘‘omics” data used in this manu-
script are summarized in Supplementary Table 1. All the analysis
performed in this study were based on mouse genome GRCm38/
mm10.

4.2. Analysis of single-cell methylomes

Single cell methylomes for 3377 neurons derived from mouse
frontal cortex were downloaded. In the previous study [31], these
3377 neurons were clustered using an iterative, hierarchical and
unsupervised clustering algorithm, BackSPIN [31]. Cells were split
into two new clusters in each iteration, this procedure was per-
formed recursively on each new cluster and terminated when no
clusters met the splitting threshold. The clusters with highly sim-
ilar mCH patterns were merged, and each cluster was annotated
according to the depletion of mCH at known markers, including
cortical glutamatergic or GABAergic neuron markers, cortical layer
markers, or inhibitory neuron subtype markers. Finally, sixteen
clusters were determined, including ten excitatory subtypes and
six inhibitory subtypes [31] (Supplementary Table 2).



Fig. 5. Methylation profile of Egr1KO hyper-DMRs across sixteen neuronal cell types. A) Heatmap of a methylation profile of Egr1KO hyper-DMRs across sixteen neuronal cell
types. Four co-methylated groups were identified by using the ‘‘cutree_rows” argument of ‘‘pheatmap” in R. B) Average methylation level of the four groups in Egr1KO hyper-
DMRs. Shading shows the standard deviation.
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Specifically, in this work, single-cell methylomes assigned to
the same cell type were merged to create synthetic methylomes
for the sixteen neuronal cell types.

4.3. Recursive motif analysis to identify ETRMs

The recursive motif prediction was performed using the
approach described in our previous study [22]. Briefly, the motif
with the most significant p-value predicted by HOMER was
selected as a key TF. In the case of ties involving two motifs sharing
the same enrichment p-value, the motif with the higher frequency
of target sequences was selected. Next, regions containing the key
motif were identified using HOMER and the center of each region
was shifted to the predicted binding site of the key TF for another
round of motif search. Finally, regions containing the motif for the
key TF were removed from the input dataset and the rest of the
input sequences were used to identify the next most significant
candidate motif. Such a motif searching process was performed
recursively until no significant motif could be identified.

The ’universalmotif’ R library was used to merge similar motifs.
As described in the reference manual, four metrics were used:
mean Pearson correlation coefficient, mean Euclidean distance,
mean Sandelin-Wasserman similarity, and mean Kullback-Leilber
divergence for similarity measures between two motifs. Means
were used instead of just the similarity or distance metric to avoid
the difference in results between comparisons of longer and
shorter motifs.

4.4. Analysis of single-cell RNA-seq data

In the previous study [35], single cells from mouse prefrontal
cortex were sequenced as 12 independent biological replicates.
Cells with potential double droplets or having mitochondrial
mRNA loads over 10% were filtered. Non-neuronal cells expressed
less than 800 genes or neuronal cells expressed less than 1500
genes were also removed. Potential batch effect between samples
were removed by CCA analysis [44]. In this study, we focused on
the expression profile of 11,886 cells generated from the P60
mouse. The Seurat R package [36] was used to perform the
single-cell RNA-seq dataset analysis. The top 2000 variable genes
across cells were selected as features to perform linear dimen-
sional reduction, and the top 10 principal components were used
to generate the t-SNE (T-distributed Stochastic Neighbor Embed-
ding) map. According to cell type annotation provide by Aritra
et al. [35] (Supplementary Table 3), the cells were colored and
labeled on the t-SNE map.
4.5. Transcription factor dependent analysis

To determine the relationship of co-expression between any
two TFs (or genes), a conditional probability matrix was con-
structed for each cell type. NA, NB, and NAB denote the number of
cells that express TFA, the number of cells that express TFB, and
the number of cells that simultaneously express TFA and TFB,
respectively. Then, the probability of TFB expressing under the con-
dition of TFA expressing is:

P TFBð jTFAÞ ¼ P TFA; TFBð Þ
PðTFAÞ ¼ NAB

NA

Similarly, the probability of TFA expressing under the condition
of TFB expressing is:

P TFAð jTFBÞ ¼ P TFA; TFBð Þ
PðTFBÞ ¼ NAB

NB

In addition to the significance of the co-expression between any
two TFs, a hypergeometric test was used, in which the null hypoth-
esis is that the target TFs are dependent upon each other. In the
test, the testing statistic is the number of cells that simultaneously



Fig. 6. Excitatory neurons reduced after Egr1 knockout. A) Predicted cell-type compositions in Egr1 knockout and 6-week old mouse cortex. B) Volcano plot shows a
comparison of the expression level of excitatory neuron marker genes in Egr1KO and 6-week old cortexes. The points colored in red represent the differentially expressed
genes in Egr1KO compared to 6-weeks old cortex and the size of the points represents the fold change of expression in excitatory neurons compared to other cell types. C) Go
enrichment analysis of the differentially expressed excitatory neuron markers in Egr1KO. The point size represents the number of genes enriched. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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express TFA and TFB. Let N denote the total number of cells in a cell
type. Then, under the null hypothesis, the testing statistic follows a
hypergeometric distribution, that is

P NABð Þ ¼
NB

NAB

� �
N�NB

NA �NAB

� �

N
NA

� � , where �ð Þdenote combinational

formula.
In the test, the p-value was calculated by the cumulative prob-

ability of NAB. If the p-value is less than 0.05, the null hypothesis
will be rejected and the co-expression between the target TFs will
be determined.

4.6. Analysis of RNA-seq data

The RNA-seq datasets included samples from embryonic day
10.5 to postnatal day 0 and for 1-week, 2-week, 4-week, 6-week,
10 week, and 22-month, EXC neurons, PV neurons, and VIP neu-
rons, which were downloaded from the GEO database. Adapters
and bases of low quality were trimmed and the remaining reads
were mapped to the mouse genome (mm10) by RSEM with Bow-
tie2 to achieve the expression level of each gene. For each time
point or cell type, multiple replicates were merged and the average
TPM (Transcripts Per Million) values from the replicates were cal-
culated as the final value for the time points. Co-expression analy-
sis in developmental stages was performed by using weighted
correlation network analysis (WGCNA) [45], which automatically
divides the gene expression matrix into smaller blocks and per-
forms a two-level clustering. In the first step, genes that were
weakly correlated were pre-clustered into different blocks using
projective k-means. Next, for each block, a network analysis was
performed by identifying clusters of highly correlated genes to
estimate the cluster eigen-gene. Finally, clusters with a highly cor-
related eigen-gene were merged.
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4.7. Analysis of ChIP-seq data

EGR1 ChIP-seq data with accession number GSE108768 were
downloaded from the Gene Expression Omnibus (GEO) database,
this dataset was generated for 6-week mouse frontal cortex. In this
dataset, reproducible peaks on two biological replicates were
achieved and the peaks overlapped with DMRs of mL2/3 were
retained for downstream ETRM identification.
4.8. Estimation of cell-type composition from gene expression data

The DWLS package [42] was used to perform the decomposition
analysis. A dampened weighted least squares algorithm was
adopted to estimate the cell-type composition of bulk data from
a single-cell RNA-seq-derived cell-type signature. First, the differ-
entially expressed genes in each cell type compared to others cell
types were defined as the markers for each cell type, using the
given single-cell RNA-seq dataset with cell type information anno-
tated. Then, a signature matrix with the lowest condition number
was selected from the profile of markers. Lastly, a deconvolution
was performed on the bulk RNA-seq data based on the dampened
weighted least squares algorithm with the signature matrix as the
reference.
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