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Objectives: Anterior mediastinal disease is a common disease in the chest. Computed
tomography (CT), as an important imaging technology, is widely used in the diagnosis of
mediastinal diseases. Doctors find it difficult to distinguish lesions in CT images because of
image artifact, intensity inhomogeneity, and their similarity with other tissues. Direct
segmentation of lesions can provide doctors a method to better subtract the features
of the lesions, thereby improving the accuracy of diagnosis.

Method: As the trend of image processing technology, deep learning is more accurate in
image segmentation than traditional methods. We employ a two-stage 3D ResUNet network
combined with lung segmentation to segment CT images. Given that the mediastinum is
between the two lungs, the original image is clipped through the lung mask to remove some
noises that may affect the segmentation of the lesion. To capture the feature of the lesions, we
design a two-stage network structure. In the first stage, the features of the lesion are learned
from the low-resolution downsampled image, and the segmentation results under a rough
scale are obtained. The results are concatenated with the original image and encoded into the
second stage to capture more accurate segmentation information from the image. In addition,
attention gates are introduced in the upsampling of the network, and these gates can focus
on the lesion and play a role in filtering the features. The proposedmethod has achieved good
results in the segmentation of the anterior mediastinal.

Results: The proposed method was verified on 230 patients, and the anterior mediastinal
lesions were well segmented. The average Dice coefficient reached 87.73%. Compared
with the model without lung segmentation, the model with lung segmentation greatly
improved the accuracy of lesion segmentation by approximately 9%. The addition of
attention gates slightly improved the segmentation accuracy.

Conclusion: The proposed automatic segmentation method has achieved good results in
clinical data. In clinical application, automatic segmentation of lesions can assist doctors in
the diagnosis of diseases andmay facilitate the automated diagnosis of illnesses in the future.

Keywords: anterior mediastinal lesion segmentation, deep learning, two-stage 3D ResUNet, attention gates, lung
segmentation model
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INTRODUCTION

Given the high incidence of chest diseases, the anterior
mediastinal disease is an urgent medical condition. This
disease includes a wide variety of illnesses (1–4), the most
common of which are thymoma (5, 6), lymphoma, and more
than 10 other illnesses (7, 8). However, despite its physiological
significance, anterior mediastinal disease has received little
attention in medical image analysis. On the one hand, the
chest images used for detection often contain information
irrelevant to the lesion. On the other hand, the anterior
mediastinal lesion is characterized by low contrast, irregular
shape, different sizes, and unstable anatomical positions. These
features lead to challenges to the image acquisition and analysis
of anterior mediastinal disease and difficulties for doctors to
make diagnosis. Image segmentation can characterize the size
and delineate the boundary of the lesion (9); thus, this process
can assist doctors in diagnosing the disease. In radiomics,
segmentation of the lesion area is usually the first step
for automatic diagnosis (10–13). As a part of traditional
radiomics, segmentation is usually performed by using
traditional feature engineering methods. This handcrafted
feature has certain limitations. Some traditional segmentation
methods also need manual interaction, such as region growth
(14) and graphcut (15, 16). Some conventional techniques, such
as snakes (17, 18) and active contour model (19, 20), require the
manual setting of many parameters. These processes cannot
achieve fully automatic results, and the segmentation results
for low-contrast medical images are poor.

Segmentation is an essential prerequisite in medical image
analysis for image-guided intervention (21), radiotherapy (22),
or improved radiological diagnostics. With the rapid
development of segmentation technology, deep learning has
become one of the mainstream technologies. Li et al. (23)
combined the features extracted with CNN (convolutional
neural networks) and those extracted with radiomics to predict
the ICH1 in low-level neural mutations in gliomas. Fully
convolutional networks (24), U-Net (25), and VNet (26) are
commonly used architectures. Despite their good representation
in feature description, these architectures rely on CNNs when the
target lesions show large inter-patient variation in terms of shape
and size. These frameworks have been applied in many areas,
including abdominal computed tomography (CT) segmentation
(27), lung CT nodule detection (28), and liver segmentation (29).
However, these approaches lead to the excessive use of
computational resources and model parameters. Compared
with organ segmentation and some kind of tumor
segmentation, anterior mediastinal lesions have various shapes
and variable size. Nevertheless, no thymus-specific segmentation
algorithm that uses deep learning has been proposed because of
the lack of data and high difficulty of annotation.

In this study, to improve the segmentation accuracy, lesions
of the anterior mediastinum have been segmented automatically
by using two-stage Res3DUNet. Based on the 3DUnet network,
the automatic segmentation of lung model is added as the data
preprocessing stage, and image clipping is used to remove the
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information irrelevant to the lesion and reduce noise in the
image. During network construction, the attention mechanism is
added, such that the network is focused more on the areas of
interest. These improvements result in good segmentation.

The contribution of this report includes the proposal of a two-
stage Res3DUnet network structure to automatically segment the
lesion area of the anterior mediastinal disease. Thus, a reference
is provided for doctors to facilitate the diagnosis of the disease. In
addition, information on the anatomic location of the lung is
used to remove the irrelevant part of the image and relatively
enlarge the region of interest. Attention gates (AGs) are added to
the network to improve the accuracy of the model.
MATERIALS AND METHODS

The Whole Framework
Given that the lesions differ in shape and size, inspired by Refs.
(30) and (31), the lesions are segmented from coarse to fine by
using a two-stage network structure (Figure 1). The first stage is
mainly performed to determine the specific location of the lesion.
The second stage is conducted for the fine segmentation of the
lesion. The input of the second stage is concatenated the feature
maps, which is out from the first stage with the high-resolution
image. The parameter settings of the two-stage network are
consistent, and cross-entropy (25) loss is used for end-to-end
optimization and training.

Lung Segmentation Model
Given that the anatomical structure of the thymus is roughly
between the two lungs, the original image is clipped and
preprocessed by the lung mask to remove some factors, such
as the background plate, that may affect the segmentation of the
lesion. Contrary to the conventional rotation and pixel
truncation, the relative anatomical position of the lung and the
anterior mediastinal lesion is used to clip the image. Specific
pulmonary segmentation includes the following steps. To
generate the threshold image, CT value lower than −300 is set
as 0, and the CT value greater than −300 is set as 1. After the
reverse operation of the threshold image, the maximum
connected domain algorithm is used to obtain the thoracic
cavity. The thoracic cavity is subtracted from the threshold
image, and then the maximum connected domain is processed
to remove a small amount of noise. Finally, the lung mask
is obtained.

Data Pre-progressing
The original image is clipped according to the lung mask, and the
size of the image is resized to 256×256. Then, some irrelevant
pixels are filtered by grayscale truncation, and the images are
normalized by using the max-min normalization method.

The Backbone of Network
The network structure is shown in Figure 2. In this study, the
kernel size of all convolutional layers is 3×3×3. The parameter
February 2021 | Volume 10 | Article 618357
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1×256×256×32 in turn represents channel, the height, the width,
and the depth of the image. The network learns the residual
function from the input and output at each stage. To prevent the
disappearance of the gradient, the residual block is added in this
Frontiers in Oncology | www.frontiersin.org 3
report. After each downsampling, the height, width, and depth of
the feature map become half of the former input. After each
upsampling, the height, width, and depth of the feature map
become twice of the former input. The convolution kernel size
FIGURE 1 | Framework of proposed model.
FIGURE 2 | The architecture of network.
February 2021 | Volume 10 | Article 618357
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used by the last convolutional layer is 1×1×1, which keeps the
size of the output image consistent with that of the original input
image. Therefore, the semantic segmentation results can be
obtained as the original input image size. According to
Refs. (32) and (33), the attention mechanism between the
corresponding downsampling and upsampling layer is added,
and the attention mechanism can select features useful for lesion
segmentation. Finally, Softmax is used to generate the
segmentation probability graph of the lesions and background.
To train the two-stage Res3DUNet, the cross-entropy loss is used
to measure the difference between the prediction and ground-
truth distributions by calculating the “gap” between the two
distributions pixel by pixel. The cross-entropy formula is defined
as follows:

E = −o
k∈W

wk(x) log (pk(x)(x)) (1)

where Ω represents the image; k(x) represents pixel x, which
belongs to the kth class; and wk(x) denotes the weight of pixel x
belonging to the kth class.

Attention Gates
The AGs can suppress the irrelevant and noisy responses of
background areas without cropping the region of interest and
training a large number of additional parameters in the network.
To obtain a sufficiently large reception field to obtain the
information in the semantic context, the feature map grid will
usually use the downsampling strategy. However, with respect to
small objects with large morphological changes, the CNN
structure is difficult to reduce the false-positive error of
prediction. To avoid these errors as much as possible, the
proposed approach introduces AGs as reported in Refs. (32)
and (33). AGs are used after the downsampling and upsampling
features are integrated. The output of the AGs is the element-
wise multiplication of the input feature-maps and attention
coefficients, as follows:

x∧i,c = xli,c · a
l
i,c (2)

where xli,c is the feature map from upper layer and a l
i,c is the

attention coefficient belonging to [0,1], which identifies the
salient image regions and prunes feature responses to preserve
only the activations relevant to a specific task.
RESULTS

Data Preparation and Parameter Setting
The Institutional Ethics Review Committee of the China-Japan
Friendship Hospital approved this retrospective study. A total of
230 cases were used in this experiment, including 116 cases from
the China-Japan Friendship Hospital and 114 cases from the
Nanjing Eastern Theater General Hospital. The CT images from
the China-Japan Friendship Hospital were obtained with a
variety of scanners, including a 16-row multi-detector CT
(MDCT) (Toshiba Aquilion, Japan), 320-row MDCT (Toshiba
Aquilion TM ONE, Japan), and a 256-row MDCT (GE
Frontiers in Oncology | www.frontiersin.org 4
revolution, USA). The CT images from the Nanjing Eastern
Theater General Hospital were obtained with a 128-row MDCT
(SIEMENS SMOATOM Definition, Germany). Two physicians
with clinical experience outlined the ground-truth of the data. A
total of 116 cases were used as the training data and 114 cases as
the test data to distinguish the differences in the data caused by
the imaging equipment and to better highlight the advantages of
deep learning models. The settings in all experiments were
consistent for all compared methods to ensure a fair
comparison. In the experiments, “Adam” was chosen as the
optimizer to optimize the target of the model, the training epoch
was 300, and the learning rate was 0.0001. The evaluation metric
use the Dice coefficient to describe the global segmentation
performance with the ground-truth mask as Equation (3). The
network was trained on one piece Nvidia 2080Ti (11 GB) GPU
machine. The network was implemented using the PyTorch
framework.

D =
2oN

i pigi

oN
i p

2
i +oN

i g
2
i

(3)

where pi is the i-th pixel value of the predicted image and gi is the
i-th pixel value in the ground truth.

Result of Adding Lung Segmentation
For the CT images, all images are grayscale corpuscles. In
common segmentation tasks, noise is easy to be introduced,
which reduces the accuracy of segmentation. Lung segmentation
can separate the lung from the whole CT image, reduce the
interference of background template, and enhance the
segmentation results. The distribution of gray values during
lung segmentation is contracted (Figure 3) because we only
keep the area covered by the lung mask. After the image is cut
according to the anatomical position of the lung, the noise is
reduced considerably. To verify the effectiveness of the lung
segmentation, the experimental results are compared with or
without the lung segmentation, and the Dice coefficient is
calculated for the segmentation results. The results in Table 1
show that adding the lung segmentation can improve the
accuracy of the segmentation results.

Result of Different Models
In the segmentation model, AGs are introduced to highlight the
segmentation region and its important features. Therefore,
based on the lung segmentation, the effects of the attention
mechanism on the segmentation task are compared. The results
are shown in Table 2. Introduction of the attention mechanism
improves the accuracy of the results. Then, the results of the
nnUNet (34) to the present results are compared. Table 2
shows the performance of different segmentation models. The
two-stage 3D ResUNet with attention gates have better
performance in terms of comprehensive time efficiency and
Dice coefficient.

Results of Visualization
The segmentation results of the different methods in two
hospitals are illustrated in Figure 4. The predicted areas and
February 2021 | Volume 10 | Article 618357
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ground-truth annotations are shown with green and red,
respectively. Among all the compared segmentation methods,
the nnUnet provides better dice coefficient but is time
consuming. The proposed model provides similar results but
consumes less time. Compared to no lung segmentation model,
the ROI of the lung segmentation model is more bigger, so that
when doing convolutional operation, the receptive field will be
bigger relatively. Because the attention mechanism helps to focus
on the area of interest, the lesion predicted by the proposed
model is clearly closer to the ground truth annotation. Therefore,
the proposed model has more potential on the segmentation of
anterior mediastinal lesions than the state-of-the-art method.
DISCUSSION

This study shows that deep learning can achieve good results in
the segmentation of anterior mediastinal lesions and provides a
Frontiers in Oncology | www.frontiersin.org 5
relatively reliable basis for subsequent clinical diagnosis. Full
automatic segmentation can greatly improve the work efficiency
of doctors.

The anterior mediastinal lesion is characterized by low
contrast, uneven gray distribution, and close gray level of
surrounding tissues. Thus, assessing the area of the lesion by
the naked eye is difficult. With the improvement of the
computing power, deep learning is widely used in tumor
segmentation, organ separation, and pathological image
segmentation. However, very little work on the segmentation
of anterior mediastinal lesions has been performed. Existing
work is mostly for the screening and diagnosis of mediastinal
disease. As the first step of disease diagnosis and evaluation,
lesion segmentation is usually outlined manually by an
experienced doctor. He et al. (10) applied the RadCloud
platform (Huiying Medical Technology Co., Ltd., Beijing,
China) to delineate anterior mediastinal lesions. An
experienced doctor confirmed the boundary of the lesion
and then used machine learning to extract the characteristics
of the lesion. Zhu et al. (35) used ITK-SNAP to manually
segment thymoma to prepare for the extraction of lesion
features by radiomics and deep learning methods. The two-
stage 3DResUNet with attention based on the lung
segmenta t i on mode l p roposed in th i s paper can
automatically segment the lesions and still achieve relatively
good results when the sources of the training set and the test
set are different. This result indicates that the model has a
certain degree of robustness. The lung segmentation model
uses the anatomical position of the lungs to crop the image and
removes irrelevant information brought in when CT images
are collected. This process effectively reduces the noise
interference and prevents the network from learning useless
information. Thus, the accuracy and efficiency of the model
are improved. The classic nnUnet is also compared with
the proposed model. The result of the proposed method is
TABLE 1 | Results of whether adding lung segmentation model.

Method Dice (%)

Two-stage 3D ResUNet 78.65
Two-stage 3D ResUNet+lung segmentation 85.43
TABLE 2 | Performance of different models.

Method Dice
(%)

Training Time
(s)

nnUnet (34) 87.78 289
Two-stage 3D ResUNet+lung segmentation 85.43 40
Two-stage 3D ResUNet +lung segmentation+
Attention

87.73 44
FIGURE 3 | The distribution of gray values.
February 2021 | Volume 10 | Article 618357
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close to that from nnUnet (34), but the former method
consumed less time. Thus, the effectiveness of the proposed
model is verified.

This study still has some limitations. On the one hand, the
scale of the data set will limit the performance of the model.
When the network learns the features of data, the network will be
affected by the amount of data. This phenomenon results in
learned features that are not comprehensive enough, and the
generalization ability of the model has not been fully verified. On
the other hand, the result of segmentation has inaccurate
boundaries. Given that the pixel value of the lesion area is
close to that of the surrounding tissues, the precise boundary is
difficult to obtain. Xu et al. (36) added the traditional active
contour model as a loss function to deep learning to segment the
left ventricle, playing a role in boundary constraints.

Further research will include the combination of traditional
segmentation methods and deep learning techniques, because
the former methods have good interpretability. Such
characteristics can strengthen the constraints on the boundary
and shape of the lesion and obtain more accurate segmentation
results. In addition, the application of automatic segmentation in
disease screening, disease risk assessment, and other aspects can
be explored to provide more intelligent and comprehensive
support for clinical use.
Frontiers in Oncology | www.frontiersin.org 6
CONCLUSION

In this study, the two-stage Res3DUnet is applied to fully
automate the segmentation of the anterior mediastinal lesions
from ordinary CT images. The two-stage Res3DUnet combined
lung segmentation model and attention mechanism can enhance
the accuracy of the result. The two-stage Res3DUnet segments
the lesion from coarse to fine. The lung segmentation model can
not only crop the unrelated background information but also
enlarge the receptive field in the lesion. The attention mechanism
focuses on the ROI without extra spatial consumption. The
proposed approach is evaluated using the datasets collected
from two different hospitals. The experimental results show
that deep learning has great potential in the segmentation of
anterior mediastinal lesions. The two-stage network architecture
is more advantageous than the classical network architecture and
is suitable for the segmentation of medical images.
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