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Objectives: The identification of subgroups of autism spectrum disorder (ASD) may

partially remedy the problems of clinical heterogeneity to facilitate the improvement of

clinical management. The current study aims to use machine learning algorithms to

analyze microarray data to identify clusters with relatively homogeneous clinical features.

Methods: The whole-genome gene expression microarray data were used to

predict communication quotient (SCQ) scores against all probes to select differential

expression regions (DERs). Gene set enrichment analysis was performed for DERs

with a fold-change >2 to identify hub pathways that play a role in the severity of

social communication deficits inherent to ASD. We then used two machine learning

methods, random forest classification (RF) and support vector machine (SVM), to identify

two clusters using DERs. Finally, we evaluated how accurately the clusters predicted

language impairment.

Results: A total of 191 DERs were initially identified, and 54 of them with a fold-change

>2 were selected for the pathway analysis. Cholesterol biosynthesis and metabolisms

pathways appear to act as hubs that connect other trait-associated pathways to

influence the severity of social communication deficits inherent to ASD. Both RF and

SVM algorithms can yield a classification accuracy level >90% when all 191 DERs were

analyzed. The ASD subtypes defined by the presence of language impairment, a strong

indicator for prognosis, can be predicted by transcriptomic profiles associated with social

communication deficits and cholesterol biosynthesis and metabolism.

Conclusion: The results suggest that both RF and SVM are acceptable options

for machine learning algorithms to identify AD subgroups characterized by clinical

homogeneity related to prognosis.
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INTRODUCTION

Clinical heterogeneity is a norm rather than an exception in
autism spectrum disorder (ASD), a complex neurodevelopmental
disorder characterized by social communication deficits and
stereotyped behaviors. Heterogeneous clinical features pose
great challenges for diagnostics for ASD, such that children
who receive a diagnosis of ASD have a range of vastly
different presentations, trajectories, and outcomes. Further, the
diagnostic criteria for ASD have been continuously revised
through different editions of the Diagnostic and Statistical
Manual for Mental Disorders (DSM), particularly the substantial
changes in the 5th edition (DSM 5) where the wide range
of clinical presentations have been brought together under a
single ASD diagnostic entity (1). The current diagnostic system
lacks an evidence-based approach and we urgently require a
scientific approach to understanding which interventions are
likely to be the most effective for which child with ASD
(2). Accumulating evidence has shown that no pharmaceutical
treatments have thus far been conclusively found to substantially
reduce core symptoms of ASD (3). This may be partially
attributable to the fact that most clinical trials did not take
clinical heterogeneity into account and hence treatment effects
remain equivocal. Variable clinical presentations may reflect
different biological pathways. The identification of biomarkers
for etiological pathways may hence hold the key to unraveling
mechanisms underlying the variation in clinical presentations
(4), which in turn may pave the way for personalized medicine
in ASD.

The goal of identifying biomarkers for clinical homogeneity
is to tackle challenges arising from clinical heterogeneity for
research on either etiologies or treatments of ASD. One of
the most extensively studied biomarkers for ASD is genetic
factors. There are two different strategies to evaluate genetic
markers for clinical heterogeneity: bottom-up and top-down
approaches. The bottom-up approach is to define a priori
subgroups using phenotypic information under the premise
that some genetic loci are more likely to contribute to
susceptibility to disease in a certain subgroup(s). Therefore,
stratifying the population by a clinical marker (e.g., age of
onset) will allow investigators to detect genetic association
effects that are larger in certain subgroups. The top-down
approach, on the other hand, is based on the premise that
certain genetic markers can be used to distinguish subgroups,
each of which is characterized by relatively homogeneous
phenotypic profiles underscored by similar biological pathways—
which imply similar therapeutic targets. Many of the earlier
genome-wide linkage or association studies that aimed to unravel
genetic underpinnings of clinical heterogeneity chose the second
approach, which is to identify genetic markers associated with
the phenotype defined by strict diagnostic criteria of ASD
(5–7). Using the data from the Autism Diagnostic Interview-
Revised (ADI-R) (8), Autism Diagnostic Observation Schedule
(ADOS) (9), Vineland Adaptive Behavior Scales (VABS) (10),
head circumferences, and ages at assessment as classifying
variables, Veatch et al. identified clinically similar subgroups of
individuals with ASD and found that the genotypes were more

similar within subgroups compared to the whole population—
the proportion of the total genetic variance contained in a
subpopulation was 0.17 (11). However, this approach has not
yielded highly replicable and clinically meaningful findings that
can lead to conclusively validated etiological factors yet (12).
Furthermore, another genome-wide association study of 2,576
families with ASD probands did not discover any genetic loci
that exert a larger effect on the disease risk in subpopulations
defined by the diagnosis, IQ, and symptom profiles; heritability
estimates were also found to be similar in subpopulations to
the whole population (13). Results from different groups show
that an increased number of gene-truncating variants (highly
pathogenic variants) may exert a considerable impact on IQ
in ASD patients (14, 15); and higher burden of this pool of
variants in ASD patients correlates with lower IQ scores. These
studies showed that genomic approaches are able to identify
genetic loci exerting larger effect on disease risk or associated with
clinical outcomes, although genetic loci must be considered in an
additive manner.

The top-down approach often starts with a few selected
genetic loci associated with the disease. Despite fruitful findings
from genome-wide and candidate gene-based association
studies, few genetic loci can be used to improve accuracy
in diagnostics or optimize treatment effects of therapeutics
for ASD. Nevertheless, several genetic markers are found
to be useful for classifying patients with ASD into relatively
homogeneous subgroups. For example, Bruining et al. reported
prominently higher symptom homogeneity in both the ASD
group with 22q11 deletions and ASD group with Klinefelter
Syndrome (KS), compared to the heterogeneous ASD sample
(16). Transcriptomic profiles have also been used to identify
genetic markers to classify individuals with ASD. Hu and
Lai used the gene expression data to identify a subset of the
“classifier” genes, which resulted in an overall class prediction
accuracy of nearly 82%, ∼90% sensitivity, and 75% specificity
(17). These results seem to demonstrate the value of the
top-down approach.

Determining subgroups of ASD is challenging mainly because
of the complexity of biological factors and clinical heterogeneity
inherent to ASD. To tackle these challenges, one of the
solutions is to implement state-of-the-art statistical methods
that can efficiently parse through high-dimensionality data,
such as machine learning (ML) algorithms, to differentiate
subgroups with meaningful etiological, diagnostic, or therapeutic
implications (18). Previous evidence suggests that ML algorithms
can be used to reduce the number of items from standardized
ASD assessment tools to make the assessment more efficient

(19) and predict clinical outcomes with ASD phenotypic clusters

and genetic data of copy number variations (20). The ML

algorithms appear to be useful to identify phenotypic clusters

as ASD subgroups that can predict clinical outcomes (21).

In the current study, we attempted to implement the ML

algorithms in the context of the bottom-up approach, which is to

identify clusters using genomic information, and then explore the

relationship between the genomic clusters and clinical features
of ASD.
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METHODS

Data Collection
The goal of the current study is to evaluate whether
transcriptomic profiles correlated with clinical severity levels
of ASD—which were measured with social communication
questionnaire (SCQ) (22), can classify patients into two
subgroups defined on the basis of language (i.e., the subgroup
with language impairment vs. the subgroup without language
impairment). The language function is considered as a strong
predictor for cognitive ability and adaptive skills in children
with ASD (23), and its variation within ASD patients is
influenced by genetic factors (24–26). The presence of language
impairment was defined as the total score (verbal) >10 in the
section of Qualitative Abnormalities in Communication in
Autism Diagnostic Interview-Revised (ADI-R) (27). A total
of 31 children diagnosed with ASD were recruited in the
current study. The clinical diagnoses were made by Gau, a
board-certified child psychiatrist, and confirmed by the ADI-R
interview with the parents. The Chinese version of the ADI-R
been approved by the Western Psychological Services in May
2007 (28) mRNA was extracted from lymphoblastoid cell lines
(LCL) of all participants. The microarray experiment was
performed at the Core Laboratory of National Taiwan University
Hospital in Taiwan, using the Affymetrix Human Genome U133
Plus 2.0 Array (Affymetrix Inc., Santa Clara, CA, USA). The
experimental procedures followed the protocols provided by
the manufacturer. The study was conducted with the ethical
approval by the Institutional Research Board at National Taiwan
University Hospital in Taiwan.

Statistical Methods
Transcriptome-Wide Association Analysis
We evaluated the integrity of 28S and 18S rRNA by
electrophoresis of 2mg of total RNA in 1.2% agarose gel
containing 2.2M formaldehyde and in a running buffer
containing 0.2M of MOPS (pH 7.0), 20mM of sodium acetate
and 10mM of EDTA (pH 8.0). The A260/A280 ratio was used
to measure the quality of RNA. The ratio between 1.9 and 2.1
was considered good quality. The intensity files of all the subjects
were input into the computer program GAP: Generalized
Association Plots (29, 30) for quality control using visualization
and descriptive statistics. We used the Robust Multi-array
Analysis (RMA) method to normalize the data (31). In order to
filter out probe sets with low variations and to reduce the impact
of multiple comparisons, we kept only the 1,000 probe sets with
the largest standard deviations. We searched for differential
expression regions (DERs) by prioritizing the gene expression
levels associated with the clinical severity indicated by SCQ
scores, we used the generalized linear model to screen for probes
across the whole genome with mRNA levels associated with the
SCQ scores with unadjusted p < 0.00001. All original intensity
ratio data were transformed into logarithmic 2 values after being
normalized. We controlled for the batch effect by adjusting for
the batch as a binary covariate since there were two batches.
These probes constitute the primary source of predictors to
determine ASD subgroups.

Gene Ontology and Pathway Analysis
The DERs with a fold-change >2 were selected for the
gene ontology and pathway analysis to evaluate the biological
relevance and functional pathways of the significant genes. We
have incorporated the KEGG (32), WikiPathways (33), BioCarta
(34), and Reactome (35) pathway database for the cell signaling
pathways. We have also considered the GO Biological Process
(2018) database for gene ontological analysis (36). The GO terms
and pathways enriched by the list of genes were identified using
the hypergeometric analyses with an adjusted P ≤ 0.05 was
considered as statistically significant.

Gene Over-Representation Analysis
Then we used the webtool at ConsensusPathDB (http://
cpdb.molgen.mpg.de/) to identify pathway-pathway interaction
network (CPDB analysis) (37). The analysis criteria included: (1)
one-next neighbors for the radius with p < 0.01, (2) pathway-
based sets at least two overlapped genes and p < 0.01, and (3)
gene ontology level 2 categories with p < 0.01. The results from
the second approach helped visualize the possible “hub” pathway
from the top 10 networks associated with the candidate genes.

We chose two machine learning (ML) algorithms to
evaluate the clustering results: random forest classification
and support vector machine algorithms. The presence of
language impairment was considered as a dichotomous clinical
outcome to determine classification errors. We chose the
first ML algorithm proposed by Shi and Horvath (38). We
used the Random Forest classification (RF) algorithm in an
unsupervised mode to generate a proximity matrix. The gene
expression data were analyzed using RF using two different
approaches for comparison. The first approach is to reduce data
dimensionality using principal component analysis to identify
principal component (PC) scores for each subject. The top 10
PCs were selected to calculate the proximity matrix that provides
a rough estimate of the distance between samples based on
the proportion of times the samples end up in the same leaf
node. The proximity matrix values were then converted to a
dissimilarity matrix to classify the sample into two subgroups
using partitioning around medoid (PAM) (39). The second
approach is to use the information of all 191 probes with gene
expression levels significantly associated with SCQ scores to
generate the RF proximity matrix. Similarly, the RF proximity
matrix was used to classify the sample into two subgroups using
the PAM clustering analysis (39) to classify the patients into two
clusters to determine the final cluster assignment. The RF-PAM
clustering analysis could allow us to evaluate the classification
error by calculating the frequency of patients with language
impairment in the cluster, in which the majority of patients had
no language impairment, and vice versa.

We further chose Support Vector Machine (SVM) as the
second ML algorithm to classify the patients into two subgroups
(40). To reduce data dimensionality, we implemented principal
component analysis to identify the principal component (PC)
scores for each subject. The data of PC scores were split in
a 7:3 ratio—in other words, 70% of the data was used for
training the model and the remaining 30% was for testing
the model. Estimating the C (Cost) parameter to classify
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FIGURE 1 | The workflow of the study scheme.

the data was performed using SVM with the linear kernel
function. The choice of kernel function was made based on
the recommendation from a prior study that using microarray
data to predict the diagnosis of colon cancer—which concludes
that linear kernel function leads to a lower prediction error
than the RBF, quadratic, and polynomial kernel functions (41).
The prediction accuracy and Kappa value estimated when
the C value was held constant at 1. The Kappa value was
calculated using the formula (po – pe)/(1-pe), where po and
pe denote the observed agreement and expected agreement
for classification, respectively. We further used the confusion
matrix, which contains the number of correct and incorrect
predictions summarized with count values and broken down by
each class, to predict the prediction accuracy of the SVM model.
The accuracy is calculated as (TP+ TN)/(TP+TN+FP+FN),
where TP and TN refer to true positives and true negatives,
respectively; FP and FN refer to false positives and false
negatives, respectively. These two measures (i.e., accuracy and
Kappa value) were chose to evaluate the SVM performance as
recommended by previous studies (42, 43). The Kappa statistics
could lead to a biased performance estimate in unbalanced
situations (44), which is not the characteristic of the current
sample. The SVM analysis was performed using the R package
“caret” (45).

RESULTS

The workflow of the current project is shown in Figure 1. The
clinical features of the 31 subjects are summarized in Table 1.
The group with language impairment and the group without
language impairment has significant differences in clinical
features associated with both social communication function and
verbal IQ scores.

The transcriptomic association study reveals 191 probes that
were statistically significantly associated with SCQ scores with
a p < 0.00001. The batch effect seemingly did not affect

TABLE 1 | Clinical features of the patients in the current study.

Language

impairment

(51.3%)

No language

impairment

(48.7%)

Relationship with

language

impairment*

Age 9.00 (SD: 2.52) 8.91 (SD: 3.99) P > 0.05

ADIR-BV 17.83 (SD: 3.27) 8.55 (SD: 1.13) P < 0.0001

ADIR-BN 8.92 (SD: 2.71) 3.64 (SD: 1.43) P < 0.0001

SCQ 22.19 (SD: 4.84) 11.47 (SD: 4.84) P < 0.0001

VIQ 82.08 (SD: 20.77) 111.91 (SD: 10.12) P = 0.0003

PIQ 90.83 (SD: 15.74) 101.36 (SD: 15.34) P > 0.05

SRS 89.61 (SD: 16.12) 79.55 (SD: 27.99) P > 0.05

ADIR-BV, Autism Diagnostic Interview–Revised, Qualitative Abnormalities in

Communication, Total Verbal score. ADIR-BN, Autism Diagnostic Interview–Revised,

Qualitative Abnormalities in Communication, Total Non-Verbal score. SCQ, Social

Communication Questionnaire score; VIQ, verbal IQ; PIQ, performance IQ; SRS, Social

Responsiveness Scale score.

*The student’s t-test was performed to evaluate whether the the two subgroups classified

by the presence of language impairment had different values in each continuous variable.

FIGURE 2 | Differentially expressed 54 genes with fold changes and

–logarithmic 10 adjusted p-values. The red circle represents logarithmic fold

change and the blue color circle represents –logarithmic 10 adjusted p-value

for each significant gene.

the association results (Supplementary Figure 1). We selected
54 of them with a fold-change >2 for the pathway analysis.
Differentially expressed 54 genes with logarithmic fold changes
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FIGURE 3 | Gene network analysis. The relationship among pathways enriched with candidate genes with expression levels associated with SCQ scores is shown.

and –logarithmic 10 adjusted p-values are listed in Figure 2.
Only three pathways were found to be over-represented by
these 54 genes with adjusted p < 0.05: cholesterol biosynthetic
process (GO:0006695), secondary alcohol biosynthetic process
(GO:1902653), and regulation of signal transduction by p53
class mediator (GO:1901796). The CPBD analysis shows that
Sterol Regulatory Element-Binding Proteins (SREBP) signaling
pathway is the pathway connected with 9 of the 10 pathways
including cholesterol biosynthetic pathway, so it can be regarded
as the “hub” associated with genetic network for ASD (Figure 3).
This pathway of SREBP focuses on the regulation of lipid
metabolism by SREBP.

The RF-PAM analysis identified two clusters (Figure 4). The
classification accuracy was 67.7% when the top 10 PCs were
used to generate the proximity matrix, while the classification
accuracy was 96.9% when all 191 probes were used to generate
the proximity matrix. The SVM analysis based on the top 10 PC
scores shows that the clustering results reached classification

accuracy at 93.3% (95% CI 68.1–99.8%) and no-information rate
(i.e., the largest proportion of the observed classes) at 53.3% (p
= 0.0011). Other parameters relevant to prediction performance
include Kappa value = 0.86, sensitivity = 0.86, specificity =

1.00, and balanced accuracy = 0.93. The SVM analysis using
the information of all probes with differential gene expressions
associated with SCQ scores yielded a slightly higher classification
accuracy than the SVM analysis based on the top 10 PC scores.
The classification accuracy at 99.9% (95% CI 78.2–100%) and
no-information rate (i.e., the largest proportion of the observed
classes) at 53.3% (p = 8.035 × 10−5) were achieved when
191 probes were analyzed. This classification accuracy can be
demonstrated in gene expression level distributions stratified
by language impairment (Supplementary Figure 2). The SVM
clustering results are shown in Figure 5. The results suggest
that the first two principal components could identify support
vectors that fell in the area with better prediction confidence
(Figure 5A), compared with the results predicted by individual
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FIGURE 4 | ASD subgroups identified using RF and PAM clustering algorithms. Dim1 and Dim2 correspond to principal components 1 and 2, respectively. (A,B) The

results based on the top 10 principal components (PCs) and the 191 probes, respectively. We used the first two predictors to make the plots to demonstrate how

different approaches classified the sample.

FIGURE 5 | SVM clustering results based on the top PCs. (A) Shows the color gradient that indicates how confidently a new point would be classified based on its

features. PC1 and PC2 represent the first and second principal components, respectively. (B) Shows the color gradient that indicates how confidently a new point

would be classified based on its features when predictors were based on all SCQ-associated probes. Probe 1 and probe 2 represent the first and second probes,

respectively. The solid symbols indicate the support vectors and the hollow circles indicates other subjects. The circles and triangles represent the first and second

subgroups, respectively.

probes (Figure 5B). The predicting performance of the RF-PAM
and SVM algorithms is listed in Table 2.

DISCUSSIONS

We conducted a proof-of-concept study to demonstrate how
transcriptomic data from a small sample could provide useful
biomarkers to classify ASD subgroups. The selection of the
predictors was based on DERs associated with SCQ scores, which

indicate the variation in severity levels of social communication
deficits, a hallmark clinical feature of ASD. The DER with
strongest evidence for the association with social deficits
in our sample is matched with the HEATR1 gene (HEAT
Repeat Containing 1). The HEART1 gene is associated with
schizophrenia (46). The HEATR1 gene abnormalities in the
brain during the embryonic stage has been reported in zebrafish
(47). The candidate genes that harbor these DERs suggest
several genetic pathways that modulate the variation in social
communication functions. Among these pathways, the pathway
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TABLE 2 | Predicting performance of two machine learning algorithms.

Method Predictors Prediction accuracy

RF-PAM 191 probes 96.90%

RF-PAM 10 PC* 67.70%

SVM 191 probes 99.90%

SVM 10 PC* 93.30%

*Principal component.

of cholesterol biosynthesis/metabolism and sterol regulatory
element-binding proteins (SREBP) pathway—cholesterol
metabolism appear to act as hubs that connect other top
SCQ-associated pathways. Particularly, the SREBP pathway
shares most genes with other SCQ-associated pathways. These
two pathways are related to lipid metabolism. Cholesterol
synthesis and uptake are tightly modulated at the transcriptional
level through negative feedback control, which is regulated
by SREBPs (48). The relationship between lipid metabolism
and brain functions has been well-documented. A growing
body of evidence has indicated that cholesterol metabolism
plays a key role in synaptic functions (49–51). Dysregulated
cholesterol metabolism has been extensively documented in ASD
(51–58). A recent study implemented a personalized medicine
approach combining healthcare claims, electronic health records,
familial whole-exome sequences, and neurodevelopmental gene
expression patterns, and identified an ASD subtype characterized
by dyslipidemia (59). There are certainly several other genetic
pathways involved in molecular mechanisms underlying social
communication deficits. Nevertheless, our results indicate that
cholesterol synthesis/metabolism pathways act as hubs that
connect most other biological pathways, which suggest that the
genomic functional changes associated with lipid metabolism
may moderate other genomic changes, such as the p53 signaling
pathway, that regulate social communication functions.

Using the DERs as biomarkers, we clustered the sample
into two subgroups using two different ML algorithms. Both
the RF-PAM and SVM analyses yielded similar levels of
classification accuracy when all 191 markers were utilized.
However, compared to the analysis using the RF-PAM algorithm,
the analysis using the SVM algorithm seemed to be more
robust when we performed dimension reduction for all the
191 markers with the PCA method. The RF algorithm is
applicable when there are more predictors than observations,
relatively insensitive to the noise (e.g., a large number of
irrelevant genes), and does not rely on excessive fine-tuning
of parameters (60). RF algorithm is more robust to small
sample size as the SVM algorithm (61, 62). However, Brown
et al. found that SVM outperforms other techniques that
include Fisher’s linear discriminant, Parzen window, and tow
decision tree learners when using gene expression data to
predict clinical outcomes (63). Additionally, Statnikov et al.
conducted a comprehensive comparison of RF and SVM using
microarray data for 22 diagnostic and prognostic datasets
and concluded that SVM is superior to RF in terms of
classification accuracy (64). Although the purpose of this

study is not to comprehensively evaluate which ML algorithm
outperforms the other ML algorithm, our results seem to
lend some support to the robustness of the SVM algorithm.
Nevertheless, the RF algorithm is at least as robust as the
SVM algorithm when the dimension of input variables is not
substantially reduced.

One of the major limitation of the current study is
the small sample size. Nevertheless, some machine learning
algorithm, such as SVM, can handle a small sample with
a large number of features. Additionally, model overfitting
may arise due to a lack of another independent sample
for validation. Furthermore, unknown confounders may cause
spurious associations between the phenotype and genomic
markers. However, the goal of this proof-of-concept study is
prediction of subtypes rather than the identification of etiologies.
Therefore, confounders would not yield a substantial impact on
prediction results (65).

The clinical and etiological heterogeneity in ASD has meant
that there is considerable variability in treatment outcomes
across different interventions and between individuals receiving
the same intervention. Hence the traditional diagnostic and “one
size fits all” approach to ASD intervention needs improvement.
Further, we currently do not have a sufficient understanding of
“what would work for whom,” thereby limiting opportunities
for maximizing outcomes for children and their families with
economic ramifications for broader society. In this context, ML
algorithms have been found to be useful in predicting diagnostic
accuracy in ASD with neuroimaging data (66). Further, one
recent study used Gaussian Mixture Models and Hierarchical
Agglomerative Clustering, which provide a statistical framework
for learning latent cluster memberships to determine ASD
subgroups with differentiated treatment responses (67).
Our findings that using ML algorithms, children could be
classified into two groups based on the presence of language
impairment, offers promise for unraveling clinically meaningful
subgroups in ASD. This, in turn, can be used for predicting
likely responsiveness (and non-responsiveness) to specific
treatment pathways. This “precision” approach to assessment
and intervention will ensure that resources for appropriate
intervention and supports are allocated in an evidence-based
manner. This is critical as without timely recognition of the
variability in the clinical presentation, neurocognitive level
of functioning, and psychosocial circumstances coupled with
individualized intervention, children and their families may
miss key opportunities of brain plasticity available in the critical
early years. ML techniques as utilized in this study offer a viable
solution to address this by allowing matching interventions
and supports that are tailored to the individual profile
and needs.
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Supplementary Figure 1 | The evaluation of potential batch effect due to the

microarrays timing. (A) The kernel density distributions of gene expression levels
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results that adjusted for the time (i.e., batch) vs. the results without adjusting for
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Supplementary Figure 2 | Randomly selected four probes associated with SCQ

scores stratified by the presence of language impairment. The red and blue curves

represent the group without language impairment and the group with language

impairment, respectively.
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